首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Occurrences of arsenic (As) in the Bengal Basin of Bangladesh show close relationships with depositional environments and sediment textures. Hydrochemical data from three sites with varying physiography and sedimentation history show marked variations in redox status and dissolved As concentrations. Arsenic concentration in groundwater of the Ganges Flood Plain (GFP) is characteristically low, where high Mn concentrations indicate redox buffering by reduction of Mn(IV)-oxyhydroxides. Low DOC, \( {\text{HCO}}^{ - }_{3} \), \( {\text{NH}}^{ + }_{4} \) and high \( {\text{NO}}^{ - }_{3} \) and \( {\text{SO}}^{{2 - }}_{4} \) concentrations reflect an elevated redox status in GFP aquifers. In contrast, As concentration in the Ganges Delta Plain (GDP) is very high along with high Fe and low Mn. In the Meghna Flood Plain (MFP), moderate to high As and Fe concentrations and low Mn are detected. Degradation of organic matter probably drives redox reactions in the aquifers, particularly in MFP and GDP, thereby mobilising dissolved As. Speciation calculations indicate supersaturation with respect to siderite and vivianite in the groundwater samples at MFP and GDP, but groundwater in the GFP wells is generally supersaturated with respect to rhodochrosite. Values of log PCO2 at MFP and GDP sites are generally higher than at the GFP site. This is consistent with Mn(IV)-redox buffering suggested at the GFP site compared to Fe(III)-redox buffering at MFP and GDP sites.  相似文献   

2.
Quantitative evaluations of the impact of groundwater abstraction on recharge are rare. Over a period (1975??007) during which groundwater abstraction increased dramatically in the Bengal Basin, changes in net groundwater recharge in Bangladesh are assessed using the water-table fluctuation method. Mean annual groundwater recharge is shown to be higher (300??00?mm) in northwestern and southwestern areas of Bangladesh than in southeastern and northeastern regions (<100?mm) where rainfall and potential recharge are greater. Net recharge in many parts of Bangladesh has increased substantially (5??5?mm/year between 1985 and 2007) in response to increased groundwater abstraction for irrigation and urban water supplies. In contrast, net recharge has slightly decreased (??.5 to ???mm/year) in areas where groundwater-fed irrigation is low (<30% of total irrigation) and where abstraction has either decreased or remained unchanged over the period of 1985??007. The spatio-temporal dynamics of recharge in Bangladesh illustrate the fundamental flaw in definitions of “safe yield??based on recharge estimated under static (non-pumping) conditions and reveal the areas where (1) further groundwater abstraction may increase actual recharge to the shallow aquifer, and (2) current groundwater abstraction for irrigation and urban water supplies is unsustainable.  相似文献   

3.
4.
 Arsenic toxicity in groundwater in the Ganges delta and some low-lying areas in the Bengal basin is confined to middle Holocene sediments. Dissected terraces and highlands of Pleistocene and early Holocene deposits are free of such problems. Arsenic-rich pyrite or other arsenic minerals are rare or absent in the affected sediments. Arsenic appears to occur adsorbed on iron hydroxide-coated sand grains and clay minerals and is transported in soluble form and co-precipitated with, or is scavenged by, Fe(III) and Mn(IV) in the sediments. It became preferentially entrapped in fine-grained and organic-rich sediments during mid-Holocene sea-level rises in deltaic and some low-lying areas of the Bengal basin. It was liberated subsequently under reducing conditions and mediated further by microbial action. Intensive extraction of groundwater for irrigation and application of phosphate fertilizer possibly triggered the recent release of arsenic to groundwater. This practice has induced groundwater flow, mobilizing phosphate derived from fertilizer, as well as from decayed organic matter, which has promoted the growth of sediment biota and aided the further release of arsenic. However, the environment is not sufficiently reducing to mobilize iron and arsenic in groundwater in the Ganges floodplains upstream of Rajmahal. Thus, arsenic toxicity in the groundwater of the Bengal basin is caused by its natural setting, but also appears to be triggered by recent anthropogenic activities. Received: 23 August 1999 · Accepted: 16 November 1999  相似文献   

