首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the results of a geochemical study of the Jijal andSarangar complexes, which constitute the lower crust of theMesozoic Kohistan paleo-island arc (Northern Pakistan). TheJijal complex is composed of basal peridotites topped by a gabbroicsection made up of mafic garnet granulite with minor lensesof garnet hornblendite and granite, grading up-section to hornblendegabbronorite. The Sarangar complex is composed of metagabbro.The Sarangar gabbro and Jijal hornblende gabbronorite have melt-like,light rare earth element (LREE)-enriched REE patterns similarto those of island arc basalts. Together with the Jijal garnetgranulite, they define negative covariations of LaN, YbN and(La/Sm)N with Eu* [Eu* = 2 x EuN/(SmN + GdN), where N indicateschondrite normalized], and positive covariations of (Yb/Gd)Nwith Eu*. REE modeling indicates that these covariations cannotbe accounted for by high-pressure crystal fractionation of hydrousprimitive or derivative andesites. They are consistent withformation of the garnet granulites as plagioclase–garnetassemblages with variable trapped melt fractions via eitherhigh-pressure crystallization of primitive island arc basaltsor dehydration-melting of hornblende gabbronorite, providedthat the amount of segregated or restitic garnet was low (<5wt %). Field, petrographic, geochemical and experimental evidenceis more consistent with formation of the Jijal garnet granuliteby dehydration-melting of Jijal hornblende gabbronorite. Similarly,the Jijal garnet-bearing hornblendite lenses were probably generatedby coeval dehydration-melting of hornblendites. Melting modelsand geochronological data point to intrusive leucogranites inthe overlying metaplutonic complex as the melts generated bydehydration-melting of the plutonic protoliths of the Jijalgarnet-bearing restites. Consistent with the metamorphic evolutionof the Kohistan lower arc crust, dehydration-melting occurredat the mature stage of this island arc when shallower hornblende-bearingplutonic rocks were buried to depths exceeding 25–30 kmand heated to temperatures above c. 900°C. Available experimentaldata on dehydration-melting of amphibolitic sources imply thatthickening of oceanic arcs to depths >30 km (equivalent toc. 1·0 GPa), together with the hot geotherms now postulatedfor lower island arc crust, should cause dehydration-meltingof amphibole-bearing plutonic rocks generating dense garnetgranulitic roots in island arcs. Dehydration-melting of hornblende-bearingplutonic rocks may, hence, be a common intracrustal chemicaland physical differentiation process in island arcs and a naturalconsequence of their maturation, leading to the addition ofgranitic partial melts to the middle–upper arc crust andformation of dense, unstable garnet granulite roots in the lowerarc crust. Addition of LREE-enriched granitic melts producedby this process to the middle–upper island arc crust maydrive its basaltic composition toward that of andesite, affordinga plausible solution to the ‘arc paradox’ of formationof andesitic continental-like crust in island arc settings. KEY WORDS: island arc crust; Kohistan complex; Jijal complex; amphibole dehydration-melting; garnet granulite; continental crustal growth  相似文献   

2.
This study reports oxygen isotope ratios determined by laserfluorination of mineral separates (mainly plagioclase) frombasaltic andesitic to rhyolitic composition volcanic rocks eruptedfrom the Lassen Volcanic Center (LVC), northern California.Plagioclase separates from nearly all rocks have 18O values(6·1–8·4) higher than expected for productionof the magmas by partial melting of little evolved basalticlavas erupted in the arc front and back-arc regions of the southernmostCascades during the late Cenozoic. Most LVC magmas must thereforecontain high 18O crustal material. In this regard, the 18O valuesof the volcanic rocks show strong spatial patterns, particularlyfor young rhyodacitic rocks that best represent unmodified partialmelts of the continental crust. Rhyodacitic magmas erupted fromvents located within 3·5 km of the inferred center ofthe LVC have consistently lower 18O values (average 6·3± 0·1) at given SiO2 contents relative to rockserupted from distal vents (>7·0 km; average 7·1± 0.1). Further, magmas erupted from vents situated attransitional distances have intermediate values and span a largerrange (average 6·8 ± 0·2). Basaltic andesiticto andesitic composition rocks show similar spatial variations,although as a group the 18O values of these rocks are more variableand extend to higher values than the rhyodacitic rocks. Thesefeatures are interpreted to reflect assimilation of heterogeneouslower continental crust by mafic magmas, followed by mixingor mingling with silicic magmas formed by partial melting ofinitially high 18O continental crust (9·0) increasinglyhybridized by lower 18O (6·0) mantle-derived basalticmagmas toward the center of the system. Mixing calculationsusing estimated endmember source 18O values imply that LVC magmascontain on a molar oxygen basis approximately 42 to 4% isotopicallyheavy continental crust, with proportions declining in a broadlyregular fashion toward the center of the LVC. Conversely, the18O values of the rhyodacitic rocks suggest that the continentalcrust in the melt generation zones beneath the LVC has beensubstantially modified by intrusion of mantle-derived basalticmagmas, with the degree of hybridization ranging on a molaroxygen basis from approximately 60% at distances up to 12 kmfrom the center of the system to 97% directly beneath the focusregion. These results demonstrate on a relatively small scalethe strong influence that intrusion of mantle-derived maficmagmas can have on modifying the composition of pre-existingcontinental crust in regions of melt production. Given thisresult, similar, but larger-scale, regional trends in magmacompositions may reflect an analogous but more extensive processwherein the continental crust becomes progressively hybridizedbeneath frontal arc localities as a result of protracted intrusionof subduction-related basaltic magmas. KEY WORDS: oxygen isotopes; phenocrysts; continental arc magmatism; Cascades; Lassen  相似文献   

