首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use the technique of direct minimization of the Gibbs free energy of the 8-component (K2O-Na2O-Fe2O3-FeO-CaO-MgO-Al2O3-SiO2) multiphase system in order to determine the equilibrium mineral assemblages of rocks of different bulk chemical compositions equilibrated at various P-T conditions. The calculated modal compositions of rocks and experimental data on elastic moduli of single crystals are then used to calculate densities and isotropic elastic wave velocities of rocks together with their pressure and temperature derivatives. Sufficient accuracy of the calculations is confirmed by comparison with experimental data on the gabbro-eclogite transformation and precise ultrasonic measurements of elastic wave velocities in a number of magmatic and metamorphic rocks.We present calculated phase diagrams with isolines of density, elastic wave velocities, and their pressure and temperature derivatives for several anhydrous magmatic rocks, from granite to lherzolite. Density and elastic properties of rocks are controlled by their chemical compositions, especially the SiO2 content, and by P-T of equilibration, and they increase with pressure due to mineral reactions changing mineral assemblages from plagioclase-bearing and garnet-free to garnetbearing and plagioclase-free. TheV p -density correlation is high, and shows two clear trends: one for iron-poor ultramafic rocks and another for all the other rocks considered. Mineral reactions, which occur at high pressures, changeV p and density of anhydrous magmatic rocks following the well-known Birch (or a similar) law.Felsic, intermediate and mafic rocks can be well distinguished in theV p -V p /V s - diagram, although their values ofV p can be close to one another. TheV p -V p /V s -density diagrams together with calculated phase diagrams can serve as efficient instruments for petrologic interpretation of seismic velocities.  相似文献   

2.
Summary In a series of triaxial experiments we have measuredV p ,V s and volumetric strain simultaneously in dilating dry and saturated rocks. For the first time these data permit quantitative comparison of seismic velocities or their ratio and dilatant volumetric strain. In air-dry samplesV p /V s decreases by a few per cent at strains of 10–3; in saturated materials with high pore pressure,V p /V s increases by a comparable amount. Decreases in seismic velocity ratio are difficult to generate in initially saturated rocks even with low pore pressures and at strain rates of 10–4/sec. A liquid-vapor transition will not produce a significant drop inV p /V s . If dilatancy and fluid flow are responsible for seismic travel time anomalies prior to earthquakes, our results suggest that such anomalies will occur only in regions where pore fluid source to sink dimensions are of the order of 10 km or more, or in regions where the rocks are not saturated to begin with.  相似文献   

3.
Controls on sonic velocity in carbonates   总被引:2,自引:0,他引:2  
Compressional and shear-wave velocities (V p andV s) of 210 minicores of carbonates from different areas and ages were measured under variable confining and pore-fluid pressures. The lithologies of the samples range from unconsolidated carbonate mud to completely lithified limestones. The velocity measurements enable us to relate velocity variations in carbonates to factors such as mineralogy, porosity, pore types and density and to quantify the velocity effects of compaction and other diagenetic alterations.Pure carbonate rocks show, unlike siliciclastic or shaly sediments, little direct correlation between acoustic properties (V p andV s) with age or burial depth of the sediments so that velocity inversions with increasing depth are common. Rather, sonic velocity in carbonates is controlled by the combined effect of depositional lithology and several post-depositional processes, such as cementation or dissolution, which results in fabrics specific to carbonates. These diagenetic fabrics can be directly correlated to the sonic velocity of the rocks.At 8 MPa effective pressureV p ranges from 1700 to 6500 m/s, andV s ranges from 800 to 3400 m/s. This range is mainly caused by variations in the amount and type of porosity and not by variations in mineralogy. In general, the measured velocities show a positive correlation with density and an inverse correlation with porosity, but departures from the general trends of correlation can be as high as 2500 m/s. These deviations can be explained by the occurrence of different pore types that form during specific diagenetic phases. Our data set further suggests that commonly used correlations like Gardner's Law (V p-density) or the time-average-equation (V p-porosity) should be significantly modified towards higher velocities before being applied to carbonates.The velocity measurements of unconsolidated carbonate mud at different stages of experimental compaction show that the velocity increase due to compaction is lower than the observed velocity increase at decreasing porosities in natural rocks. This discrepancy shows that diagenetic changes that accompany compaction influence velocity more than solely compaction at increasing overburden pressure.The susceptibility of carbonates to diagenetic changes, that occur far more quickly than compaction, causes a special velocity distribution in carbonates and complicates velocity estimations. By assigning characteristic velocity patterns to the observed diagenetic processes, we are able to link sonic velocity to the diagenetic stage of the rock.  相似文献   

