首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two-dimensional barotropic, hydrodynamic and transport model MOHID is applied to the Patos Lagoon system using a nested modelling approach to reproduce both the lagoon and estuary hydrodynamics. A new Lagrangian oil spill model is presented and used to simulate a hypothetical oil spill in the estuary. Hydrodynamic fields are validated and used to force the oil model. Results show that the hydrodynamics of this system is mainly controlled by the wind and freshwater discharge. The dispersion, concentration and thickness evolution of the oil in the first day after the spill is determined by the equilibrium between these two factors. The freshwater discharge is the major factor controlling the oil dispersion for discharges greater than 5000 m3 while the wind assumes control for lower discharge amounts. The results presented are a first step toward a coastal management tool for the Patos Lagoon.  相似文献   

2.
The Southern Brazilian Shelf (SBS) is a freshwater-influenced region, but studies on the dynamics of coastal plumes are sparse and lack in space-time resolution. Studies on the dynamics of the Patos Lagoon plume are even more limited. The aim of this paper is to investigate the influence of the principal physical forcing for the formation and behavior of the Patos Lagoon coastal plume. The study is carried out through 3D numerical modeling experiments and empirical orthogonal function (EOF) analysis. Results showed that the amount of freshwater is the principal physical forcing controlling the plume formation. The Coriolis effect enhances the northward transport over the shelf, while the tidal effects contribute to intensify horizontal and vertical mixing, which are responsible for spreading the freshwater over the shelf. The wind effect, on the other hand, is the main mechanism controlling the behavior of the Patos Lagoon coastal plume over the inner SBS in synoptic time scales. Southeasterly and southwesterly winds contribute to the northeastward displacement of the plume, breaking the vertical stratification of the inner continental shelf. Northeasterly and northwesterly winds favor ebb conditions in the Patos Lagoon, contributing to the southwestward displacement of the plume enhancing the vertical stratification along and across-shore. The EOF analysis reveals two modes controlling the variability of the plume on the surface. The first mode (explaining 70% of the variability) is associated to the southwestward transportation of the plume due to the dominance of north quadrant winds, while the second mode (explaining 19% of the variability) is associated to the intermittent migration of the plume northeastward due to the passage of frontal systems over the area. Large scale plumes can be expected during winter and spring months, and are enhanced during El Niño events.  相似文献   

3.
In this paper we discuss the links between saltwater intrusion and subtidal circulation in the Changjiang Estuary based on a 3D numerical model. We restricted our study mainly to the three major outlets of the estuary: the South Passage, the North Passage, and the North Channel. Subtidal transport is landward in the South Passage and NNW- or NW-ward on the shoals, whereas it is mainly seaward in the North Passage and North Channel. Such a residual characteristic is caused by the interaction between tide and shallow water depth. Decomposing analysis indicated that Stokes transport is the major mechanism causing this particular residual transport pattern. Under its influence, the South Passage is the most saline outlet and the North Channel is the major route discharging the Changjiang runoff. Results of a tracer experiment indicated that active water mass exchange occurs from the South Passage to the North Passage and finally to the North Channel. Thus, the salinity in each outlet is determined not only by the tidal-averaged diversion ratio around the bifurcation of the South and North Channels but also by the subtidal circulation in the waterways and on the shoals. The northerly wind produces a horizontal circulation around the river mouth, which flows into the estuary in the North Channel and out of the estuary in the South Channel and South Passage. This circulation increases the salinity in the North Channel and decreases it in the South Passage. Recent engineering projects have intensified the landward residual in the South Passage, thereby increasing the salinity in the South Passage and decreasing the salinity in the North Channel.  相似文献   