3.
Mineral major and trace element data are presented for the mainrock units of the Chilas Complex, a series of lower crustalintrusions emplaced during initial rifting within the MesozoicKohistan (paleo)-island arc (NW Pakistan). Detailed field observationsand petrological analysis, together with geochemical data, indicatethat the two principal units, ultramafic rocks and gabbronoritesequences, originate from a common parental magma, but evolvedalong different mineral fractionation trends. Phase petrologyand mineral trace element data indicate that the fractionationsequence of the ultramafic rocks is dominated by the crystallizationof olivine and clinopyroxene prior to plagioclase, whereas plagioclaseprecedes clinopyroxene in the gabbronorites. Clinopyroxene inthe ultramafic rocks (with Mg-number [Mg/(Fetot + Mg] up to0·95) displays increasing Al2O3 with decreasing Mg-number.The light rare earth element depleted trace element pattern(CeN/GdN 0·5–0·3) of primitive clinopyroxenesdisplays no Eu anomaly. In contrast, clinopyroxenes from thegabbronorites contain plagioclase inclusions, and the traceelement pattern shows pronounced negative anomalies for Sr,Pb and Eu. Trace element modeling indicates that in situ crystallizationmay account for major and trace element variations in the gabbronoritesequence, whereas the olivine-dominated ultramafic rocks showcovariations between olivine Mg-number and Ni and Mn contents,pointing to the importance of crystal fractionation during theirformation. A modeled parental liquid for the Chilas Complexis explained in terms of mantle- and slab-derived components,where the latter component accounts for 99% of the highly incompatibleelements and between 30 and 80% of the middle rare earth elements.The geochemical characteristics of this component are similarto those of a low percentage melt or supercritical liquid derivedfrom subducted mafic crust. However, elevated Pb/Ce ratios arebest explained by additional involvement of hydrous fluids.In accordance with the crystallization sequence, the subsolidusmetamorphic reactions indicate pressures of 0·5–0·7GPa. Our data support a model of combined flux and decompressionmelting in the back-arc. KEY WORDS: Kohistan; Island arc; gabbro; trace element modelling; lower crustal intrusion  相似文献   

4.
PLANK  T. 《Journal of Petrology》2005,46(5):921-944
Arc magmas and the continental crust share many chemical features,but a major question remains as to whether these features arecreated by subduction or are recycled from subducting sediment.This question is explored here using Th/La, which is low inoceanic basalts (<0·2), elevated in the continents(>0·25) and varies in arc basalts and marine sediments(0·09–0·34). Volcanic arcs form linear mixingarrays between mantle and sediment in plots of Th/La vs Sm/La.The mantle end-member for different arcs varies between highlydepleted and enriched compositions. The sedimentary end-memberis typically the same as local trench sediment. Thus, arc magmasinherit their Th/La from subducting sediment and high Th/Lais not newly created during subduction (or by intraplate, adakiteor Archaean magmatism). Instead, there is a large fractionationin Th/La within the continental crust, caused by the preferentialpartitioning of La over Th in mafic and accessory minerals.These observations suggest a mechanism of ‘fractionation& foundering’, whereby continents differentiate intoa granitic upper crust and restite-cumulate lower crust, whichperiodically founders into the mantle. The bulk continentalcrust can reach its current elevated Th/La if arc crust differentiatesand loses 25–60% of its mafic residues to foundering. KEY WORDS: arc magmatism; continental crust; delamination; thorium; sediment subduction  相似文献   