5.
6.
One of the reasons the processes resulting in As release to groundwater in southern Asia remain poorly understood is the high degree of spatial variability of physical and chemical properties in shallow aquifers. In an attempt to overcome this difficulty, a simple device that collects groundwater and sediment as a slurry from precisely the same interval was developed in Bangladesh. Recently published results from Bangladesh and India relying on the needle-sampler are augmented here with new data from 37 intervals of grey aquifer material of likely Holocene age in Vietnam and Nepal. A total of 145 samples of filtered groundwater ranging in depth from 3 to 36 m that were analyzed for As (1–1000 μg/L), Fe (0.01–40 mg/L), Mn (0.2–4 mg/L) and S (0.04–14 mg/L) are compared. The P-extractable (0.01–36 mg/kg) and HCl-extractable As (0.04–36 mg/kg) content of the particulate phase was determined in the same suite of samples, in addition to Fe(II)/Fe ratios (0.2–1.0) in the acid-leachable fraction of the particulate phase. Needle-sampler data from Bangladesh indicated a relationship between dissolved As in groundwater and P-extractable As in the particulate phase that was interpreted as an indication of adsorptive equilibrium, under sufficiently reducing conditions, across 3 orders of magnitude in concentrations according to a distribution coefficient of 4 mL/g. The more recent observations from India, Vietnam and Nepal show groundwater As concentrations that are often an order of magnitude lower at a given level of P-extractable As compared to Bangladesh, even if only the subset of particularly reducing intervals characterized by leachable Fe(II)/Fe >0.5 and dissolved Fe >0.2 mg/L are considered. Without attempting to explain why As appears to be particularly mobile in reducing aquifers of Bangladesh compared to the other regions, the consequences of increasing the distribution coefficient for As between the particulate and dissolved phase to 40 mL/g for the flushing of shallow aquifers of their initial As content are explored.  相似文献   

7.
Chemical data on groundwater composition in rhyolitic hard rock aquifers with limited global occurrence are rarely found. In this research geochemistry of Mahabad Rhyolite Aquifer, NW Iran, was studied considering major ions, silica and trace elements measured in wet and dry seasons. Based on the results, the mean silica content was 18 mg l?1, less than the average of the rhyolitic waters. However, the relatively higher electrical conductivity (EC) of 418 µS cm?1 was measured. Based on a PHREEQCI model, the weathering of the silicate minerals and dissolution of carbonated intercalations turns groundwater dominantly into Ca–HCO3 type, enhancing EC, pH and silica concentration along the flow path. Trace elements of Sr, Ba and Pb were measured at highest concentrations, the later with an average value of 83 ppb exceeds the drinking guidelines. Cluster analysis confirms biotite weathering and barite dissolution as the main sources of the trace elements in the groundwater. The results signify geochemical features of rhyolitic groundwater which can be a useful tracer of mixing in flow systems containing variety of aquifers including rhyolites.  相似文献   

8.
Numerical models are useful in the evaluation of the interaction between groundwater systems and mining activities. They can be successfully used to predict the quantity of inflow into open pits and to design an appropriate dewatering system. In this paper, a two-dimensional axi-symmetric finite element model called SEEP/W has been used to predict the groundwater inflow into Sangan open pit mine (anomaly north C). The Sangan iron mine is located at 280 km south-east of Mashhad, Iran, in arid and warm climate conditions wherein precipitation is generally limited. The water inflow to the pit is mainly from a confined aquifer, mainly by horizontal flow in the upper layers and vertical flow at the pit bottom. The results of the numerical model of the ground water inflow are presented and compared with those obtained from Theis, Cooper-Jacob and Jacob-Lohman analytical solutions. Ground water inflow monitoring was also carried out in a trial excavation at the Sangan mine in order to calibrate the model. The model was then used to predict groundwater inflow into Sangan open pit mine during its advancement. This model provides valuable information for designing an appropriate dewatering system.  相似文献   