4.
To describe the exchange of water and sediment through the Venice Lagoon inlets a 3-D hydrodynamic and sediment transport model has been developed and applied to a domain comprising Venice Lagoon and a part of the Adriatic Sea. The model has been validated for both current velocities and suspended particle concentration against direct observations and from observations empirically derived fluxes from upward-looking acoustic Doppler current profiler probes installed inside each inlet. The model provides estimates of the suspended sediment transport in the lower 3 m of the water column that is not detected by acoustic Doppler current profiler sensors. The bedload model prediction has been validated against measured sand transport rates collected by sand traps deployed in the Lido and Chioggia inlets. Results indicate that, in the Lido inlet, 87% of the total load is in suspension, while the rest moves as bedload.  相似文献   

5.
Lagoonal tidal inlets are a typical morphology of the Central Coast of Vietnam. Recently, navigation channels in these inlets have become increasingly threatened by siltation. This study analyses the relations between sediment distribution and transport trends (using the technique of Sediment Trend Analysis-STA■) in the lagoonal system of the De Gi inlet and then proposes appropriate countermeasures against sand deposition in the navigation channel. The STA identified three types of transport trends in the De Gi inlet, namely dynamic equilibrium, net accretion, and net erosion. Processes associated with the tidal prism have resulted in trends of sediment transport and deposition across the flood and ebb tidal shoals, which maintain a present cross-sectional area of about 1000m^2. However, longshore sediment transport from north to south resulting from northeast waves cause additional sand deposition in the channel. In addition, the effects of refraction associated with a nearby headland and jetty also increase sedimentation. These processes provide the main reasons for sediment deposition in the De Gi inlet. Short term and regular dredging helps to maintain the navigation channel. A system comprised of three jetties (north, south, and weir) is necessary to ensure the longterm cross-sectional stability of the navigation channel.  相似文献   

6.
The coastal plain bordering the southern Venice Lagoon is a reclaimed lowland characterized by high subsidence rate, and ground level and water-table depth below sea level. In this agricultural region, where the surface hydrologic network is entirely artificially controlled by irrigation/drainage canals, salinization problems have long been encountered in soils and groundwaters. Here we use isotopic and geochemical tracers to improve our understanding of the origin of salinization and mineralization of the semi-confined aquifer (0–40 m), and the freshwater inputs to this hydrological system. Water samples have been collected at different seasons in the coastal Adriatic Sea, lagoon, rivers and irrigation canals, as well as in the semi-confined aquifer at depths between 12 and 35 m (14 boreholes), and in the first confined aquifer (three boreholes drilled between 40 and 80 m depth). Stable isotopes (δ18O and δD) and conductivity profiles show that direct saline intrusion from the sea or the lagoon is observed only in a restricted coastal strip, while brackish groundwaters are found over the entire topographic and piezometric depression in the centre of the study area. Fresh groundwaters are found only in the most western zone. The sharp isotopic contrast between the western and central regions suggests disconnected hydrological circulations between these two parts of the shallow aquifer. The border between these two regions also corresponds to the limits of the most strongly subsiding zone.Our results can be interpreted in terms of a four end-member mixing scheme, involving (1) marine water from the lagoon or the open sea, (2) alpine and pre-alpine regional recharge waters carried either by the main rivers Adige, Bacchiglione and Brenta (irrigation waters) or by the regional groundwater circulation, (3) local precipitation, and (4) evaporated waters infiltrated from the surface. Infiltration from the surface is also revealed by the stratification of the electrical conductivity profiles, showing that the brackish groundwaters are overlain by a shallow layer of less saline water all over the central depression. In the first confined aquifer, the groundwaters have isotopic compositions similar to the deep groundwaters of the Venetian confined aquifers (40–400 m depth). The isotopic data and the Br/Cl ratio show that the origin of the salinization of the phreatic aquifer can be ascribed to seawater intrusion alone, with no indication of the involvement of deep brines (identified at 450 m depth) in the process.The chemical composition of the saline and brackish groundwaters is characterized by an excess of sodium and a deficit of calcium compared to conservative mixing between fresh groundwaters and seawater. This suggests that the phreatic aquifer is progressively freshening, as a consequence of the beneficial influence of the extensive irrigation/drainage network, including raised canals acting as a hydraulic barrier along the coast. This freshening tendency may have been lasting since the reclamation in the mid-twentieth century, and has probably been accelerated by the ban on groundwater abstraction since the 1970s.  相似文献   