4.
Summary Radioactive heat productionA is a scalar and isotropic petrophysical property independent of in situ temperature and pressure. Its value is usually expressed in HGU units (1 HGU=10–13 cal/cm3 sec) and depends on the amounts of uranium, thorium and potassium.A varies with rock type over several orders of magnitude and reflects the geochemical conditions during rock formation (magmatic differentiation, sedimentation or metamorphism).In order to assign realistic thermal parameters to deeper-seated rocks correlations with seismic velocity (which can be determined from the surface) have been looked for. In the range characteristic for crystalline rocks of the crust (5–8 km/sec)A is strongly correlated with density and compressional wave velocityv p:A decreases with increasingv p orp. From this relationship it is now possible to estimate heat production values for any particular layer of a crustal section from measured seismic velocities. Contrary to earlier belief there is, as shown by experimental determinations, no correlation between heat productionA and thermal conductivityK in igneous and metamorphic rocks. In sediments however, especially in sand/shale sequences, a correlation betweenK andA is most likely: increasing clay mineral content, characterized by increasingA, causes the decrease ofK in these rocks.Contribution No. 111, Institute of Geophysics, Swiss Federal Institute of Technology, Zurich, Switzerland.  相似文献   

5.
The pressure dependence of P- and S-wave velocities, velocity anisotropy, shear wave splitting and crack-porosity has been investigated in a number of samples from different crustal rock types for dry and wet (water saturated) conditions. At atmospheric pressure, P-wave velocities of the saturated, low-porosity rocks (< 1%) are significantly higher than in dry rocks, whereas the differences for S-wave velocities are less pronounced. The effect of intercrystalline fluids on seismic properties at increased pressure conditions is particularly reflected by the variation of the Poisson's ratio because P-wave velocities are more sensitive to fluids than S-wave velocities in the low-porosity rocks. Based on the experimental data, the respective crack-density parameter (), which is a measure of the number of flat cracks per volume unit contained within the background medium (crack-free matrix), has been calculated for dry and saturated conditions. There is a good correlation between the calculated crack-densities and crack-porosities derived from the experimentally determined volumetric strain curves. The shear wave velocity data, along with the shear wave polarisation referred to a orthogonal reference system, have been used to derive the spatial orientation of effective oriented cracks within a foliated biotite gneiss. The experimental data are in reasonable agreement with the self consistent model of O'Connell and Budiansky (1974). Taking the various lithologies into account, it is clear from the present study, that combined seismic measurements ofV p andV s , using theV p V s -ratio, may give evidence for fluids on grain boundaries and, in addition, may provide an estimate on the in-situ crack-densities.  相似文献   

6.
An attempt is made to obtain a combined geophysical model along two regional profiles: Black Sea— White Sea and Russian Platform—French Central Massif. The process of the model construction had the following stages: 1. The relation between seismic velocity (Vp, km/s) and density (σ, g/cm3) in crustal rocks was determined from seismic profiles and observed gravity fields employing the trial and error method. 2. Relations between heat production HP (μW/m3), velocity and density were established from heat flow data and crustal models of old platforms where the mantle heat flow HFM is supposed to be constant. The HFM value was also determined to 11 ± 5 mW/m2. 3. A petrological model of the old platform crust is proposed from the velocity-density models and the observed heat flow. It includes 10–12 km of acid rocks, 15–20 km of basic/metamorphic rocks and 7–10 km of basic ones. 4. Calculation of the crustal gravity effects; its substraction from the observed field gave the mantle gravity anomalies. Extensively negative anomalies have been found in the southern part of Eastern Europe (50–70 mgal) and in Western Europe (up to 200 mgal). They correlate with high heat flow and lower velocity in the uppermost mantle. 5. A polymorphic advection mechanism for deep tectonic processes was proposed as a thermal model of the upper mantle. Deep matter in active regions is assumed to be transported (advected) upwards under the crust and in its place the relatively cold material of the uppermost mantle descends. The resulting temperature distribution depends on the type of endogeneous regime, on the age and size of geostructure. Polymorphic transitions were also taken into account.  相似文献   