9.
《Applied Geochemistry》2000,15(4):403-413
In some areas of Bangladesh and West Bengal, concentrations of As in groundwater exceed guide concentrations, set internationally and nationally at 10 to 50 μg l−1 and may reach levels in the mg l−1 range. The As derives from reductive dissolution of Fe oxyhydroxide and release of its sorbed As. The Fe oxyhydroxide exists in the aquifer as dispersed phases, such as coatings on sedimentary grains. Recalculated to pure FeOOH, As concentrations in this phase reach 517 ppm. Reduction of the Fe is driven by microbial metabolism of sedimentary organic matter, which is present in concentrations as high as 6% C. Arsenic released by oxidation of pyrite, as water levels are drawn down and air enters the aquifer, contributes negligibly to the problem of As pollution. Identification of the mechanism of As release to groundwater helps to provide a framework to guide the placement of new water wells so that they will have acceptable concentrations of As.  相似文献   

10.
Large abstraction by water-wells has been causing a linear to exponential drop in groundwater level and substantial aquifer dewatering in Dhaka, Bangladesh. The city is almost entirely dependent on groundwater, which occurs beneath the area in an unconsolidated Plio-Pleistocene sandy aquifer. Analysis shows that the pattern of water-level change largely replicates the patterns of change in the rate of groundwater abstraction. Contribution of the aquifer storage to the abstraction is estimated to be more than 15% in the year 2002. This abstraction has caused a sharp drop in water level throughout the city and turned into two cones of depression in the water level. Upper parts of the aquifer are already dewatered throughout the area, with the exception of part of the northeast and southeast corner of the city. It is calculated that about 41 million cubic metres (MCM) of the aquifer dewatered by the year 1988, which increased to 2,272 MCM in the year 2002. Water-level decline may increase non-linearly due to limiting vertical recharge in areas where the aquifer is dewatered and may severely threaten the sustainability of the aquifer.  相似文献   

11.
Groundwater arsenic (As) concentrations above 10 μg/L (World Health Organization; WHO standard) are frequently found in the Titas Upazila in Bangladesh. This paper evaluates the groundwater chemistry and the mechanisms of As release acting in an underground aquifer in the middle-northeast part of the Titas Upazila in Bangladesh. Previous measurements and analyses of 43 groundwater samples from the region of interest (ROI) are used. Investigation is based on major ions and important trace elements, including total As and Fe in groundwater samples from shallow (8–36 m below ground level: mbgl) and deep (85–295 mbgl) tube wells in the aforementioned ROI. Principal hydrochemical facies are Ca–HCO3, with circumneutral pH. The different redox-sensitive constituents (e.g., As, Fe, Mn, NH4, and SO4) indicate overlapping redox zones, leading to differences regarding the redox equilibrium. Multivariate statistical analysis (factor analysis) was applied to reduce 20 chemical variables to four factors but still explain 81% of the total variance. The component loadings give hints as to the natural processes in the shallow aquifers, in which organic matter is a key reactant. The observed chemistry of As, Fe, and Mn can be explained by simultaneous equilibrium between Fe-oxide and SO4 reduction and an equilibrium of rhodochrosite precipitation/dissolution. A correlation test indicates the likeliness of As release by the reductive dissolution of Fe-oxides driven by the degradation of sediments organic matter. Other mechanisms could play a role in As release, albeit to a lesser extent. Reactive transport modeling using PHREEQC reproduced the observed chemistry evolution using simultaneous equilibrium between Fe-oxide and SO4 reduction and the equilibrium of rhodochrosite dissolution/precipitation alongside organic matter oxidation.  相似文献   

12.
《Applied Geochemistry》1998,13(6):735-749
Samples have been collected from inflows into railway tunnels in the Triassic sandstone aquifer beneath Liverpool and the Mersey Estuary, England, U.K. These provide a profile through a saline–freshwater mixing zone. Analyses were made of major anions and cations, δ34S and δ18O in SO4, δ13C in dissolved inorganic C and 87Sr/86Sr. The data demonstrate that the presence of a low permeability fault exerts a strong control on the local groundwater chemistry. On the estuary side of the fault, groundwater chemistry is dominated by mixing of intruding estuary water, which is modified by SO4 reduction and calcite dissolution, with fresh groundwater. The environment of SO4 reduction in the tidal estuary is one of repeated reduction and re-oxidation of S in an open system and has resulted in virtually no change in S isotopic composition, but an enrichment in residual SO4 δ18O of 1.5‰. Groundwater chemistry on the landward side of the fault is primarily the result of recharge in an urban environment. There is also evidence that saline water has been present in this region of the aquifer in the past and that this has now been flushed by fresh groundwaters. This saline water was either transported along the landward side of the fault from nearer the estuary or more probably transmitted across the fault. Both mechanisms would have been driven by large landward head gradients caused by heavy industrial abstraction earlier this century. This has produced a zone of groundwaters depleted in Ca and radiogenic Sr and enriched in Na as a result of ion exchange between the fresh groundwaters and the aquifer previously occupied by more saline water. Sulphur isotopic composition, however, shows no variation since SO4 does not undergo significant ion exchange. A tracer test from a borehole to the tunnels showed multiple breakthroughs to some locations indicating a number of different flow paths through the aquifer. The maximum flow velocity recorded in this test was 140 m/d suggesting flow along fractures.  相似文献   