5.
Quaternary lavas from the NE Japan arc show geochemical evidenceof mixing between mantle-derived basalts and crustal melts atthe magmatic front, whereas significant crustal signals arenot detected in the rear-arc lavas. The along-arc chemical variationsin lavas from the magmatic front are attributable almost entirelyto geochemical variations in the crustal melts that were mixedwith a common mantle-derived basalt. The mantle-derived basaltshave slightly enriched Sr–Pb and depleted Nd isotopiccompositions relative to the rear-arc lavas, but the variationis less pronounced if crustal contributions are eliminated.Therefore, the source mantle compositions and slab-derived fluxesare relatively uniform, both across and along the arc. Despitethis, incompatible element concentrations are significantlyhigher in the rear-arc basalts. We examine an open-system, fluid-fluxedmelting model, assuming that depleted mid-ocean ridge basalt(MORB)-source mantle melted by the addition of fluids derivedfrom subducted oceanic crust (MORB) and sediment (SED) hybridsat mixing proportions of 7% and 3% SED in the frontal- and rear-arcsources, respectively. The results reproduce the chemical variationsfound across the NE Japan arc with the conditions: 0·2%fluid flux with degree of melting F = 3% at 2 GPa in the garnetperidotite field for the rear arc, and 0·7% fluid fluxwith F = 20% at 1 GPa in the spinel peridotite field beneaththe magmatic front. The chemical process operating in the mantlewedge requires: (1) various SED–MORB hybrid slab fluidsources; (2) variable amounts of fluid; (3) a common depletedmantle source; (4) different melting parameters to explain across-arcchemical variations. KEY WORDS: arc magma; crustal melt; depleted mantle; NE Japan; Quaternary; slab fluid  相似文献   

6.
Aniakchak caldera, Alaska, produced a compositionally heterogeneousignimbrite 3400 years ago, which changes from rhyodacitic atthe base to andesitic at the top of the eruptive sequence. Interpretationsof compositionally heterogeneous ignimbrites typically includeeither in situ fractional crystallization of mafic magma andgeneration of a stratified magma body or replenishment of asilicic magma chamber by mafic inputs. Another possibility,silicic replenishment of a more mafic chamber, exists. Geochemicalcharacteristics of the caldera-forming rhyodacite and severallate pre-caldera rhyodacites indicate independent origins foreach, within a maximum of 5000 years prior to caldera formation.Isotopic considerations preclude derivation of the caldera-formingrhyodacite from the caldera-forming andesite. However, the caldera-formingrhyodacite can be explained as the residual liquid of a mostlycrystallized basalt, with addition of crustal material. TheAniakchak andesite probably formed in a shallow chamber by successivemixing events involving small volumes of basalt and rhyodacite,together with contamination. The pre-caldera rhyodacites representerupted portions of intruding silicic magma, whereas anotherportion homogenized with the resident mafic magma. The caldera-formingevent reflects a large influx of rhyodacite, which erupted beforesignificant mixing occurred and also triggered draining of muchof the andesitic magma from the chamber. KEY WORDS: Aniakchak; caldera-forming eruption; geochemistry; ignimbrite; silicic replenishment  相似文献   

7.
Major and trace element compositions and Sr, Nd, Pb, and Hfisotope ratios of Aleutian island arc lavas from Kanaga, Roundhead,Seguam, and Shishaldin volcanoes provide constraints on thecomposition and origin of the material transferred from thesubducted slab to the mantle wedge. 40Ar/39Ar dating indicatesthat the lavas erupted mainly during the last  相似文献   