7.
Tidal sand waves, also named tidal dunes, are large scale bedforms generated by the growth of perturbations of the sea bottom driven by tidal currents. Indeed, the interaction of an oscillatory tidal current with a bottom waviness gives rise to steady recirculating cells which tend to drag the sediment from the troughs towards the crests of the bottom perturbation. The net motion of the sediment towards the crests is opposed by gravity force and the growth of the perturbation is controlled by a balance between these two effects. In the literature, to determine the conditions which lead to the formation of sand waves and to determine the characteristics of the bedforms generated by this instability mechanism, both fully three-dimensional and shallow water approaches are employed. The shallow water approach is computationally less expensive than the fully three-dimensional one but, in many cases, it might be less accurate. This paper compares the quantitative predictions obtained by means of the two approaches and quantifies the range of the parameters such that the shallow water approximation provides reliable predictions.  相似文献   

8.
A shallow water hydrostatic 2D hydrodynamic numerical model, based on the boundary conforming coordinate system, was used to simulate aspects of both general and small scale oceanic features occurring in the composite system constituted by the Adriatic Sea and the Lagoon of Venice (Italy), under the influence of tide and realistic atmospheric forcing. Due to a specific technique for the treatment of movable lateral boundaries, the model is able to simulate efficiently dry up and flooding processes within the lagoon. Firstly, a model calibration was performed by comparing the results of the model, forced using tides and ECMWF atmospheric pressure and wind fields, with observations collected for a set of 33 mareographic stations uniformly distributed in the Adriatic Sea and in the Lagoon of Venice. A second numerical experiment was then carried out by considering only the tidal forcing. Through a comparison between the results obtained in the two experiments it was possible to assess the reliability of the estimated parameter through the composite forcing. Model results were then verified by comparing simulated amplitude and phase of each tidal constituent as well as tidal velocities simulated at the inlets of the lagoon and in the Northern Adriatic Sea with the corresponding observed values. The model accurately reproduces the observed harmonics: mean amplitude differences rarely exceed 1 cm, while phase errors are commonly confined below 15°. Semidiurnal and diurnal currents were correctly reproduced in the northern basin and a good agreement was obtained with measurements carried out at the lagoon inlets. On this basis, the outcomes of the hydrodynamic model were analyzed in order to investigate: (i) small-scale coastal circulation features observed at the interface between the adjoining basins, which consist often of vortical dipoles connected with the tidal flow of Adriatic water entering and leaving the Lagoon of Venice and with along-shore current fields connected with specific wind patterns; (ii) residual oscillations, which are often connected to meteorological forcing over the basin. In particular, it emerges that small-scale vortical features generated near the lagoon inlet can be efficiently transported toward the open sea, thus contributing to the water exchange between the two marine regions, and a realistic representation of observed residual oscillations in the area would require a very detailed knowledge of atmospheric as well as remote oceanic forcing.  相似文献   

9.
In this paper SST imagery and a three-dimensional numerical model of a river plume were employed to detect upwelling induced by tidal straining in the Rhine ROFI (region of fresh water influence). Previous studies have shown that the Rhine ROFI in the North Sea exhibits strong cross-shore density gradients that compete with tidal and wind mixing to establish stratification. During neap periods with low mixing energy an area measuring 30 km offshore by 100 km alongshore becomes stratified. When the ROFI is stratified strong cross-shore currents are observed, with surface currents rotating anti-cyclonically and bottom currents rotating cyclonically. The cross-shore currents interact with the cross-shore density gradients to produce a semi-diurnal cycle of stratification. Due to continuity requirements imposed by the proximity of the coast, the offshore-directed surface currents and onshore-directed bottom currents should lead to coastal upwelling.  相似文献   