13.
Sediment from two deep boreholes (∼400 m) approximately 90 km apart in southern Bangladesh was analyzed by X-ray absorption spectroscopy (XAS), total chemical analyses, chemical extractions, and electron probe microanalysis to establish the importance of authigenic pyrite as a sink for arsenic in the Bengal Basin. Authigenic framboidal and massive pyrite (median values 1500 and 3200 ppm As, respectively), is the principal arsenic residence in sediment from both boreholes. Although pyrite is dominant, ferric oxyhydroxides and secondary iron phases contain a large fraction of the sediment-bound arsenic between approximately 20 and 100 m, which is the depth range of wells containing the greatest amount of dissolved arsenic. The lack of pyrite in this interval is attributed to rapid sediment deposition and a low sulfur flux from riverine and atmospheric sources. The ability of deeper aquifers (>150 m) to produce ground water with low dissolved arsenic in southern Bangladesh reflects adequate sulfur supplies and sufficient time to redistribute the arsenic into pyrite during diagenesis.  相似文献   

14.
The temperature depth profiles of six wells in the Motril-Salobren~a aquifer were used as a basis for a comparative analysis involving various parameters to determine their relations and factors influencing the different trends. There is a clear influence of ambient temperature on all the profiles, with a lag time of two to five months. Nevertheless, there are clear differences in the temperature depth profile patterns that can be accounted for by other factors. First, there is a greater influence of localized recharge; Guadalfeo River as opposed to diffuse recharge; irrigation return flow and rainfall. Three of the wells located near the riverbed of the Guadalfeo River have extremely variable temperature-depth profiles and show clear river influence. In springtime, during the highest flood stages of the river due to cold melt water from the Sierra Nevada, the groundwater falls in temperature. During secondary peaks in river flow rates during the autumn due to rainfall, the warm water increases groundwater temperature. The effect of the river recharge decreases with distance from the course since there is less mixing with water from the Guadalfeo River. In addition, there are two temperature-depth profiles in which temperature variations remain shallow and follow a pattern that cannot be attributed to the influence of either of the above two parameters. Among these two cases, the most influential factor is the groundwater flow pattern typical of a discharge zone, characterized by vertical-flow components.  相似文献   

15.
Arsenic pollution in groundwater from Hetao Area,China   总被引:3,自引:0,他引:3  
. Hetao Area, China is a district where arsenic concentrations in drinking water are elevated. The 180,000 people that inhabit the 6,100 km2 of the seven counties in the area show symptoms of arsenic poisoning. In this paper, the distribution and origin of arsenic in groundwater were studied. The results demonstrate that the affected district boundaries encompass an area with high contents of As in well water, which the local inhabitants drink and use in daily life. This district is labeled as a population pathological change area. The isotope ratios of 87Sr/86Sr (0.7100–0.7164), 206Pb/204Pb (18.3817–19.1871), and 207Pb/204Pb (15.7581–15.9578) in groundwater of the population pathological change area are close to the ratios measured in water from mine areas (87Sr/86Sr=0.7196, 206Pb/204Pb=19.1940, 207Pb/204Pb=15.9574), and are somewhat close to ratios in Yellow River, water which is used to irrigating in Hetao Area (87Sr/86Sr=0.7168, 206Pb/204Pb=18.3495, 207Pb/204Pb=15.5969). The average content of As in the drinking water is as high as four times more than the environmental standard of As in drinking water. The study suggests that the origin of the As in groundwater of the population pathological change area in Hetao Area is transported from higher elevations where mineral deposits exist. Mining of some of the deposits has occurred for a long time. Mining practices can result in release of toxic elements, which can then be transported from the mining district down gradient.  相似文献   