8.
Potassic volcanism in the western Sichuan and Yunnan Provinces,SE Tibet, forms part of an extensive magmatic province in theeastern Indo-Asian collision zone during the Paleogene (40–24Ma). The dominant rock types are phlogopite-, clinopyroxene-and olivine-phyric calc-alkaline (shoshonitic) lamprophyres.They are relatively depleted in Na2O, Fe2O3, and Al2O3 comparedwith the late Permian–early Triassic Emeishan continentalflood basalts in the western part of the Yangtze craton, andhave very high and variable abundances of incompatible traceelements. Primitive mantle-normalized incompatible element patternshave marked negative Nb, Ta and Ti anomalies similar to thoseof K-rich subduction-related magmas, although the geodynamicsetting is clearly post-collisional. Spatially, some incompatibletrace element abundances, together with inferred depths of meltsegregation based on the Mg-15 normalized compositions of thesamples, display progressive zonation trends from SW to NE withincreasing distance from the western boundary of the Yangtzecraton. Systematic variations in major and trace element abundancesand Sr–Nd–Pb isotope compositions appear to havepetrogenetic significance. The systematic increases in incompatibletrace element abundances from the western margin to the interiorof the Yangtze craton can be explained by progressively decreasingextents of partial melting, whereas steady changes in some incompatibletrace element ratios can be attributed to changes in the amountof subduction-derived fluid added to the lithospheric mantleof the Yangtze craton. The mantle source region of the lamprophyresis considered to be a relatively refractory phlogopite-bearingspinel peridotite, heterogeneously enriched by fluids derivedfrom earlier phases of late Proterozoic and Palaeozoic subductionbeneath the western part of the Yangtze craton. Calculationsbased on a non-modal batch melting model show that the degreeof partial melting ranges from 0·6% to 15% and the proportionof subduction-derived fluid added from0·1% to 0·7%(higher-Ba fluid) or from 5% to 25% (lower-Ba fluid) from theinterior to the western margin of the Yangtze craton. Some pre-existinglithospheric faults might have been reactivated in the areaneighbouring the Ailao Shan–Red River (ASRR) strike-slipbelt, accompanying collision-induced extrusion of the Indo-Chinablock and left-lateral strike-slip along the ASRR shear zone.This, in turn, could have triggered decompression melting ofthe previously enriched mantle lithosphere, resulting in calc-alkalinelamprophyric magmatism in the western part of the Yangtze craton. KEY WORDS: Tibet; potassic magmatism; lithospheric mantle; metasomatism  相似文献   

9.
Partial Crystallization of Mid-Ocean Ridge Basalts in the Crust and Mantle   总被引:2,自引:2,他引:2  
HERZBERG  CLAUDE 《Journal of Petrology》2004,45(12):2389-2405
Pressures at which partial crystallization occurs for mid-oceanridge basalts (MORB) have been examined by a new petrologicalmethod that is based on a parameterization of experimental datain the form of projections. Application to a global MORB glassdatabase shows that partial crystallization of olivine + plagioclase+ augite ranges from 1 atm to 1·0 GPa, in good agreementwith previous determinations, and that there are regional variationsthat generally correlate with spreading rate. MORB from fast-spreadingcenters display partial crystallization in the crust at ridgesegment centers and in both mantle and crust at ridge terminations.Fracture zones are likely to be regions where magma chambersare absent and where there is enhanced conductive cooling ofthe lithosphere at depth. MORB from slow-spreading centers displayprominent partial crystallization in the mantle, consistentwith models of enhanced conductive cooling of the lithosphereand the greater abundance of fracture zones through which theypass. In general, magmas that move through cold mantle experiencesome partial crystallization, whereas magmas that pass throughhot mantle may be comparatively unaffected. Estimated pressuresof partial crystallization indicate that the top of the partialmelting region is deeper than about 20–35 km below slow-spreadingcenters and some ridge segment terminations at fast-spreadingcenters. KEY WORDS: MORB; olivine gabbro; partial crystallization; partial melting; ridge segmentation; fracture zones; crust; mantle; lithosphere  相似文献   

10.
Neogene potassic lavas in northern and southern Tibet have differentisotopic (  相似文献   

11.
The Miocene Kofu Granitic Complex (KGC) occurs in the Izu CollisionZone where the Izu–Bonin–Mariana (IBM) arc has beencolliding with the Honshu arc since the middle Miocene. TheKGC includes rocks ranging in compositions from biotite-bearinggranite (the Shosenkyo and Mizugaki plutons), and hornblende–biotite-bearinggranodiorite, tonalite, quartz-diorite, and granite (the Shiodaira,Sanpo, Hirose and Sasago plutons), to hornblende-bearing tonaliteand trondhjemite (the Ashigawa–Tonogi pluton), indicatingthat it was constructed from multiple intrusions of magma withdifferent bulk chemistry. The Sr-isotopic compositions correctedto sensitive high-resolution ion microprobe (SHRIMP) zirconages (SrI) suggest that the primary magmas of each pluton wereformed by anatexis of mixed lower crustal sources involvingboth juvenile basalt of the IBM arc and Shimanto sedimentaryrocks of the Honshu arc. After the primary magmas had formed,the individual plutons evolved by crystal fractionation processeswithout significant crustal assimilation or additional mantlecontribution. SHRIMP zircon U–Pb ages in the KGC rangefrom 16·8 to 10·6 Ma and overlap the resumptionof magmatic activity in the IBM and Honshu arcs at c. 17 Maand the onset of IBM arc–Honshu arc collision at c. 15Ma. The age of the granite plutons is closely related to theepisodic activity of arc magmatism and distinct granitic magmabatches could be formed by lower crustal anatexis induced byintrusion of underplated mantle-derived arc magmas. Based onpressures determined with the Al-in-hornblende geobarometer,the KGC magmas intruded into the middle crust. Thus, the KGCcould represent an example of the middle-crust layer indicatedthroughout the IBM arc by 6·0–6·5 km/s seismicvelocities. This granitic middle-crust layer acted buoyantlyduring the IBM arc–Honshu arc collision, leading to accretionof buoyant IBM arc middle crust to the Honshu arc. KEY WORDS: arc–arc collision; crustal anatexis; granite; Izu–Bonin–Mariana (IBM) arc; Izu Collision Zone  相似文献   

