首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis of the environments around a sample of 28 3CR radio galaxies with redshifts 0.6< z <1.8 is presented, based primarily upon K -band images down to K ∼20 taken using the UK Infrared Telescope (UKIRT). A net overdensity of K -band galaxies is found in the fields of the radio galaxies, with the mean excess counts being comparable to that expected for clusters of Abell Class 0 richness. A sharp peak is found in the angular cross-correlation amplitude centred on the radio galaxies that, for reasonable assumptions about the luminosity function of the galaxies, corresponds to a spatial cross-correlation amplitude between those determined for low-redshift Abell Class 0 and 1 clusters.
These data are complemented by J -band images also from UKIRT, and by optical images from the Hubble Space Telescope . The fields of the lower redshift ( z ≲0.9) radio galaxies in the sample generally show well-defined near-infrared colour–magnitude relations with little scatter, indicating a significant number of galaxies at the redshift of the radio galaxy; the relations involving colours at shorter wavelengths than the 4000 Å break show considerably greater scatter, suggesting that many of the cluster galaxies have low levels of recent or on-going star formation. At higher redshifts the colour–magnitude sequences are less prominent owing to the increased field galaxy contribution at faint magnitudes, but there is a statistical excess of galaxies with the very red infrared colours ( J − K ≳1.75) expected of old cluster galaxies at these redshifts.
Although these results are appropriate for the mean of all of the radio galaxy fields, there exist large field-to-field variations in the richness of the environments. Many, but certainly not all, powerful z ∼1 radio galaxies lie in (proto)cluster environments.  相似文献   

2.
We have used deep ground-based imaging in the near-infrared (near-IR) to search for counterparts to the luminous submillimetre (submm) sources in the catalogue of Smail et al. For the majority of the submm sources the near-IR imaging supports the counterparts originally selected from deep optical images. However, in two cases (10 per cent of the sample) we find a relatively bright near-IR source close to the submm position, sources that were unidentified in the deep Hubble Space Telescope ( HST ) and ground-based R -band images used by Smail et al. We place limits on colours of these sources from deep high-resolution Keck II imaging and find they have 2 σ limits of ( I − K )≳6.8 and ( I − K )≳6.0, respectively. Both sources thus class as extremely red objects (EROs). Using the spectral properties of the submm source in the radio and submm we argue that these EROs are probably the source of the submm emission, rather than the bright spiral galaxies previously identified by Smail et al. This connection provides important insights into the nature of the enigmatic ERO population and faint submm galaxies in general. From the estimated surface density of these submm-bright EROs we suggest that this class accounts for the majority of the reddest members of the ERO population, in good agreement with the preliminary conclusions of pointed submm observations of individual EROs. We conclude that the most extreme EROs represent a population of dusty, ultraluminous galaxies at high redshifts; further study of these will provide useful insights into the nature of star formation in obscured galaxies in the early Universe. The identification of similar counterparts in blank-field submm surveys will be extremely difficult owing to their faintness ( K ∼20.5, I ≳26.5). Finally, we discuss the radio and submm properties of the two submm-bright EROs discovered here and suggest that both galaxies lie at z ≳2.  相似文献   

3.
We present spectra for a sample of radio sources from the FIRST survey, and use them to define the form of the redshift distribution of radio sources at mJy levels. We targeted 365 sources and obtained 46 redshifts (13 per cent of the sample). We find that our sample is complete in redshift measurement to R ∼18.6, corresponding to z ∼0.2. Galaxies were assigned spectral types based on emission-line strengths. Early-type galaxies represent the largest subset (45 per cent) of the sample and have redshifts 0.15≲ z ≲0.5; late-type galaxies make up 15 per cent of the sample and have redshifts 0.05≲ z ≲0.2; starbursting galaxies are a small fraction (∼6 per cent), and are very nearby ( z ≲0.05). Some 9 per cent of the population have Seyfert 1/quasar-type spectra, all at z ≳0.8, and 4 per cent are Seyfert 2 type galaxies at intermediate redshifts ( z ∼0.2).
Using our measurements and data from the Phoenix survey (Hopkins et al.), we obtain an estimate for N ( z ) at S 1.4 GHz≥1 mJy and compare this with model predictions. At variance with previous conclusions, we find that the population of starbursting objects makes up ≲5 per cent of the radio population at S ∼1 mJy.  相似文献   