7.
A tomographic study of the V p and V p/V s structures in the crust and upper mantle beneath the Taiwan region of China is conducted by simultaneous inversion of P and S arrival times. Compared with the previous tomographic results, the spherical finite difference technique is suitable for the strong heterogeneous velocity structure, and may improve the accuracy in the travel time and three-dimensional ray tracing calculations. The V p and V p/V s structures derived from joint inversion and the relocated earthquakes can provide better constraints for analyzing the lateral heterogeneity and deep tectonic characters in the crust and upper mantle. Our tomographic results reveal significant relations between the seismic wavespeed structure and the tectonic characters. In the shallow depth, sedimentary basins and orogen show distinct wavespeed anomalies, with low V p, high V p/V s in basins and high V p, low V p/V s in orogen. As the suture zone of Eurasian Plate and Philippine Sea Plate, Longitudinal Valley is characterized by a significant high V p/V s anomaly extending to the middle-lower crust and upper mantle, which reflects the impact of rock cracking, partial melting, and the presence of fluids. In the northeast Taiwan, the V p, V p/V s anomalies and relocated earthquakes depict the subducting Philippine Sea Plate under the Eurasian Plate. The high V p of oceanic plate and the low V p, high V p/V s atop the subducted oceanic plate extend to 80 km depth. Along the east-west profiles, the thickness of crust reaches 60 km at the east of Central Range with eastward dipping trend, which reveals the eastward subduction of the thickened and deformed crust of the Eurasian continental plate. Supported by Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX3-SW-234-2), National Basic Research Program of China (Grant No. 2007CB411701), National High Technology Research and Development Program of China (Grant No. 2006AA09A101-0201) and National Natural Science Foundation of China (Grant Nos. 40804016, 40704013)  相似文献   

8.
Measurements of the changes in phase path of F-region reflections at normal incidence at Kodaikanal (77° 28′E, 10° 14′N, dip 3°N) from February 1991 to February 1993 are used to determine the variation of the equatorial evening F-region vertical drifts (Vz) with season, solar and magnetic activity. It is found that on average, at Kodaikanal, the post-sunset peak in Vz(Vzp) is higher in equinox and local winter months than in local summer. The day-to-day variability in Vzp is highest in summer and lowest in winter. This seasonal trend persists even on magnetically quiet days (Ap\leq14). Vzp is found to increase with 10.7 cm solar flux in all three seasons but tends to saturate for large flux values (>230 units) during local summer and winter months. Magnetic activity [represented by Ap as well as the time-weighted accumulations of ap and ap ()] does not seem to have any statistically significant effect on Vzp, except during equinoctial months of moderate solar activity, when Vzp decreases as magnetic activity increases.  相似文献   

9.
We estimated three-dimensional P- (Vp) and S-wave velocity (Vs) and Vp/Vs structures in and around the Onikobe volcanic area, northeastern Japan, by local travel time tomography. We used travel time data from source and receiver pairs located within and outside the study area, which plays an important role in obtaining the optimum ray coverage and in elucidating the deeper structure more accurately. Detailed information on deeper structures is essential for imaging the complete volcanic system from the magmatic source zone through areas of shallow hydrothermal circulation. More than 50 000 travel time data for the P-waves and 35 000 for the S-waves were used to image the velocity structure. Our results show the following dominant features: (1) two conduits in the upper crust with low Vp and low Vs indicative of H2O-rich fluid pathways: one lying beneath Naruko volcano, the other beneath the focal area of the 1962 Northern Miyagi earthquake (M6.5); (2) an underlying broad region in the lower crust with low Vp, low Vs and high Vp/Vs, suggestive of a zone of partial melt, from which the fluids in (1) are derived; and (3) low Vp/Vs areas near the surface of the Sanzugawa and Onikobe calderas, suggesting a diffuse vapor-saturated cap.  相似文献   