12.
Eclogite xenoliths from the Colorado Plateau, interpreted asfragments of the subducted Farallon plate, are used to constrainthe trace element and Sr–Nd–Pb isotopic compositionsof oceanic crust subducted into the upper mantle. The xenolithsconsist of almandine-rich garnet, Na-clinopyroxene, lawsoniteand zoisite with minor amounts of phengite, rutile, pyrite andzircon. They have essentially basaltic bulk-rock major elementcompositions; their Na2O contents are significantly elevated,but K2O contents are similar to those of unaltered mid-oceanridge basalt (MORB). These alkali element characteristics areexplained by spilitization or albitization processes on thesea floor and during subduction-zone metasomatism in the fore-arcregion. The whole-rock trace element abundances of the xenolithsare variable relative to sea-floor-altered MORB, except forthe restricted Zr/Hf ratios (36·9–37·6).Whole-rock mass balances for two Colorado Plateau eclogite xenolithsare examined for 22 trace elements, Rb, Cs, Sr, Ba, Y, rareearth elements, Pb, Th and U. Mass balance considerations andmineralogical observations indicate that the whole-rock chemistriesof the xenoliths were modified by near-surface processes afteremplacement and limited interaction with their host rock, aserpentinized ultramafic microbreccia. To avoid these secondaryeffects, the Sr, Nd and Pb isotopic compositions of mineralsseparated from the xenoliths were measured, yielding 0·70453–0·70590for 87Sr/86Sr, –3·1 to 0·5 for Nd and 18·928–19·063for 206Pb/204Pb. These isotopic compositions are distinctlymore radiogenic for Sr and Pb and less radiogenic for Nd thanthose of altered MORB. Our results suggest that the MORB-likeprotolith of the xenoliths was metasomatized by a fluid equilibratedwith sediment in the fore-arc region of a subduction zone andthat this metasomatic fluid produced continental crust-likeisotopic compositions of the xenoliths. KEY WORDS: Colorado Plateau; eclogite xenolith; geochemistry; subducted oceanic crust  相似文献   

13.
Okmok volcano is situated on oceanic crust in the central Aleutianarc and experienced large (15 km3) caldera-forming eruptionsat 12 000 years BP and 2050 years BP. Each caldera-forming eruptionbegan with a small Plinian rhyodacite event followed by theemplacement of a dominantly andesitic ash-flow unit, whereaseffusive inter- and post-caldera lavas have been more basaltic.Phenocryst assemblages are composed of olivine + pyroxene +plagioclase ± Fe–Ti oxides and indicate crystallizationat 1000–1100°C at 0·1–0·2 GPain the presence of 0–4% H2O. The erupted products followa tholeiitic evolutionary trend and calculated liquid compositionsrange from 52 to 68 wt % SiO2 with 0·8–3·3wt % K2O. Major and trace element models suggest that the moreevolved magmas were produced by 50–60% in situ fractionalcrystallization around the margins of the shallow magma chamber.Oxygen and strontium isotope data (18O 4·4–4·9,87Sr/ 86Sr 0·7032–0·7034) indicate interactionwith a hydrothermally altered crustal component, which led toelevated thorium isotope ratios in some caldera-forming magmas.This compromises the use of uranium–thorium disequilibria[(230Th/ 238U) = 0·849–0·964] to constrainthe time scales of magma differentiation but instead suggeststhat the age of the hydrothermal system is 100 ka. Modellingof the diffusion of strontium in plagioclase indicates thatmany evolved crystal rims formed less than 200 years prior toeruption. This addition of rim material probably reflects theremobilization of crystals from the chamber margins followingreplenishment. Basaltic recharge led to the expansion of themagma chamber, which was responsible for the most recent caldera-formingevent. KEY WORDS: Okmok; caldera; U-series isotopes; Sr-diffusion; time scales; Aleutian arc  相似文献   