4.
In this paper, the third and final of a series, we present complete K -band imaging and some complementary I -band imaging of the filtered 6C* sample. We find no systematic differences between the K – z relation of 6C* radio galaxies and those from complete samples, so the near-infrared properties of luminous radio galaxies are not obviously biased by the additional 6C* radio selection criteria (steep spectral index and small angular size). The 6C* K – z data significantly improve delineation of the K – z relation for radio galaxies at high redshift ( z >2) . Accounting for non-stellar contamination, and for correlations between radio luminosity and stellar mass, we find little support for previous claims that the underlying scatter in the stellar luminosity of radio galaxies increases significantly at z >2 . In a particular spatially flat universe with a cosmological constant (ΩM=0.3 and ΩΛ=0.7) , the most luminous radio sources appear to be associated with galaxies with a luminosity distribution with a high mean (≈5  L *), and a low dispersion ( σ ∼0.5 mag) which formed their stars at epochs corresponding to z ≳2.5 . This result is in line with recent submillimetre studies of high-redshift radio galaxies and the inferred ages of extremely red objects from faint radio samples.  相似文献   

5.
We compare deep Magellan spectroscopy of 26 groups at  0.3 ≤ z ≤ 0.55  , selected from the Canadian Network for Observational Cosmology 2 field survey, with a large sample of nearby groups from the 2PIGG catalogue. We find that the fraction of group galaxies with significant [O  ii ]λ3727 emission (≥5 Å) increases strongly with redshift, from ∼29 per cent in 2dFGRS to ∼58 per cent in CNOC2, for all galaxies brighter than  ∼ M *+ 1.75  . This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission-line galaxies increases from ∼53 to ∼75 per cent. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation ( P trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers  ( P trunc≳ 0.3 Gyr−1)  . However, without assuming significant density evolution, P trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts   z ≳ 0.45  .  相似文献   

6.
We use the 6C** sample to investigate the comoving space density of powerful, steep-spectrum radio sources. This sample, consisting of 68 objects, has virtually complete K -band photometry and spectroscopic redshifts for 32 per cent of the sources. In order to find its complete redshift distribution, we develop a method of redshift estimation based on the K – z diagram of the 3CRR, 6CE, 6C* and 7CRS radio galaxies. Based on this method, we derive redshift probability density functions for all the optically identified sources in the 6C** sample. Using a combination of spectroscopic and estimated redshifts, we select the most radio luminous sources in the sample. Their redshift distribution is then compared with the predictions of the radio luminosity function of Jarvis et al. We find that, within the uncertainties associated with the estimation method, the data are consistent with a constant comoving space density of steep-spectrum radio sources beyond z ≳ 2.5, and rule out a steep decline.  相似文献   

7.
Using a sample of 19 464 galaxies drawn from the DEEP2 Galaxy Redshift Survey, we study the relationship between galaxy colour and environment at  0.4 < z < 1.35  . We find that the fraction of galaxies on the red sequence depends strongly on local environment out to   z > 1  , being larger in regions of greater galaxy density. At all epochs probed, we also find a small population of red, morphologically early-type galaxies residing in regions of low measured overdensity. The observed correlations between the red fraction and local overdensity are highly significant, with the trend at   z > 1  detected at a greater than 5σ level. Over the entire redshift regime studied, we find that the colour–density relation evolves continuously, with red galaxies more strongly favouring overdense regions at low z relative to their red-sequence counterparts at high redshift. At   z ≳ 1.3  , the red fraction only weakly correlates with overdensity, implying that any colour dependence to the clustering of  ∼ L *  galaxies at that epoch must be small. Our findings add weight to existing evidence that the build-up of galaxies on the red sequence has occurred preferentially in overdense environments (i.e. galaxy groups) at   z ≲ 1.5  . Furthermore, we identify the epoch  ( z ∼ 2)  at which typical  ∼ L *  galaxies began quenching and moved on to the red sequence in significant number. The strength of the observed evolutionary trends at  0 < z < 1.35  suggests that the correlations observed locally, such as the morphology–density and colour–density relations, are the result of environment-driven mechanisms (i.e. 'nurture') and do not appear to have been imprinted (by 'nature') upon the galaxy population during their epoch of formation.  相似文献   

