首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 PresentSituationofResearchforGlobalClimateRecently ,theresearchfortheglobalclimatechangescausedbytidehasachievedremarkableresul  相似文献   

2.
The Effect of Tide on the Global Climate Change   总被引:1,自引:0,他引:1  
The differential rotation between the solid and fluid spheres caused by tidal force could explain the 1500 to 1800 - year cycle of the worlds temperature. Strong tide increases the vertical and horizontal mixing of water in the oceans,dra-wing the cold Pacific water from the depths to the surface and the warm water from the west to the east, where it cools or warms the atmosphere above, absorbs or releases CO2 to decrease or increase greenhouse effect and to make La Nina or El Nino occur in the global. The moons declination and obliquity of the ecliptic affect the tidal intensity. The exchange of tidal energy and tide -generating force caused by the sun, moon and major planets makes the earths layers rotate in different speeds. The differenti-al rotation between solid and fluid of the earth is the basic reason for El Nino and global climate change.  相似文献   

3.
The differential rotation between solid and fluid caused by tidal force can explain a 1500 to 1800-year cycle of the climate change. Strong tide increases the vertical and horizontal mixing of water in ocean by drawing the cold Pacific water from the depths to the surface (or by making the warm water flow from the West Pacific to the East as well as from the North to the South). It cools or warms the atmosphere above and makes La Nina or El Nino occur in the whole world. Astronomical data have shown that strong tide is often associated with El Nino events. Volcanic activities at submarine are also controlled by strong tide. Volcanic activities can also draw warm water from the depths to the surface in the Pacific and volcanic ash can keep out sunlight, which is the most important external forcing factor for El Nino. If volcanic ash reaches into the stratosphere, finer aerosols will spread throughout the globe during a few months and will float in it for one to three years to weaken the sun's direct radiation to the areas. It is one of the factors to postpone EI Nino just like the process of solar eclipse.  相似文献   

4.
1StrongtideandastronomicalconditionsPartial solar eclipse occurred 4 times in 1964, 1982 and 2000 respectively. Time interval is about 3 Saros periods (one Saros period is 18 years and 10.33~11.33 days). Total lunar eclipse occurred 2 times in 1964 and 2000 respectively and 3 times in 1982. However, there was no lunar eclipse in 1966, 1984 and 2002. It seems that they had similar astro-nomical conditions and the best was in 1982. The studies about the effect of tide on the global climate…  相似文献   

5.
1 IntroductionManymeteorologistsandoceanographerspaidmuchattentiontothestudyofthemechanismofENSOformanyyears,suchasBjerknes(1 966) ,Wyrtki(1 975) ,McCreary(1 983 ) ,Philander(1 984) ,ZhangandChao(1 993 )andMcCPhaden(1 998)havemadegreatdevelopmentinthestudyofENSO .Especiallyinthe 1 990’s,withtheincreasingofthedatainthedeepocean ,thesomeonearguedthattheENSOepisodehadcloserelation shipwiththeeasterntransportationoftheanomalousseasurfacetemperatureinthewestPacific(LiandMu 1 999;Huang 2…  相似文献   

6.
Climate and tectonics are two interactive factors in the earth's system. They are controlled by astronomical cycles. It has been unheeded for a long time that large-scale material motion caused by global climatic change is one of the powers for tectonic movement. Tectonic movement makes the distributional pattern of continent and ocean change and makes global climate type change strongly in large scale. It is a good example that the change of the sea-ice around Antarctic Continent and in the Drake Passage has the switch process for global climatic changes. Tide makes the oceanic crust of the East Pacific Ocean and the West Pacific Ocean rise or fall 60 cm oppositely. Before and after El Nino events,the oceanic level of the East Pacific Ocean and the West Pacific Ocean may rise or fall 40 cm oppositely. Because of isostasy, oceanic crust may fall or rise 13 or 20 cm. They are the reasons why El Nino events are interrelated with the earthquakes and volcanoes. This is so called seesaw phenomenon of oceanic crust.  相似文献   