14.
Magmatic accretion is potentially an important mechanism inthe growth of the continental crust and the formation of granulites.In this study, the thermal evolution of a magmatic arc in responseto magmatic accretion is modeled using numerical solutions ofthe one-dimensional heat conduction equation. The initial andboundary conditions used in the model are constrained by geologicalobservations made in the Kohistan area, NW Himalayas. Takingconsideration of the preferred intrusion locations for basalticmagmas, we consider two plausible modes of magmatic accretion:the first involves the repeated intrusion of basalt at mid-crustaldepths (‘intraplate model’), and the second evaluatesthe simultaneous intrusion of basalt and picrite at mid-crustaldepths and the base of the crust respectively (‘double-platemodel’). The results of the double-plate model accountfor both the inferred metamorphic PT paths of the Kohistanmafic granulites and the continental geotherm determined frompeak PT conditions observed for granulite terranes. Thedouble-plate model may be applicable as a key growth processfor the production of thick mafic lower crust in magmatic arcs. KEY WORDS: thermal model; magmatic underplating; PT path; granulite; lower crust  相似文献   

15.
The Baikal Rift is a zone of active lithospheric extension adjacentto the Siberian Craton. The 6–16 Myr old Vitim VolcanicField (VVF) lies approximately 200 km east of the rift axisand consists of 5000 km3 of melanephelinites, basanites, alkaliand tholeiitic basalts, and minor nephelinites. In the volcanicpile, 142 drill core samples were used to study temporal andspatial variations. Variations in major element abundances (e.g.MgO = 3·3–14·6 wt %) reflect polybaric fractionalcrystallization of olivine, clinopyroxene and plagioclase. 87Sr/86Sri(0·7039–0·7049), 143Nd/144Ndi (0·5127–0·5129)and 176Hf/177Hfi (0·2829–0·2830) ratiosare similar to those for ocean island basalts and suggest thatthe magmas have not assimilated significant amounts of continentalcrust. Variable degrees of partial melting appear to be responsiblefor differences in Na2O, P2O5, K2O and incompatible trace elementabundances in the most primitive (high-MgO) magmas. Fractionatedheavy rare earth element (HREE) ratios (e.g. [Gd/Lu]n > 2·5)indicate that the parental magmas of the Vitim lavas were predominantlygenerated within the garnet stability field. Forward major elementand REE inversion models suggest that the tholeiitic and alkalibasalts were generated by decompression melting of a fertileperidotite source within the convecting mantle beneath Vitim.Ba/Sr ratios and negative K anomalies in normalized multi-elementplots suggest that phlogopite was a residual mantle phase duringthe genesis of the nephelinites and basanites. Relatively highlight REE (LREE) abundances in the silica-undersaturated meltsrequire a metasomatically enriched lithospheric mantle source.Results of forward major element modelling suggest that meltingof phlogopite-bearing pyroxenite veins could explain the majorelement composition of these melts. In support of this, pyroxenitexenoliths have been found in the VVF. High Cenozoic mantle potentialtemperatures (1450°C) predicted from geochemical modellingsuggest the presence of a mantle plume beneath the Baikal RiftZone. KEY WORDS: Baikal Rift; mafic magmatism; mantle plume; metasomatism; partial melting  相似文献   

16.
The Dexing adakitic porphyries (quartz diorite–granodioriteporphyries), associated with giant porphyry Cu deposits, arelocated in the interior of a continent (South China). They exhibitrelatively high MgO, Cr, Ni and Sr contents, high La/Yb andSr/Y ratios, but low Yb and Y contents, similar to adakitesproduced by slab melting associated with subduction. However,they are characterized by bulk Earth-like Nd–Sr isotopecompositions (Nd(t) = –1·14 to +1·80 and(87Sr/86Sr)i = 0·7044 – 0·7047), and highTh (12·6–27·2 ppm) contents and Th/Ce (0·19–0·94)ratios, which are different from those of Cenozoic slab-derivedadakites. Sensitive High-Resolution Ion Microprobe (SHRIMP)geochronology studies of zircons reveal that the Dexing adakiticporphyries have a crystallization age of 171 ± 3 Ma.This age is contemporaneous with Middle Jurassic extension withinthe Shi-Han rift zone, and within-plate magmatism elsewherein South China, indicating that the Dexing adakitic porphyrieswere probably formed in an extensional tectonic regime in theinterior of the continent rather than in an arc setting. Theirhigh Th contents and Th/Ce ratios, and Middle Jurassic age,argue against an origin from a Neoproterozoic (1000 Ma) stalledslab in the mantle. Taking into account available data for theregional metamorphic–magmatic rocks, and the present-daycrustal thickness (31 km) in the area, we suggest that the Dexingadakitic porphyries were most probably generated by partialmelting of delaminated lower crust, which was possibly triggeredby upwelling of the asthenospheric mantle due to the activityof the Shi-Hang rift zone. Moreover, the Dexing adakitic magmasmust have interacted with the surrounding mantle peridotiteduring their ascent, which elevated not only their MgO, Cr andNi contents, but also the oxygen fugacity (fO2) of the mantle.The high fO2 could have induced oxidation of metallic sulfidesin the mantle and mobilization of chalcophile elements, whichare required to produce associated Cu mineralization. Therefore,the Cu metallogenesis associated with the Dexing adakitic porphyriesis probably related to partial melting of delaminated lowercrust, similar to the metallogenesis accompanying slab melting. KEY WORDS: adakite; lower crust; delamination; porphyry copper deposit, South China  相似文献   