8.
Further imaging observations of a sample of radio sources in the North Ecliptic Cap are presented and a number of new identifications are made. Using redshifts from spectroscopic data presented in a companion paper by Lacy et al., the photometric properties of the galaxies in the sample are discussed. It is shown that: (1) out to at least z ≈0.6 radio galaxies are good standard candles irrespective of radio luminosity; (2) for 0.6≲ z ≲1 a large fraction of the sample has magnitudes and colours consistent with a non-evolving giant elliptical, and (3) at higher redshifts, where the R -band samples the rest-frame UV flux, most objects have less UV luminosity than expected if they form their stellar populations at a constant rate from a high redshift to z ∼1 in unobscured star-forming regions (assuming an Einstein–de Sitter cosmology). The consequences of these observations are briefly discussed.  相似文献   

9.
We have extended our previous analysis of morphologically selected elliptical and S0 galaxies in the Hubble Deep Field (HDF) North to include Hubble Space Telescope ( HST ) data in the HDF South and the HDFS–NICMOS areas. Our final sample amounts to 69 E/S0 galaxies with K <20.15 over an area of 11 arcmin2. Although a moderately small number over a modest sky area, this sample benefits from the best imaging and photometric data available on high-redshift galaxies. Multi-waveband photometry allows us to estimate with good accuracy the redshifts for the majority of these galaxies, which lack a spectroscopic measure. We confirm our previous findings that massive E/S0s tend to disappear from flux-limited samples at z >1.4. This adds to the evidence that the rest-frame colours and spectral energy distributions (SEDs) of the numerous objects found at 0.8< z <1.2 are inconsistent with a very high redshift of formation for the bulk of stars, while they are more consistent with protracted (either continuous or episodic) star formation down to z ≤1. These results based on high-quality imaging on a small field can be complemented with data from colour-selected extremely red objects (EROs) on much larger sky areas: our claimed demise of E/S0s going from z =1 to z =1.5 is paralleled by a similarly fast decrease in the areal density of EROs when the colour limit is changed from ( R − K )=5 to ( R − K )=6 (corresponding to z ≃1 and z ≃1.3 respectively). Altogether, the redshift interval from 1 to 2 seems to correspond to a very active phase for the assembly of massive E/S0 galaxies in the field, and also probably one where a substantial fraction of their stars are formed.  相似文献   

10.
Galaxy colours are determined for two samples of 6C and 3CR radio sources at z ∼ 1, differing by a factor of ∼6 in radio power. Corrections are made for emission-line contamination and the presence of any nuclear point source, and the data analysed as a function of both redshift and the radio source properties. The galaxy colours are remarkably similar for the two populations, and the ultraviolet excess evolves with radio source size similarly in both samples, despite the fact that the alignment effect is more extensive for the more powerful 3CR radio galaxies. These results seem to suggest that the alignment effect at these redshifts does not scale strongly with radio power, and is instead more closely dependent on galaxy mass (which is statistically comparable for the two samples). However, it is likely that the presence of relatively young (≲several times 108-yr-old) stellar populations has considerably contaminated the K -band flux of these systems, particularly in the case of the more powerful 3CR sources, which are ∼0.5 mag more luminous than the predictions of passive evolution models at z ∼ 1. The higher luminosity of the 3CR alignment effect is balanced by emission at longer wavelengths, thereby leading to comparable colours for the two samples.  相似文献   