10.
We present semi-analytical solutions for suspended sediment concentration (SSC) and residual sediment transport in a simple mathematical model of a short tidal embayment. These solutions allow us to investigate in some detail the characteristic tidal and semi-tidal variation of SSC and the processes leading to residual sediment transport, including settling and scour lags, the roles of ‘local’ and ‘advective’ contributions, and the presence of internally or externally generated overtides. By interpreting the transport mechanisms in terms of the classic conceptual models of settling lag we clarify how these models may be expressed in mathematical terms. Our results suggest that settling lag is usually a more important process than scour lag, and that a local model which neglects advection may predict the direction of net sediment transport incorrectly. Finally, we discuss our results in the context of other transport processes and morphodynamic feedback.  相似文献   

11.
Pollution, habitat modification, and species migration are some of the results of human activities on natural environments which can be mitigated or compensated with proper planning. Irresponsibility or ignorance in planning coastal projects too often produces damage to natural systems which can be unpredictable and sometimes irrevocable. The specific site analyzed in this paper is the Cuautla littoral sub‐system which was originally a lagoon that diverted river water to other lagoons and estuaries, thus irrigating the Mexican Marismas Nacionales system, in the states of Nayarit and Sinaloa, Mexico. In the 1970s social and economic considerations motivated the construction of a small breaching canal from the sea to the lagoon. The subsequent growth of this channel was unforeseen and has produced an irreversible impact not only in the sub‐system but probably in the entire area of Marismas Nacionales. A lack of understanding of the present balances in the damaged system and of the impacts the changing morphology has on future change has created the need to study this area using numerical hydrodynamic simulation. The present distribution of water in the sub‐system was established and the governing processes were detected. By means of an analytical estimation of equilibrium conditions it was found that if nothing is done, the channel will continue eroding and the ecosystem will continue to degrade. Only by understanding the dramatic perturbations caused by the construction of the channel to the hydrologic and morphologic equilibriums can there be any hope of rescuing the ecosystem, including its human activities.  相似文献   

12.
Previous studies on tidal dynamics of coastal aquifers have focussed on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Aquifers at natural coasts can also be influenced by tidal waves in nearby estuaries, resulting in a more complex behaviour of head fluctuations in the aquifers. We present an analytical solution to the two-dimensional depth-averaged groundwater flow equation for a semi-infinite aquifer subject to oscillating head conditions at the boundaries. The solution describes the tidal dynamics of a coastal aquifer that is adjacent to a cross-shore estuary. Both the effects of oceanic and estuarine tides on the aquifer are included in the solution. The analytical prediction of the head fluctuations is verified by comparison with numerical solutions computed using a standard finite-difference method. An essential feature of the present analytical solution is the interaction between the cross- and along-shore tidal waves in the aquifer area near the estuary’s entry. As the distance from the estuary or coastline increases, the wave interaction is weakened and the aquifer response is reduced, respectively, to the one-dimensional solution for oceanic tides or the solution of Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour Res 1997;33:1429–35) for two-dimensional non-interacting tidal waves.  相似文献   

13.
A comparison of 1927, 1970 and 2002 bathymetric surveys in the Lagoon of Venice was used to reconstruct historical changes in sedimentation. A detailed GIS-based analysis of the charts revealed the timing and pattern of geomorphic changes and allowed calculation of sediment deposition and erosion for the entire lagoon and each of its four sub-basins: Treporti, Lido, Malamocco and Chioggia.  相似文献   