16.
Arsenic contamination in tube-well water in Ambagarh-Chowki block, central India, is restricted to local areas confined within the N-S trending Dongargarh rift zone. Affected areas are preferentially located in acid volcanics, close to shear zones and also in granites. Dug-wells even in severely contaminated areas generally have As concentration ≤10 μg/l. But in Kaurikasa area, several tube-wells and dug-wells are severely polluted. Weathered rocks and soils are also enriched in As from severely contaminated areas. As preferentially occurs in iron-enriched soil and similarly altered biotite, chlorite in granite. As sorbed in hydrated iron oxide (HFO) that preferably occurs in acid-leachable fraction and possibly as coatings on kaolinite, illite and goethite in soil or as coatings and along cleavage traces on weathered biotite and chlorite. Reductive dissolution of HFO released sorbed As to groundwater and enriched it in Fe. Pyrite in volcanic and shear zone rocks, although locally As-bearing is a minor source of As in groundwater.  相似文献   

17.
The Rajshahi city is the fourth largest metropolitan city in Bangladesh on the bank of the River Padma (Ganges). Here an upper semi-impervious layer overlies aquifer — the source for large-scale groundwater development. The groundwater resource study using Visual MODFLOW modeling shows that recharge occurs mainly due to infiltration of rainfall and urban return flow at low rate, and water level fluctuates seasonally in response to recharge and discharge. Hydraulic connection between river and aquifer which indicates inflow from high river water levels beyond its boundaries. The total groundwater abstraction in 2004 (15000 million liters) is lower than total input to aquifer reveals an ample potentiality for groundwater development with increasing demand. But groundwater shortage (1000 million liter/year) especially in the vicinity of the River Padma in dry season happens due to its increasing use and fall of river water level resulting in reduced inflows and hence decline in groundwater level. The conjunctive use of surface water-groundwater and its economic use will help for sustainable groundwater supply to avoid adverse impact.  相似文献   

18.
Arsenic contaminates groundwater across much of southern, central and eastern Bangladesh. Groundwater from the Holocene alluvium of the Ganges, Brahmaputra and Meghna Rivers locally exceeds 200 times the World Health Organisation (WHO) guideline value for drinking water of 10 µg/l of arsenic. Approximately 25% of wells in Bangladesh exceed the national standard of 50 µg/l, affecting at least 25 million people. Arsenic has entered the groundwater by reductive dissolution of ferric oxyhydroxides, to which arsenic was adsorbed during fluvial transport. Depth profiles of arsenic in pumped groundwater, porewater, and aquifer sediments show consistent trends. Elevated concentrations are associated with fine-sands and organic-rich sediments. Concentrations are low near the water table, rise to a maximum typically 20–40 m below ground, and fall to very low levels between about 100 and 200 m. Arsenic occurs mainly in groundwater of the valley-fill sequence deposited during the Holocene marine transgression. Groundwater from Pleistocene and older aquifers is largely free of arsenic. Arsenic concentrations in many shallow hand-tube wells are likely to increase over a period of years, and regular monitoring will be essential. Aquifers at more than 200 m below the floodplains offer good prospects for long-term arsenic-free water supplies, but may be limited by the threats of saline intrusion and downward leakage of arsenic.
Resumen El arsénico ha contaminado gran parte de las aguas subterráneas en el Sur, centro y Este de Bangla Desh. Su concentración en las aguas subterráneas del aluvial Holoceno de los ríos Ganges, Brahmaputra y Meghna supera localmente en un factor 200 el valor guía del arsénico en el agua potable, establecido por la Organización Mundial de la Salud (OMS) en 10 µg/L. Aproximadamente, el 25% de los pozos de Bangla Desh superan el estándar nacional de 50 µg/L, afectando al menos a 25 millones de personas. El arsénico ha llegado a las aguas subterráneas por la disolución reductora de hidróxidos férricos a los que se adsorbe durante el transporte fluvial. Los perfiles del arsénico en las aguas subterráneas bombeadas, agua de poro y sedimentos del acuífero muestran tendencias coherentes. Las concentraciones elevadas están asociadas a arenas finas y sedimentos ricos en materia orgánica. Las concentraciones de arsénico son bajas cerca del nivel freático, se incrementan hasta un máximo que se localiza generalmente a entre 20 y 40 m bajo la cota del terreno, y disminuyen a valores muy pequeños entre alrededor de 100 y 200 m. El arsénico se encuentra sobretodo en las aguas subterráneas existentes en la secuencia de sedimentación que tuvo lugar en el valle durante la transgresión marina del Holoceno. Las aguas subterráneas del Pleistoceno y acuíferos más antiguos están mayoritariamente libres de arsénico. Es probable que las concentraciones de arsénico aumenten en los próximos años en muchos pozos de tipo tubo perforados manualmente, por lo que será esencial efectuar un muestreo regular. Los acuíferos ubicados a más de 200 m bajo las llanuras de inundación ofrecen buenas perspectivas de abastecimiento a largo plazo sin problemas de arsénico, pero pueden estar limitados por las amenazas de la intrusión salina y de la precolación de arsénico desde niveles superiores.