11.
Powerful radio galaxies often display enhanced optical/ultraviolet emission regions, elongated and aligned with the radio jet axis. The aim of this series of papers is to investigate separately the effects of radio power and redshift on the alignment effect, together with other radio galaxy properties. In this second paper, we present a deeper analysis of the morphological properties of these systems, including both the host galaxies and their surrounding aligned emission.
The host galaxies of our 6C subsample are well described as de Vaucouleurs ellipticals, with typical scale sizes of  ∼10 kpc  . This is comparable to the host galaxies of low- z radio sources of similar powers, and also the more powerful 3CR sources at the same redshift. The contribution of nuclear point source emission is also comparable, regardless of radio power.
The 6C alignment effect is remarkably similar to that seen around more powerful 3CR sources at the same redshift in terms of extent and degree of alignment with the radio source axis, although it is generally less luminous. The bright, knotty features observed in the case of the z ∼ 1 3CR sources are far less frequent in our 6C subsample; neither do we observe such strong evidence for evolution in the strength of the alignment effect with radio source size/age. However, we do find a very strong link between the most extreme alignment effects and emission-line region properties indicative of shocks, regardless of source size/age or power. In general, the 6C alignment effect is still considerably stronger than that seen around lower redshift galaxies of similar radio powers. Cosmic epoch is clearly just as important a factor as radio power: although aligned emission is observed on smaller scales at lower redshifts, the processes which produce the most extreme features simply no longer occur, suggesting considerable evolution in the properties of the extended haloes surrounding the radio source.  相似文献   

12.
We present an analysis of the optical spectra of a volume-limited sample of 375 radio galaxies at redshift  0.4 < z < 0.7  from the 2dF-SDSS (Sloan Digital Sky Survey) Luminous Red Galaxy (LRG) and QSO (quasi-stellar object) (2SLAQ) redshift survey. We investigate the evolution of the stellar populations and emission-line properties of these galaxies. By constructing composite spectra and comparing with a matched sample of radio-quiet sources from the same survey, we also investigate the effect on the galaxy of the presence of an active nucleus.
The composite spectra, binned by redshift and radio luminosity, all require two components to describe them, which we interpret as an old and a younger population. We found no evolution with redshift of the age of the younger population in radio galaxies, nor were they different from the radio-quiet comparison sample. Similarly, there is no correlation with radio power, with the exception that the most powerful radio sources  ( P 1.4 > 1026  W Hz−1) have younger stars and stronger emission lines than the less powerful sources. This suggests that we have located the threshold in radio power where strong emission lines 'switch on', at radio powers of around 1026 W Hz−1. Except for the very powerful radio galaxies, the presence of a currently active radio active galactic nucleus (AGN) does not appear to be correlated with any change in the observed stellar population of a luminous red galaxy at   z ∼ 0.5  .  相似文献   

13.
We have conducted ultra-deep optical and deep near-infrared observations of a field around the z =1.226 radio-quiet quasar 104420.8+055739 from the Clowes–Campusano LQG of 18 quasars at z ∼1.3, in search of associated galaxy clustering. Galaxies at these redshifts are distinguished by their extremely red colours, with I − K >3.75, and we find a factor ∼11 overdensity of such galaxies in a 2.25×2.25 arcmin2 field centred on the quasar. In particular, we find 15–18 galaxies that have colours consistent with being a population of passively evolving massive ellipticals at the quasar redshift. They form 'fingers' in the V − K K , I − K K colour–magnitude plots at V − K ≃6.9, I − K ≃4.3 comparable to the red sequences observed in other z ≃1.2 clusters. We find suggestive evidence for substructure among the red sequence galaxies in the K image, in the form of two compact groups, 40 arcsec to the north, and 60 arcsec to the south-east of the quasar. An examination of the wider optical images indicates that this substructure is significant, and that the clustering extends to form a large-scale structure 2–3  h −1 Mpc across. We find evidence for a high (≳50 per cent) fraction of blue galaxies in this system, in the form of 15–20 'red outlier' galaxies with I − K >3.75 and V − I <2.00, which we suggest are dusty, star-forming galaxies at the quasar redshift. Within 30 arcsec of the quasar we find a concentration of blue ( V − I <1) galaxies in a band that bisects the two groups of red sequence galaxies. This band of blue galaxies is presumed to correspond to a region of enhanced star formation. We explain this distribution of galaxies as the early stages of a cluster merger which has triggered both the star formation and the quasar.  相似文献   

