首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
西北旱区遥感影像分类的支持向量机法   总被引:1,自引:0,他引:1  
针对较大范围、不同时相、不同气候和地貌类型的遥感影像的土地利用现状分类问题,提出了一种结合标准植被指数和纹理特征的支持向量机法。此方法改进了陕西延安、甘肃嘉峪关和青海果洛的遥感影像分类,有效地解决了最大似然法和BP神经网络法的缺陷造成的分类精度不高的问题。分类结果表明:与最大似然法和BP神经网络法相比,结合标准植被指数和纹理特征的支持向量机法的分类总精度最高(97.75%),Kappa系数为0.9691。该方法可为西北旱区遥感影像解译和土地资源可持续发展战略提供方法支撑。  相似文献   

2.
基于支持向量机的航空影像纹理分类研究   总被引:8,自引:0,他引:8       下载免费PDF全文
提出一种用SVM解决航空影像纹理分类的方法。在利用一些常用的纹理特征的基础上,将SVM用于航空影像纹理分类,有效地解决了特征选择难和高维数问题。试验表明,这种方法可以取得较好的结果。  相似文献   

3.
基于支持向量机的高光谱遥感分类进展   总被引:4,自引:0,他引:4  
杜培军  林卉  孙敦新 《测绘通报》2006,(12):37-40,50
支持向量机作为一种最新的也是最有效的统计学习方法,近年来成为模式识别与机器学习领域一个新的研究热点。支持向量机因其适用高维特征、小样本与不确定性问题的优越性,是一种极具潜力的高光谱遥感分类方法。在分析基于支持向量机的高光谱遥感影像分类进展的基础上,对若干需要进一步研究的问题包括多类分类策略、训练样本与特征空间优化、不确定性控制、核函数选择与优化等进行探讨。  相似文献   

4.
王小美  逄云峰  杜培军  谭琨  李光丽 《测绘科学》2011,36(2):139-141,177
为了验证噪声对支持向量机分类器性能的影响,对"SVM可以有效用于含噪声和不确定性数据"这一观点进行定量分析评价,采用国产OMISII传感器获得的高光谱遥感数据进行了试验,为了更好地比较SVM分类器的抗噪性,先对原始数据进行支持向量机分类,然后在高光谱遥感影像中人为添加不同比例的椒盐噪声和条带噪声,然后进行支持向量机分类...  相似文献   

5.
探求适合遥感影像分类的方法是遥感影像应用研究的重点。深入研究了支持向量机(supportvectormachine,SVM)理论和算法,用无人机影像和Landsat8OLI/TIRS影像进行试验,计算分类后总体精度和Kappa系数。结果显示,SVM应用于光学遥感图像分类精度高,提取轮廓更完整。  相似文献   

6.
基于支持向量机的遥感影像厚云及云阴影去除   总被引:1,自引:1,他引:1  
梁栋  孔颉  胡根生  黄林生 《测绘学报》2012,41(2):225-231,238
提出一种基于支持向量机的遥感影像厚云及云阴影去除方法。首先利用支持向量机的学习性能检测影像中的云层,并利用太阳角度信息,判定云阴影区域,得到云层和云阴影的二值图。再对影像进行支持向量值轮廓波变换,利用云层和云阴影二值图生成的选择矩阵,对变换系数进行多层镶嵌,完成云层及云阴影的初去除。最后对影像镶嵌未能去除的云层及云阴影,通过统计学补偿的方法进行修复。仿真试验表明,该方法能有效恢复厚云区域的地物信息,形成的无云图像细节清晰,图像光滑。  相似文献   

7.
当代摄影测量与遥感技术的迅速发展,已经步入大数据时代,如何对获得的海量数字影像的辐射质量进行评价是一个值得重视的问题。本文从信息量、清晰度、灰度分布3个方面选择了10个评价指标作为影像特征,利用支持向量机监督学习的方法对以资源三号为例的遥感影像的辐射质量进行评价及结果分析。试验结果表明,本文方法得到的评价结果与人工评价结果较为一致,准确度较高,并且自动化程度高,可应用于遥感影像的辐射质量评价。  相似文献   

8.
从支持向量机的基本理论出发,结合高光谱数据的分离性测度,提出了一种基于分离性测度的二叉树多类支持向量机分类器,并用OMIS传感器获得的高光谱遥感数据和Hyperion高光谱遥感数据进行实验,分析比较了各种多类SVM的分类精度,并和传统的光谱角制图和最小距离分类算法进行了比较。结果表明,SVM进行高光谱分类时,基于分离性测度的二叉树多支持向量机的分类精度最高。  相似文献   

9.
基于支持向量机和多变量分析的高光谱遥感数据分类   总被引:1,自引:0,他引:1  
从支持向量机和多变量分析的基本理论出发,建立一个基于支持向量机和多变量分析的高光谱分类器,并利用国产OM IS传感器获得的北京某地区高光谱遥感数据进行试验,采取网格搜寻的方法来确定误差惩罚参数和径向基核参数的值。主要选取独立成分分析和主成分分析这两种多变量分析方法。结果表明,当进行独立成分分析后的数据应用支持向量机分类的时候,分类精度随着维数的增加而递增,10~20维的时候达到最大值,然后随之递减,分类精度最大为78.93%。随后的主成分分析中,得到同样的结论,但精度最高的时候是选择5维特征,精度为88.61%。  相似文献   