10.
Velocities of compressional and shear waves in limestones   总被引:2,自引:1,他引:2  
Carbonate rocks are important hydrocarbon reservoir rocks with complex textures and petrophysical properties (porosity and permeability) mainly resulting from various diagenetic processes (compaction, dissolution, precipitation, cementation, etc.). These complexities make prediction of reservoir characteristics (e.g. porosity and permeability) from their seismic properties very difficult. To explore the relationship between the seismic, petrophysical and geological properties, ultrasonic compressional‐ and shear‐wave velocity measurements were made under a simulated in situ condition of pressure (50 MPa hydrostatic effective pressure) at frequencies of approximately 0.85 MHz and 0.7 MHz, respectively, using a pulse‐echo method. The measurements were made both in vacuum‐dry and fully saturated conditions in oolitic limestones of the Great Oolite Formation of southern England. Some of the rocks were fully saturated with oil. The acoustic measurements were supplemented by porosity and permeability measurements, petrological and pore geometry studies of resin‐impregnated polished thin sections, X‐ray diffraction analyses and scanning electron microscope studies to investigate submicroscopic textures and micropores. It is shown that the compressional‐ and shear‐wave velocities (Vp and Vs, respectively) decrease with increasing porosity and that Vp decreases approximately twice as fast as Vs. The systematic differences in pore structures (e.g. the aspect ratio) of the limestones produce large residuals in the velocity versus porosity relationship. It is demonstrated that the velocity versus porosity relationship can be improved by removing the pore‐structure‐dependent variations from the residuals. The introduction of water into the pore space decreases the shear moduli of the rocks by about 2 GPa, suggesting that there exists a fluid/matrix interaction at grain contacts, which reduces the rigidity. The predicted Biot–Gassmann velocity values are greater than the measured velocity values due to the rock–fluid interaction. This is not accounted for in the Biot–Gassmann velocity models and velocity dispersion due to a local flow mechanism. The velocities predicted by the Raymer and time‐average relationships overestimated the measured velocities even more than the Biot model.  相似文献   

11.
Three component recordings from an array of five ocean bottom seismographs in the northwestern part of the Vøring basin have been used to obtain a 2-D shear-wave (S-wave) velocity-depth model. The shear waves are identified by means of travel-time differences compared to the compressional (P) waves, and by analyzing their particle motions. The model has been obtained by kinematic (travel-time) ray-tracing modelling of the OBS horizontal components.The shear-wave modelling indicates that mode conversions occur at several high velocity interfaces (sills) in the 4–10 km depth range, previously defined by a compressional-wave velocity-depth model using the same data set.An averageV p /V s ratio of 2.1 is inferred for the layers above the uppermost sill, indicative of both poorly consolidated sediments and a low sand/shale ratio. A significant decrease in theV p /V s ratio (1.7) below the first sill may in part be atributed to well consolidated sediments, and to a change in lithology to more sandy sediments. This layer is interpreted to lie within the lower Cretaceous sequence. At 5–10 km depthV p /V s ratios of 1.85 indicate a lower sand/shale ratio consistent with the expected lithologies. The averageV p /V s ratio inferred for the crust is 1.75, which is consistent with values obtained north of Vøring, in the Lofoten area. An eastward thinning of the crystalline basement is supported by the shear-wave modelling.  相似文献   

12.
Abstract

This paper analyzes the linear stability of a rapidly-rotating, stratified sheet pinch in a gravitational field, g, perpendicular to the sheet. The sheet pinch is a layer (O ? z ? d) of inviscid, Boussinesq fluid of electrical conductivity σ, magnetic permeability μ, and almost uniform density ρ o; z is height. The prevailing magnetic field. B o(z), is horizontal at each z level, but varies in direction with z. The angular velocity, Ω, is vertical and large (Ω ? VA/d, where VA = B0√(μρ0) is the Alfvén velocity). The Elsasser number, Λ = σB2 0/2Ωρ0, measures σ. A (modified) Rayleigh number, R = gβd20V2 A, measures the buoyancy force, where β is the imposed density gradient, antiparallel to g. A Prandtl number, PK = μσK, measures the diffusivity, k, of density differences.  相似文献   