7.
1SeesawphenomenonofoceaniccrustSince 1996, Yoshino etal.(2002) have been us-ing the space geodetic techniques to observe crustal deformation at four sites in Tokyo metropolitan area. It is called Keystone project (KSP). At the end of June in 2000, volcanic and seismic events star-ted at Izu islands, south of Tokyo. Following the ev-ent, extraordinary crustal deformation was observed not only around the Izu islands, but also at the Key-stone network, where the closest site is over 100…  相似文献   

8.
To understand the impacts of large-scale circulation during the evolution of El Nino cycle on tropical cyclones(TC) is important and useful for TC forecast.Based on best-track data from the Joint Typhoon Warning Center and reanalysis data from National Centers for Environmental Prediction for the period 1975-2014,we investigated the influences of two types of El Nino,the eastern Pacific El Nino(EP-El Nino) and central Pacific El Nino(CP-E1 Nino),on global TC genesis.We also examined how various environmental factors contribute to these influences using a modified genesis potential index(MGPI).The composites reproduced for two types of El Nino,from their developing to decaying phases,were able to qualitatively replicate observed cyclogenesis in several basins except for the Arabian Sea.Certain factors of MGPI with more influence than others in various regions are identified.Over the western North Pacific,five variables were all important in the two El Nino types during developing summer(July-August-September) and fall(OctoberNovember-December),and decaying spring(April-May-June) and summer.In the eastern Pacific,vertical shear and relative vorticity are the crucial factors for the two types of El Nino during developing and decaying summers.In the Atlantic,vertical shear,potential intensity and relative humidity are important for the opposite variation of EP-and CP-E1 Ninos during decaying summers.In the Southern Hemisphere,the five variables have varying contributions to TC genesis variation during peak season(January-February-March) for the two types of El Nino.In the Bay of Bengal,relative vorticity,humidity and omega may be responsible for clearly reduced TC genesis during developing fall for the two types and slightly suppressed TC cyclogenesis during EP-El Nino decaying spring.In the Arabian Sea,the EP-El Nino generates a slightly positive anomaly of TC genesis during developing falls and decaying springs,but the MGPI failed to capture this variation.  相似文献   

9.
构造形变、气象灾害与地球轨道的关系   总被引:1,自引:1,他引:0  
黄赤交角和月亮赤纬角决定了地球应力场的主应力方向 ,据此研究了构造形变与气象灾害的关系。地球化学给出臭氧减少的原因 ,而地球物理则提供了臭氧的分布规律。臭氧洞是两种机制综合作用的结果。研究表明 ,能量交换和引潮力造成地球各圈层差异旋转 ,是臭氧洞和厄尔尼诺等气象灾害产生的根本原因。  相似文献   

10.
Multi-year SST and NCEP/NCAR reanalyzed wind data were employed to study the impacts of El Nino on the Southeast Asian summer monsoon(SEASM),It was found that the impacts of El Nino on the SEASM differed distinctly from those on the East Asian Summer monsoon (EASM) and the Indian summer monsoon(ISM).Composite analysis indicated that the “gear point“of coupling between the Indo-mosoon circulation and the Pacific-Walker circulation was located in the western margins of Southeast Asia when the developing stage of El Nino events covered the boreal summer.The anomalous circulations in the lower and upper troposphere and divergent circulation are all favorable for the strengthening of the SEASM during this period.Following the evolution of El Nino,the “gear point“ of the two cells shifted eastward to the central Pacific when the mature or decaying period of El Nino events covered the boreal summer.The anomalous circulations are favorable for the weakening of the SEASM ,The anomalous indexes of intenstity of SEASM accord well with the above resultsl.Additionally,the difference of SSTA patterns in the tropical In-do-Pacific OCean between the two stages of the El Nino may play an important role.  相似文献   

11.
1 MathematicModelofTidalVibrationSupposethat 3semi -axesofaellipsoidarea ,bandc (a >b >c) ,latitudeisθ ,longitudeisψ(changingfrom 0°to 90°) ,  相似文献   

12.
Cold water in the deep Pacific can be drawn up to the surface (or west warm water drifts eastwards) because strong tide increases the mixing of seawater both in vertical and horizontal. In this way greenhouse effect is decreased or in-creased by means of absorbing (or releasing) CO2. Therefore, La Nina cold event (or El Nino warm event) may occur, which is caused by wanning - up or cooling - down air above the ocean. Volcanic action at sea bottom is also controlled by strong tide.  相似文献   