14.
We have selected and analysed the properties of a sample of  2905 Ks < 21.5  galaxies in  ∼131 arcmin2  of the Great Observatories Origins Deep Survey (GOODS) Chandra Deep Field South (CDFS), to obtain further constraints on the evolution of Ks -selected galaxies with respect to the results already obtained in previous studies. We made use of the public deep multiwavelength imaging from the optical B through the infrared (IR) 4.5-μm bands, in conjunction with available spectroscopic and COMBO17 data in the CDFS, to construct an optimized redshift catalogue for our galaxy sample. We computed the Ks -band luminosity function and determined that its characteristic magnitude has a substantial brightening and a decreasing total density from   z = 0  to  〈 z 〉= 2.5  . We also analysed the colours and number density evolution of galaxies with different stellar masses. Within our sample, and in contrast to what is observed for less massive systems, the vast majority (∼85–90 per cent) of the most massive  ( M > 2.5 × 1011 M)  local galaxies appear to be in place before redshift   z ∼ 1  . Around 65–70 per cent of the total assemble between redshifts   z = 1  and 3 and most of them display extremely red colours, suggesting that plausible star formation in these very massive systems should mainly proceed in obscured, short-time-scale bursts. The remaining fraction (up to ∼20 per cent) could be in place at even higher redshifts   z = 3–4  , pushing the first epoch of formation of massive galaxies beyond the limits of current near-IR surveys.  相似文献   

15.
The radio properties of 11 obscured 'radio-intermediate' quasars at redshifts   z ≳ 2  have been investigated using the European Very-Long-Baseline-Interferometry Network (EVN) at 1.66 GHz. A sensitivity of  ∼25 μJy per 17 × 14 mas2 beam  was achieved, and in seven out of 11 sources unresolved radio emission was securely detected. The detected radio emission of each source accounts for ∼30–100 per cent of the total source flux density. The physical extent of this emission is ≲150 pc, and the derived properties indicate that this emission originates from an active galactic nucleus (AGN). The missing flux density is difficult to account for by star formation alone, so radio components associated with jets of physical size ≳150 pc and ≲40 kpc are likely to be present in most of the sources. Amongst the observed sample steep, flat, gigahertz-peaked and compact-steep spectrum sources are all present. Hence, as well as extended and compact jets, examples of beamed jets are also inferred, suggesting that in these sources, the obscuration must be due to dust in the host galaxy, rather than the torus invoked by the unified schemes. Comparing the total to core (≲150 pc) radio luminosities of this sample with different types of AGN suggests that this sample of   z ≳ 2  radio-intermediate obscured quasars shows radio properties that are more similar to those of the high-radio-luminosity end of the low-redshift radio-quiet quasar population than those of Fanaroff–Riley type I (FR I) radio galaxies. This conclusion may reflect intrinsic differences, but could be strongly influenced by the increasing effect of inverse-Compton cooling of extended radio jets at high redshift.  相似文献   

16.
The extremely red galaxies (ERGs) are defined in terms of their very red optical-to-near IR colours (as R − K >5 or I − K >4). Originally this selection was aimed at selecting old (>1 Gyr) passively evolving elliptical galaxies at intermediate redshift (1< z <2), but it was soon discovered that young star-forming dusty galaxies can show similar colours and therefore be selected in the same surveys. It is crucial to distinguish between these two populations because they have very different consequences on the models of galaxy formation. Here we show that old ellipticals and dusty starbursts are expected to show different colours in the ( I − K ) versus ( J − K ) diagram for redshift range 1< z <2, thus providing a useful tool to classify ERGs in large samples up to K <20. This is mainly owing to the fact that old galaxies at these redshifts have a strong 4000-Å break at λ <1.2 μm ( J band), while dusty galaxies show smoother spectral energy distributions and therefore redder J − K colours. We discuss this difference in detail both in the framework of the stellar population synthesis models and by using observed spectra. The selection criterion is also compared with the properties of ERGs of known nature. We also show that this colour selection criterion is also useful to separate the ERGs from brown dwarf stars showing similar optical-to-IR colours.  相似文献   

17.
We present a multicolour catalogue of faint galaxies situated close to bright stars,   V ≲ 15  , with the aim of identifying high-redshift galaxies suitable for study with adaptive optics-equipped near-infrared imagers and spectrographs. The catalogue is constructed from archival calibration observations of the United Kingdom Infrared Telescope (UKIRT) Faint Standard stars with the UKIRT Fast Track Imager (UFTI) camera on UKIRT. We have analysed the deepest 16 fields from the archive to provide a catalogue of galaxies brighter than   K ∼ 20.3  lying between 3 and 25 arcsec of the guide stars. We identify 111 objects in a total survey area of  8.7 arcmin2  . Of these, 87 are classified as galaxies based on their light profiles in our ∼0.5 arcsec median seeing K -band images. 12 of the galaxies have  ( J − K ) ≥ 2.0  consistent with them lying at high redshifts,   z ≳ 2  . These 12 very red galaxies have K -band magnitudes of   K = 18.1–20.1  and separations from the guide stars of 4–20 arcsec and hence are very well suited to adaptive optics studies to investigate their morphologies and spectral properties on sub-kpc scales. We provide coordinates and JHK photometry for all catalogued objects.  相似文献   