17.
Abstract. Java island, regarded as a classic example of island arcs, is built through multi events of Cenozoic arc magmatism produced by the subduction of Indian‐Australian oceanic crusts along the southern margin of Eurasian plate. Regional crustal compositions, subducted slabs, and tectonics determined the spatial‐geochemical evolution of arc magmatism and regional metallogeny. Tertiary geodynamics of island arc was dominated by backarc‐ward migrations of volcanic centers. Only after the Miocene‐Pliocene roll‐back effects of retreating slab, slab detachment, and backarc magmatism took place in central Java. The source of arc magmas is mainly partial melting of mantle wedge, triggered by fluids released from dehydrated slabs. Increasing potassium contents of arc magmas towards the backarc‐side and younger magmas is typical for all magmas, while alkali and incompatible trace elements ratios are characteristics for different settings of volcanic centers. The oceanic nature of crust and the likely presence of hot slab subducted beneath the eastern Java determine the occurrences of adakitic magmas. Backarc magmatism has a deeper mantle source with or without contributions from subduction‐related materials. The domination of magnetite‐series magmatism determines the sulfide mineralization for the whole island. District geology, geodynamics, and magma compositions in turn control particular styles and scales of precious metals concentrations. Deep‐seated crustal faults have focused the locations of overlapping volcanic centers and metalliferous fluids into few major gold districts. Porphyry deposits are mostly concentrated within Lower Tertiary (early stage) volcanic centers in eastern Java which are not covered by younger volcanic centers, and whose sulfides are derived from partial melting of basaltic parental materials. On the other hand, high‐grade low‐sulfidation epithermal gold deposits formed in later stages of arc development and are spatially located within younger volcanic centers (Upper Miocene‐Pliocene) that overlap the older ones. Gold in low‐sulfidation epithermal system is likely to be derived from crustal materials. The overall interacting factors resulting in the petrochemical systematics that are applicable for exploration: 1) early‐stage volcanic centers with high Sr/Y and Na2O/K2O ratios are more prospective for porphyry mineralization, while 2) later‐stage volcanic centers with high K2O, total alkali, and K2O/Na2O ratios are more prospective for low‐sulfidation epithermal mineralization.  相似文献   

18.
Two approaches to determining the high-temperature (1000°Cto 600°C) cooling rate of the lower oceanic crust and uppermantle are presented and critically evaluated. The first isbased on the down-temperature diffusive exchange of Ca betweenolivine and clinopyroxene. The second, less well-constrained,approach is based on the down-temperature diffusive exchangeof Mg and Fe between olivine and spinel. Cooling rates basedon olivine–spinel geospeedometry are approximately anorder of magnitude faster than those from Ca-in-olivine geospeedometry.In contrast, cooling rates derived from thermochronology andremanent magnetism are approximately an order of magnitude slowerthan those derived by Ca-in-olivine geospeedometry; this isprobably because they record cooling at lower temperatures.Using the Ca-in-olivine geospeedometer, the cooling rate ofsamples from the lower oceanic crust and upper oceanic mantleformed in the Oman ophiolite and in the three main ocean basinshas been determined. Samples from the lower oceanic crust formedat fast-spreading ridges show a large decrease in cooling ratebetween the top and base of the gabbroic section, with mostof the variation occurring within the upper kilometre. Thisis consistent with vertical heat loss (within the crustal frameof reference) dominating the thermal evolution at fast-spreadingridges. Samples from Ocean Drilling Program Hole 735B, whichformed at the slow-spreading Southwest Indian Ridge, show novariation in cooling rate over 1500 m depth range and cooledsubstantially faster than rocks from the deeper portion of thegabbros in the Oman ophiolite, where the change in cooling ratewith depth is limited. These observations are consistent withheat loss from small plutons emplaced in cool lithosphere atthe slow-spreading ridge. Alternatively, they could be explainedby cooling through the Ca-in-olivine closure interval duringuplift towards the surface. KEY WORDS: geospeedometry; lower oceanic crust; Hess Deep; Pito Deep; ODP Hole 735B; ODP Leg 153  相似文献   