13.
Cold water in the deep Pacific can be drawn up to the surface (or west warm water drifts eastwards ) because strong tide increases the mixing of seawater both in vertical and horizontal. In this way greenhouse effect is decreased or increased by means of absorbing (or releasing) CO2. Therefore, La Nina cold event (or El Nino warm event) may occur,which is caused by wanning - up or cooling - down air above the ocean. Volcanic action at sea bottom is also controlled by strong tide.  相似文献   

14.
The equatorial wave dynamics of interannual sea level variations between 2014/2015 and2015/2016 El Nino events are compared using the Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics Climate Ocean Model(LICOM) forced by the National Centers for Environmental Prediction(NCEP) reanalysis I wind stre s s and heat flux during 2000-2015.In addition,the LICOM can reproduce the interannual variability of sea surface temperature anomalies(SSTA) and sea level anomalies(SLA) along the equator over the Pacific Ocean in comparison with the Hadley center and altimetric data well.We extracted the equatorial wave coefficients of LICOM simulation to get the contribution to SLA by multiplying the meridional wave structure.During 2014/2015 El Nino event,upwelling equatorial Kelvin waves from the western boundary in April2014 reach the eastern Pacific Ocean,which weakened SLA in the eastern Pacific Ocean.However,no upwelling equatorial Kelvin waves from the western boundary of the Pacific Ocean could reach the eastern boundary during the 2015/2016 El Nino event.Linear wave model results also demonstrate that upwelling equatorial Kelvin waves in both 2014/2015 and 2015/2016 from the western boundary can reach the eastern boundary.However,the contribution from stronger westerly anomalies forced downwelling equatorial Kelvin waves overwhelmed that from the upwelling equatorial Kelvin waves from the western boundary in 2015.Therefore,the western boundary reflection and weak westerly wind burst inhibited the growth of the 2014/2015 El Nino event.The disclosed equatorial wave dynamics are important to the simulation and prediction of ENSO events in future studies.  相似文献   

15.
It is suggested that the multiple samples in a correlation map or a set of correlation maps should be examined with sig-nificance tests as per the Bernoulli probability, model. Therefore, both the contemporaneous and lag correlations of summertime pre-cipitation R in any one of the three regions of Northern China (NC), the Changjiang-Huaihe River Valley (CHRV), and Southern China (SC) with the SSTA in the global domain have been tested in the present article, using our significance test method and the method proposed by Livezey and Chen (1983) respectively. Our results demonstrate that the contemporaneous correlations of sum-mer R in CHRV with the SSTA are larger than those in NC. Significant correlations of SSTA with CHRV R are found to be in some warm SST regions in the tropics, whereas those of SSTA with NC R, which are opposite in sign as compared to the SSTA-CHRV R correlations, are found to be in some regions where the mean SSTs are low. In comparison with the patterns of the contemporaneous correlations, the 1 to 12 month lag correlations between NC R and SSTA, and those between CHRV summer R and SSTA show simi-lar patterns, including the magnitudes and signs, and the spatial distributions of the coefficients. However, the summer rainfall in SC is not well correlated with the SSTA, no matter how long the lag interval is. The results derived from the observations have set up a relationship frame connecting the precipitation anomalies in NC, CHRV, and SC with the SSTA in the global domain, which is criti-cally useful for our understanding and predicting the climate variabilities in different parts of China Both NC and CHRV summer R are connected with El Nino events, showing a'--'pattern in an El Nino year and a'+ +'pattern in the subsequent year.  相似文献   