18.
We use K '-band (2.1-μm) imaging to investigate the angular size and morphology of 10 6C radio galaxies, at redshifts 1≤ z ≤1.4. Two radio galaxies appear to be undergoing mergers, another contains, within a single envelope, two intensity peaks aligned with the radio jets, while the other seven appear consistent with being normal ellipticals in the K band.
Intrinsic half-light radii are estimated from the areas of each radio galaxy image above a series of thresholds. The 6C galaxy radii are found to be significantly smaller than those of the more radio-luminous 3CR galaxies at similar redshifts. This would indicate that the higher mean K -band luminosity of the 3CR galaxies reflects a difference in the size of the host galaxies, and not solely a difference in the power of the active nuclei.
The size–luminosity relation of the z ∼1.1 6C galaxies indicates a 1.0–1.6 mag enhancement of their rest frame R -band surface brightness relative to either local ellipticals of the same size or FRII radio galaxies at z <0.2. The 3CR galaxies at z ∼1.1 show a comparable enhancement in surface brightness. The mean radius of the 6C galaxies suggests that they evolve into ellipticals of L ∼ L * luminosity, and is consistent with their low-redshift counterparts being relatively small FRII galaxies ∼25 times lower in radio luminosity, or small FRI galaxies ∼1000 times lower in radio luminosity. Hence the 6C radio galaxies appear to undergo as much optical and radio evolution as the 3CR galaxies.  相似文献   

19.
We investigate the evolution of the star formation rate in cluster galaxies. We complement data from the Canadian Network for Observational Cosmology 1 (CNOC1) cluster survey  (0.15 < z < 0.6)  with measurements from galaxy clusters in the Two-degree Field (2dF) galaxy redshift survey  (0.05 < z < 0.1)  and measurements from recently published work on higher-redshift clusters, up to almost   z = 1  . We focus our attention on galaxies in the cluster core, i.e. galaxies with   r < 0.7  h −170 Mpc  . Averaging over clusters in redshift bins, we find that the fraction of galaxies with strong [O  ii ] emission is ≲20 per cent in cluster cores, and the fraction evolves little with redshift. In contrast, field galaxies from the survey show a very strong increase over the same redshift range. It thus appears that the environment in the cores of rich clusters is hostile to star formation at all the redshifts studied. We compare this result with the evolution of the colours of galaxies in cluster cores, first reported by Butcher and Oemler. Using the same galaxies for our analysis of the [O  ii ] emission, we confirm that the fraction of blue galaxies, which are defined as galaxies 0.2 mag bluer in the rest-frame B – V than the red sequence of each cluster, increases strongly with redshift. Because the colours of galaxies retain a memory of their recent star formation history, while emission from the [O  ii ] line does not, we suggest that these two results can best be reconciled if the rate at which the clusters are being assembled is higher in the past, and the galaxies from which it is being assembled are typically bluer.  相似文献   

20.
We have compiled a sample of ∼ 9600 bright, i ≤18.95 , red, b J− r >2 , candidate galaxies in an area of 220 deg2. These are luminous, L > L * , field early-type galaxies with redshifts 0.3≲ z ≲0.6 . We present a redshift catalogue of a subsample of 581 targets. The galaxies were selected according to their broad-band b J ri colours from United Kingdom Schmidt Telescope plates, and have a surface density on the sky of only ∼ 50 deg−2. Such luminous field galaxies are virtually absent from published redshift surveys and the catalogue provides a large sample of the most luminous normal galaxies, at cosmological distances. The statistical properties of the galaxy spectra, including absorption-line and emission-line measures, are presented and a composite spectrum constructed. The nature of the sample, combined with the relatively bright apparent magnitudes, makes the galaxies suitable targets for several key investigations in galaxy evolution and cosmology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号