13.
The subsidence of sedimentary layers implies increasing temperature downwards within the sedimentary column, so that the degree of coalification of organic matter increases continually. Apart from temperature, the slowly reacting chemical compounds of the organic matter strongly depend on time, too.It is shown that the coal rank is proportional to the integral of temperature and time of burial (t) for the Tertiary sedimentary rocks of the Upper Rhine Graben. This relationship is used to calculate paleogeothermal gradients (gradT) for some boreholes in the Upper Rhine Graben, from which the rate of burial during geological history (z(t)) is known. The degree of coalification is measured by its mean optical reflectivity (R m), so that the relationship between coalification and geothermal history isR m 2 gradT z(t) dt.The results show high heat flow during Lower Tertiary and a decrease during Upper Tertiary at some locations of the Upper Rhine Graben. The recent high heat flow is not detectable in coalification. The young thermal anomaly is perhaps caused by ascending pore fluid and/or by heat conduction from a heat source in the lower crust.  相似文献   

14.
The relationship between Vp and Vs may be used to predict Vs where only Vp is known. Vp/Vs is also used to identify pore fluids from seismic data and amplitude variation with offset analysis. Theoretical, physical, as well as statistical empirical Vp‐Vs relationships have been proposed for reservoir characterization when shear‐wave data are not available. In published work, the focus is primarily on the Vp‐Vs relationship of quartzitic sandstone. In order to broaden the picture we present Vp‐Vs relationships of greensand composed of quartz and glauconite by using data from the Paleocene greensand Nini oil field in the North Sea. A Vp‐Vs relationship derived from modelling is compared with empirical Vp‐Vs regressions from laboratory data as well as from log data. The accuracy of Vs prediction is quantified in terms of root‐mean‐square error. We find that the Vp‐Vs relationship derived from modelling works well for greensand shear‐wave velocity prediction. We model the seismic response of glauconitic greensand by using laboratory data from the Nini field. Our studies here reveal that brine‐saturated glauconitic greensand can have a similar seismic response to that from oil‐saturated quartzitic sandstone and that oil‐saturated strongly cemented greensand can have a similar amplitude variation with offset response to that from brine‐saturated weakly cemented greensand.  相似文献   

15.
The amplitude of vertical ground surface vibrations generated by impact tests on the ground surface was measured at various radial distances from the point of impact at locations of Greece. The results of measurements were analyzed in the frequency domain (in the range from 0–100 Hz) and the attenuation characteristics of soil materials were studied in terms of a frequency-independent attenuation coefficient, a0, of the empirical Bornitz equation. The aim of the study was to investigate the effect of soil stiffness (expressed by the value of low-amplitude shear wave velocity of soil, VSO) on the value of attenuation coefficient, a0. Values of VSO for the tested soils were estimated by applying the methodology of Spectral Analysis of Surface Waves (SASW) technique and utilizing the surface vibration data. An empirical relationship between a0 and VSO1 (VSO1 is the representative value of VSO for the soil profile up to a depth of one wavelength) was established for values of VSO1 ranging from 140 to 1000 m/s. A similar relationship in terms of the low-amplitude shear modulus of soil, GO1, was also established by converting the VSO1 values to GO1 values. The experimental results were compared to values reported in the literature for comparable soil types and frequencies of vibration and a reasonable agreement was found to exist. The proposed empirical relationship can be utilized in many practical applications of soil dynamics requiring the knowledge of the attenuation rate of Rayleigh waves with distance in various types of soils.  相似文献   