10.
基于支撑向量机的遥感影像分类方法比较研究   总被引:1,自引:0,他引:1  
对支撑向量机的分类方法作简单介绍,并通过对MSS遥感影像数据的分类实验与多种常用的遥感影像分类方法进行对比,发现在分类精确度上,支撑向量机优于其他分类方法,但是速度稍慢,这也是支撑向量机需要改进的.  相似文献   

11.
为了进一步提高遥感图像分类的精度,提出了一种基于Log-Gabor小波和Krawtchouk矩的遥感图像分类算法。首先利用Log-Gabor小波对遥感图像进行多方向、多分辨率滤波,提取遥感图像的纹理特征;同时计算遥感图像的Krawtchouk矩不变量,作为遥感图像的边缘形状特征,并与基于Log-Gabor小波提取的纹理特征构成完整的特征向量;最后依据所提取的特征向量利用支持向量机(support vector machine,SVM)分类器对待分类图像进行分类,得到最终的遥感图像分类结果。实验结果表明,与近年来提出的基于Gabor小波、基于Log-Gabor小波、基于Krawtchouk矩等3种遥感图像分类算法相比,本文算法在主观视觉效果和分类精度等客观定量评价指标上都有了明显的改善,是一种行之有效的遥感图像分类算法。  相似文献   

12.
论述了在已有的GIS数据基础之上,将GIS数据与知识综合运用于遥感影像监督法分类的分类方法,着重对样区的自动选取、非训练样区的分类等几个有关的问题进行了分析,并对该分类法的优势进行了分析和总结。  相似文献   

13.
基于ENVI的遥感图像监督分类方法比较研究   总被引:8,自引:3,他引:8  
基于监督分类方法在遥感影像分类中的普遍应用,介绍了四种ENVI提供的常用的监督分类方法。对同一TM图像运用这四种方法进行分类,并对分类结果进行了对比,从而分析了这四种方法分类精度之间的差异。  相似文献   

14.
基于SVM的遥感影像的分类   总被引:5,自引:0,他引:5  
传统的遥感图像的分类方法包括统计模式识别、句法模式识别、以及神经网络、遗传算法、模拟退火算法等。分析了统计模式识别的方法的优缺点,提出了使用SVM的方法进行遥感图像分类的设想,通过实验证明该方法是有效的和稳健的。  相似文献   

15.
张磊  邵振峰  周熙然  丁霖 《测绘学报》2014,43(8):855-861
本文提出了一种聚类特征和SVM组合的高光谱影像半监督协同分类方法。利用构建的协同分类框架能够将KSFCM聚类算法与半监督SVM分类器相结合,同时利用聚类和分类优势,提高分类器的分类准确率。其中,通过聚类损耗函数、分类一致函数、分类差异性、样本差异性四个指数用以构建协同分类框架,以充分利用少量类标签样本信息,避免高光谱类标签样本获取困难问题,在一定程度上解决SVM支持向量随着训练样本增加而线性增加的问题,从而寻求最佳分类结果。实验结果表明,本文所提方法得到的分类精度优于直接利用SVM进行半监督分类。  相似文献   

16.
为了弥补蝙蝠算法后期收敛速度慢、寻优精度不高、易陷入局部最优值的缺点,本文提出了一种新的遥感图像分类算法--GABA算法,该算法将遗传算法中的选择、交叉、变异操作应用到蝙蝠算法中,使蝙蝠算法具有变异机制,避免种群个体陷入局部最优,提高了算法全局寻优能力,增加了蝙蝠算法的多样性。同时,为了突出本文算法的优点,试验将蝙蝠算法、K-means算法、粒子群算法与本文算法结果进行比较,分析评价遥感图像的分类结果。试验表明本文算法在遥感图像分类应用中既提高了分类精度又减少了分类时间,是一种可行、有效的遥感图像分类方法。  相似文献   

17.
遥感图像分类应用研究综述   总被引:6,自引:1,他引:6  
对目前遥感图像分类方法应用研究进行了总结,在此基础上对其在地学应用研究中存在的问题进行了分析,得出了一些有益的结论,以期为遥感图像分类应用提供参考。  相似文献   

18.
随着SPOT,IKONOS,QUICKBIRD等高分辨率遥感影像的广泛应用,作为遥感影像重要信息之一的纹理信息的提取和利用,在遥感影像分类中呈现出了举足轻重的作用.本文介绍了影像纹理分析中常用的Gabor函数的原理、分类的方法、Gabor变换的特点及应用.  相似文献   

19.
基于面向对象的珲春地区高分辨率遥感影像分类研究   总被引:1,自引:0,他引:1  
以吉林省珲春市春化镇为研究区,以Pleiades、高分一号、资源三号影像为实验数据,利用面向对象信息提取方法实现了对3种遥感影像进行信息提取。利用3D Filter边缘检测算子对多尺度分割进行优化,通过对影像进行多次实验得出地物要素的最优分割参数,并且建立不同地物要素的分割层级。分析实验数据的特点构建了合理的分类层级,选取能区分各个地物要素的特征进行组合,利用阈值分类和模糊分类实现地物要素的信息提取。利用混淆矩阵对数据进行客观分析,得到3种影像的总体分类精度和kappa系数。分析结果表明:Pleiades影像分类精度较高,更适合本实验区的遥感影像信息提取。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号