14.
三门湾沿海声层析潮流观测实验   总被引:3,自引:0,他引:3       下载免费PDF全文
2009年9月6日至9日在三门湾进行了沿海声层析(Coastal Acoustic Tomography,CAT)潮流观测实验.实验由7台沿海声层析仪组网进行,并分别由渔船定点抛锚于7个站位.实验期间,还进行了定点ADCP(Acoustic Doppler Current Profiler)观测.通过建立逆模式对声传播时间差进行解析,引入权重因子,用L-curve法确定阻尼因子的最佳值,继而根据阻尼最小二乘法得到流速的最佳解.根据逆模式得到的流速分布可知该海区的潮流以半日潮(M2)为主,M2潮流椭圆呈东南-西北走向,潮流基本都是顺着水道,即涨潮为西北流向,退潮为东南流向.西北向与东南向最大流速分别为1.03 m·s-1和1.09 m·s-1.实验期间该区域的余流是从湾外流入湾内,平均流速约为0.05 m·s-1.CAT与定点ADCP流速的东分量和北分量的均方差均小于0.18 m·s-1.这样大面积的潮流和余流水平分布的同步观测,用传统观测手段很难实现.通过以上结果可以得出,沿海声层析技术可以作为一种新的测流方法对强潮海区进行大面积潮流观测,可在我国沿海的海洋环境监测等方面发挥重要作用.  相似文献   

15.
A correct understanding of the hydrodynamics and morphodynamics of tidal basins is of fundamental importance for the fate of the Venice Lagoon, Italy. If on one hand, the development of sophisticated numerical models is called for in order to reproduce the complexity of the mechanisms governing the morphodynamic evolution of many natural environments, including lagoons, on the other hand, a clear knowledge of the reliability and limits of the results provided by these models is crucial in order to establish the condition under which they can be safely applied. To this aim, researchers involved in numerical modeling in the framework of the recent Corila research programmes, agreed to perform an accurate comparison of results provided by three different numerical models, applying them to the test case offered by the experimental investigations performed under controlled conditions by Tambroni et al. (2005a). Here, we consider the following numerical models: (i) a 2D finite element hydrodynamic model coupled with a 2D finite volume morphodynamic model (5 and 3); (ii) a 2D finite element morphodynamic model (Ferrarin et al., 2008); (iii) a 2D depth-averaged model for the inlet region, coupled with a 1D model for the channel (Tambroni et al., 2005b). A first set of simulations concerns the fixed bed case and shows that all the models provide similar results: in particular, they are able to predict the observed free surface oscillations satisfactorily, while comparison with the measured velocity field is less satisfactory. Moreover, as far as the flow field at the inlet is concerned, the models describe accurately the potential flow into the channel during the flood phase, while they are not able to adequately reproduce the occurrence of the fine structure of the shear layers shed by the inlet edges during the ebb phase. This limit is related to the shallow water character of the models. As for the morphodynamics, the long term equilibrium configurations of the bottom of the channel and of the near inlet region show qualitative agreement with the experimental observations, although in this case the differences between the results provided by the distinct numerical approaches are more marked.  相似文献   

16.
This study reports the role of waves, tide, wind and freshwater discharges over the sea level in Óbidos Lagoon, a coastal system connected to the sea through a narrow and shallow mobile inlet. To address the hydrodynamic features of this coastal system, the relative importance of different physical forcings were evaluated. For this purpose, observations together with realistic and idealized numerical modeling were used. Both model and measurements show that the lagoon sea level remains above offshore sea level during storm wave periods. Hence, a simplified inlet-lagoon idealized model was described through mathematical expressions, to understand and highlight the physical processes responsible for sea-level elevation.  相似文献   

17.
This work presents results from two complementary and interconnected approaches to study water temperature and salinity patterns in an estuarine tidal channel. This channel is one of the four main branches of the Ria de Aveiro, a shallow lagoon located in the Northwest coast of the Iberian Peninsula. Longitudinal and cross-sectional fields of water temperature and salinity were determined by spatial interpolation of field measurements. A numerical model (Mohid) was used in a 2D depth-integrated mode in order to compute water temperature and salinity patterns. The main purpose of this work was to determine the horizontal patterns of water temperature and salinity in the study area, evaluating the effects of the main forcing factors. The field results were depth-integrated and compared to numerical model results. These results obtained using extreme tidal and river runoff forcing, are also presented. The field results reveal that, when the river flow is weak, the tidal intrusion is the main forcing mechanism, generating saline and thermal fronts which migrate with the neap/spring tidal cycle. When the river flow increases, the influence of the freshwater extends almost as far as the mouth of the lagoon and vertical stratification is established. Results of numerical modelling reveal that the implemented model reproduces quite well the observed horizontal patterns. The model was also used to study the hydrology of the study area under extreme forcing conditions. When the model is forced with a low river flow (1 m3 s−1) the results confirm that the hydrology is tidally dominated. When the model is forced with a high river flow (1,000 m3 s−1) the hydrology is dominated by freshwater, as would be expected in such an area.  相似文献   