16.
The upper crustal (20 km)P-wave velocity beneath the Shillong Plateau and Nowgong area has been studied by the time-distance plot method. TheP-arrival data of the shallow (20 km) microearthquakes from three temporary networks are used, and the average velocity is found to be 5.55 km/s. The velocity ratio (V p /V s ) for the upper crust (0–20 km) as well as for the lower crust (21–40 km) are determined by the Wadati-plot method and station-by-station method. The average value obtained by the two methods is compatible; theV p /V s ranges between 1.74 to 1.76. A generalized seismic velocity model of the area is suggested by this study, which has been very useful for microearthquake location.  相似文献   

17.
The compression wavefield is efficiently converted to shear-wave energy at post-critical angles in areas of high impedance contrast at the sea floor. We have analysed mode-converted shear waves in a data set acquired with a hybrid marine/land geometry in Isfjorden, Svalbard. Through a kinematic 2D ray-tracing modellingV p/Vs ratios for part of the uppermost 5km of the crust are obtained. Low values (V p /V s =1.65) are tentatively associated with the section of Devonian sandstones which appears to attain a minimum thickness of 1.5km below 3 km depth about 10km west of Kapp Thorden.  相似文献   

18.
The ultrasonic profiling method of measuring the compressional and shear wave velocities in cylindrical rock samples is extended to measurements in some weathered and fresh granite blocks collected from the Hyderabad (India) region. This possibility of the method provides a means of investigating the elastic properties of the less compact rocks, of which the near-surface formations are particularly important. In this article the important parts of the ultrasonic profiling instrument developed are described and the relevant aspects of the seismic wave fields and identification of the individual waves in the wavetrain responses to longitudinal excitation are considered. Compressional, shear and surface (Rayleigh) wave velocities in some fresh and weathered granites are detailed. The compressional velocities range from 4.8 km/s to 5.5 km/s in fresh granites and lie between 1.1 km/s and 2.5 km/s in weathered granites. Young's modulus and Poisson's ratios computed from the measured velocities are also presented. An empirical relation of the form log E= 4.27 + 2.11 log Vp between Young's modulus E and compressional velocities Vp in the fresh granites studied is deduced. The versatility of the approach is thus demonstrated.  相似文献   

19.
An inclusion model, based on the Kuster–Toksöz effective medium theory along with Gassmann theory, is tested to forward model velocities for fluid-saturated rocks. A simulated annealing algorithm, along with the inclusion model, effectively inverts measured compressional velocity (VP) to achieve an effective pore aspect ratio at each depth in a depth variant manner, continuously along with depth. Early Cretaceous syn-rift clastic sediments at two different depth intervals from two wells [well A (2160–2274 m) and well B (5222–5303 m)], in the Krishna–Godavari basin, India, are used for this study. Shear velocity (VS) estimated using modelled pore aspect ratio offers a high correlation coefficient (>0.95 for both the wells) with measured data. The modelled pore aspect ratio distribution suggests the decrease in pore aspect ratio for the deeper interval, mainly due to increased effective vertical stress. The pore aspect ratio analysis in relation to total porosity and volume of clay reveals that the clay volume has insignificant influence in shaping the pore geometry in the studied intervals. An approach based on multiple linear regression method effectively predicts velocity as a linear function of total porosity, the volume of clay and the modelled pore-space aspect ratio of the rock. We achieved a significant match between measured and predicted velocities. The correlation coefficients between measured and modelled velocities are considerably high (approximately 0.85 and 0.8, for VP and VS, respectively). This process indicates the possible influence of pore geometry along with total porosity and volume of clay on velocity.  相似文献   

20.
A method was developed to obtain from a signal station the spatial and temporal distribution ofV p /V s ratios before earthquakes of magnitude>6. It was shown thatV p /V s values strongly depend upon the relative positions of the stations, the future large earthquake and the foci of the smaller earthquakes used forV p /V s determination. The appearance of a zone of anomalousV p /V s values with linear dimensions of the order of 100 km was noted at least 4 years before a deep earthquake of magnitude 7. Similar size anomalous zones were detected one year before some magnitude 6 earthquakes. V p /V s values decreased by a small but distinct amount during this time. Additionally, local short term minima inV p /V s ratios were observed some months before the major event. The epicenters of the large earthquakes were located within the 100 km size zone where the gradients of theV p /V s field were largest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号