19.
The Panzhihua gabbroic layered intrusion is associated withthe 260 Ma Emeishan Large Igneous Province in SW China. Thissill-like body hosts a giant Fe–Ti–V oxide depositwith 1333 million ton ore reserves, which makes China a majorproducer of these metals. The intrusion has a Marginal zoneof fine-grained hornblende-bearing gabbro and olivine gabbro,followed upward by Lower, Middle, and Upper zones. The Lowerand Middle zones consist of layered melanogabbro and gabbrocomposed of cumulate clinopyroxene, plagioclase, and olivine.These zones also contain magnetite layers. The Upper zone consistschiefly of leucogabbro composed of plagioclase and clinopyroxenewith minor olivine. Most rocks in the body show variable-scalerhythmic modal layering in which dark minerals, primarily clinopyroxene,dominate in the lower parts of each layer, and lighter minerals,primarily plagioclase, dominate in the upper parts. The oxideores occur as layers and lenses within the gabbros and are concentratedin the lower parts of the intrusion. Ore textures and associatedmineral assemblages indicate that the ore bodies formed by verylate-stage crystallization of V-rich titanomagnetite from animmiscible oxide liquid in a fluid-rich environment. The rocksof the Panzhihua intrusion become more evolved in chemistryupward and follow a tholeiitic differentiation trend with enrichmentin Fe, Ti, and V. They are enriched in light rare earth elementsrelative to heavy rare earth elements, and exhibit positiveNb, Ta, and Ti anomalies and negative Zr and Hf anomalies. Thesilicate rocks and oxide ores of the Panzhihua intrusion formedfrom highly evolved Fe–Ti–V-rich ferrobasaltic orferropicritic magmas. The textures of the ores and the abundanceof minor hydrous phases indicate that addition of fluids fromupper crustal wall-rocks induced the separation of the immiscibleoxide melts from which the Fe–Ti–V oxide ore bodiesin the lower part of the intrusion crystallized. KEY WORDS: magnetite; Fe–Ti-rich gabbro; layered intrusion; Panzhihua; SW China  相似文献   

20.
This study focuses on the origin of magma heterogeneity andthe genesis of refractory, boninite-type magmas along an arc–ridgeintersection, exposed in the Lewis Hills (Bay of Islands Ophiolite).The Lewis Hills contain the fossil fracture zone contact betweena split island arc and its related marginal oceanic basin. Threetypes of intrusions, which are closely related to this narrowtectonic boundary, have been investigated. Parental melts inequilibrium with the ultramafic cumulates of the PyroxeniteSuite are inferred to have high MgO contents and low Al2O3,Na2O and TiO2 contents. The trace element signatures of thesePyroxenite Suite parental melts indicate a re-enriched, highlydepleted source with 0·1 x mid-ocean ridge basalt (MORB)abundances of the heavy rare earth elements (HREE). InitialNd values of the Pyroxenite Suite range from -1·5 to+0·6, which overlap those observed for the island arc.Furthermore, the Pyroxenite Suite parental melts bear strongsimilarities to boninite-type equilibrium melts from islandarc-related pyroxenitic dykes and harzburgites. Basaltic dykessplit into two groups. Group I dykes have 0·6 x MORBabundances of the HREE, and initial Nd values ranging from +5·4to +7·5. Thus, they have a strong geochemical affinitywith basalts derived from the marginal basin spreading ridge.Group II dykes have comparatively lower trace element abundances(0·3 x MORB abundances of HREE), and slightly lower initialNd values (+5·4 to +5·9). The geochemical characteristicsof the Group II dykes are transitional between those of GroupI dykes and the Pyroxenite Suite parental melts. Cumulates fromthe Late Intrusion Suite are similarly transitional, with Ndvalues ranging from +2·9 to +4·6. We suggest thatthe magma heterogeneity observed in the Lewis Hills is due tothe involvement of two compositionally distinct mantle sources,which are the sub-island lithospheric mantle and the asthenosphericmarginal basin mantle. It is likely that the refractory, boninite-typeparental melts of the Pyroxenite Suite result from remeltingof the sub-arc lithospheric mantle at an arc–ridge intersection.Furthermore, it is suggested that the thermal-dynamic conditionsof the transtensional transform fault have provided the prerequisitefor generating magma heterogeneity, as a result of mixing relationshipsbetween arc-related and marginal basin-related magmas. KEY WORDS: Bay of Islands ophiolite; transform (arc)–ridge intersection; boninites; rare earth elements, Nd isotopes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号