18.
A 2D depth-averaged numerical model is set up to simulate the macro-scale hydrodynamic characteristics, sediment transport patterns and morphological evolution in Hangzhou Bay, a large macro-tidal estuary on the eastern coast of China. By incorporating the shallow water equations, the suspended sediment transport equation and the mass-balance equation for sediment; short-term hydrodynamics, sediment transport and long-term morphological evolution for Hangzhou Bay are simulated and the underlying physical mechanisms are analyzed. The model reproduces the spatial distribution patterns of suspended sediment concentration (SSC) in Hangzhou Bay, characterized by three high SSC zones and two low SSC zones. It also correctly simulates the residual flow, the residual sediment transport and the sediment accumulation patterns in Hangzhou Bay. The model results are in agreement with previous studies based on field measurements. The residual flow and the residual sediment transport are landwards directed in the northern part of the bay and seawards directed in the southern part. Sediment accumulation takes place in most areas of the bay. Harmonic analysis revealed that the tide is flood-dominant in the northern part of the bay and ebb-dominant in the southern part of the bay. The strength of the flood-dominance increases landwards along the northern Hangzhou Bay. In turn sediment transport in Hangzhou Bay is controlled by this tidal asymmetry pattern. In addition, the direction of tidal propagation in the East China Sea, the presence of the archipelago in the southeast and the funnel-shaped geometry of the bay, play important roles for the patterns of sediment transport and sediment accumulation respectively.  相似文献   

19.
Major ions, nutrients, trace elements and pesticides distribution were studied in a coastal wetland heavily impacted by human development in Spain. Past land use has altered the local hydrodynamics leading to the partitioning of the ecosystem into a tideland subject to marine influence, and an artificial freshwater reservoir created by stream impoundment. The tideland stretch is flooded twice a day with a heavy metal plume that emerges from the mine-polluted estuary of Huelva and propagates landward depicting the same dispersal trend of major seawater ions. Additionally, the tidal channel receives acid discharges from industrial point sources that contribute to metal enhancement. The impounded area and stream tributaries are affected by agrochemicals runoff (nitrate, phosphate, pendimethalin, simazine, diuron and therbuthylazine) from surrounding agricultural lands. The tidal regime plays a crucial role in the transport and dispersion of pollutants, except in the artificial reservoir where freshwater exhibits a seasonal mineralization pattern.  相似文献   

20.
Biomarkers of exposure (liver metallothionein-like proteins content and catalase and glutathione S-transferase activities) and effect (liver lipoperoxidation and blood cell DNA damage) of contaminants were analyzed in the Brazilian flounder Paralichthys orbignyanus from the Patos Lagoon estuary (Southern Brazil). Flounders were collected for a year in two sites: "Coroa do Boi" (polluted site) and "Saco do Justino" (non-polluted site). Results indicated that micronucleated cells frequency was the best biomarker to distinguish flounders from the two sites. Taken together, data from DNA damage analyses (micronucleus test and comet assay) indicated that flounders from the non-polluted site efficiently repaired the DNA breaks, contrary to those from the polluted site, which probably had their DNA repair system inhibited or exhausted. Furthermore, data from enzyme activities (catalase and GST) and lipid peroxidation indicated that flounders from the polluted site were under oxidative stress in summer and autumn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号