16.
Based on more than 30 years observed sectional temperature data since the 1960s, and compared with multi-year wind and Changjiang (Yangtze) River discharge data, spatial-temporal variations of the East China Sea Cold Eddy (ECSCE) in summer was analyzed in relationship to ocean circulation and local atmospheric circulation. Empirical Orthogonal Function (EOF) and Singular Value Decomposition (SVD) analyseswere applied to this study. The results show that: l) The ECSCE in summer possesses significant interannual variabilities, which are directly associated with oceanic and atmospheric circulation anomaly. Main fluctuations demonstrate their falling in basically with E1 Nino events (interannual) and interdecadal variability. 2) The ECSCE in summer is closely related to the variation of the Yellow Sea Warm Current (YSWC) and the Changjiang River discharge. The stronger the YSWC, the more intensive the ECSCE with its center shifting westward,and vice versa. However, a negative correlation between the Changjiang River discharge and the ECSCE strength is shown. The ECSCE was strengthened after the abrupt global climate change affected by the interdecadal variation of the YSWC. 3) SVD analysis suggested a high correlation between the variation of the ECSCE in summer and the anomalous cyclonic atmospheric circulation over the ECS. Intensification of the cyclonic wind strengthens the ECSCE, and vice versa. 4) The cyclonic atmospheric circulation has dominant influence on the interannual variation of the ECSCE, and the influence of the ocean circulation takes the second in. The ECSCE was usually stronger in E1 Nifio years affected by strong cyclonic circulation in the atmosphere. The variation in strength of the ECSCE resulted from the joint effect of both oceanic and atmospheric circulation.  相似文献   

17.
为揭示陕西石泉井不同频带水位对气压和固体潮的响应特征,采用频谱分析、相干函数和时移分析方法,对石泉井2015-11-01~2016-02-29的井水位、气压和理论重力固体潮等进行深入分析。结果表明,低频带(f<0.5 cpd)井水位对气压响应较为一般且波动较大,对固体潮响应很差;中频带(0.5~8 cpd)井水位对固体潮响应很好,同时,对气压成分中的K1、S2和S3频点有较好的响应;高频带(f>8 cpd)井水位与气压和固体潮的相干性均较差,这可能由于该频带井水位的信噪比较低和气压能量较弱等因素所致。此外,在全频带内,随着气压周期的增大,井水位的滞后时间也相应从1 min增至720 min;在中低频带的某些频点或频段,井水位对气压响应的时移存在超前和异常波动现象。
关键词:  相似文献   

18.
Deng  Kangping  Cheng  Xuhua  Feng  Tao  Ma  Tian  Duan  Wei  Chen  Jiajia 《中国海洋湖沼学报》2021,39(1):26-44
Feature s of the interannual variability of the spring Wyrtki Jet in the tropical Indian Ocean are revealed using observation data and model output.The results show that the jet has significant interannual variation,which has a significant correlation with winter El Nino Modoki index(R=0.62).During spring after an El Nino(La Nina) Modoki event,the Wyrtki Jet has a positive(negative) anomaly,forced by a westerly(easterly) wind anomaly.The result of a linear-continuously stratified model shows that the first two baroclinic modes explain most of the interannual variability of the spring Wyrtki Jet(-70%) and the third to fifth modes together account for approximately 30%.Surface wind anomalies in the tropical Indian Ocean are related to the Walker circulation anomaly associated with El Nino/La Nina Modoki.The interannual variability of the spring Wyrtki Jet has an evident impact on sea surface salinity transport before the onset phase of the summer monsoon in the Indian Ocean.  相似文献   

19.
以2020-07-12唐山古冶5.1级地震为例,探讨流体固体潮参数的时空分布特征与孕震的关系。收集2017-01~2020-07唐山古冶周边16口井水位整点值资料,通过Baytap-G程序计算分析M2波与O1波潮汐参数,研究M2波潮汐因子随时间变化的趋势及空间分布情况。结果表明:1)唐山古冶地震前,震中附近井水位潮汐因子具有上升趋势,表现为应力积累;2)结合本次地震震源机制解可知,震中周边16口井潮汐因子的震时变化形态主要受主应力方向影响,东西向压缩,潮汐因子减小;南北向拉张,潮汐因子增大。  相似文献   

20.
Based on the study of the cold phase of the Pacific Decade Oscillation, pandemic influenza is related to climate. The relation of low temperature, Pacific Decade Oscillation, strongest earthquake, Influenza, hurricane and El Nino is researched in this study. In the cold period of Pacific Decade Oscillation, the strongest earthquake, hurricane with La Nina, Pandemic Influenza with El Nino will occur stronger and stronger. From 1950 to 1976, the strongest dust-storm is connected with Pandemic Influenza one by one. So, dust-storm is one of factors to spread pandemic influenza viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号