Résumé Larsenic contamine les eaux souterraines dans la plus grande partie du sud, du centre et de lest du Bangladesh. Les eaux des nappes alluviales holocènes du Gange, du Brahmapoutre et de la Meghna dépassent localement 200 fois la valeur guide donnée par lOMS pour leau de boisson, fixée à 10 µg/l darsenic. Environ 25% des puits du Bangladesh dépassent la valeur standard nationale de 50 µg/l, affectant au moins 25 millions de personnes. Larsenic a été introduit dans les nappes par la dissolution par réduction doxy-hydroxydes ferriques sur lesquels larsenic était adsorbé au cours du transport fluvial. Des profils verticaux darsenic dans leau souterraine pompée, dans leau porale et dans les sédiments des aquifères montrent des tendances convergentes. Les concentrations élevées sont associées à des sédiments à sable fin et riches en matières organiques. Les concentrations sont faibles au voisinage de la surface de la nappe, atteignent un maximum typiquement entre 20 et 40 m sous le sol, puis tombent à des niveaux très bas entre 100 et 200 m. Larsenic est surtout présent dans les eaux souterraines de la séquence de remplissage de vallée déposée au cours de la transgression marine holocène. Les eaux souterraines des aquifères pléistocènes et plus anciens sont très largement dépourvus darsenic. Les concentrations en arsenic dans de nombreux puits creusés à la main doivent probablement augmenter au cours des prochaines années ; aussi un suivi régulier est essentiel. Les aquifères à plus de 200 m sous les plaines alluviales offrent de bonnes perspectives pour des alimentations en eau sans arsenic à long terme, mais ils peuvent être limités par les risques dintrusion saline et la drainance descendante de larsenic.
  相似文献   

19.
Groundwater As concentrations >WHO limit (10 μg/L) are frequently found in the Po Plain (N. Italy). Although several hypotheses on As mobilization exist (i.e., reductive dissolution driven by peat degradation), the mechanisms of As release and subsequent attenuation acting in the multilayer aquifer in the Po Plain were poorly understood.The present work aims at implementing a reactive transport modeling of the aquifer system in Cremona, affected by As <183 μg/L, in order to quantify and test the feasibility of As release by the reductive dissolution of Fe-oxides driven by the degradation of peat contained in leaky aquitards and As attenuation downstream by the co-precipitation in iron sulfides.The model, based on a partial equilibrium approach, revealed that the observed As, Fe and Mn chemistry could be mostly explained by the simultaneous equilibrium between Fe-oxide and sulfate reduction and FeS precipitation and by the equilibrium of rhodochrosite precipitation/dissolution. Model results, together with litholog analysis, supported the assumption of peat as the likely source of organic matter driving As release. The model fitted to measured data showed that the peak in the organic carbon degradation rate at 20–40 m below surface (average of 0.67 mM/y), corresponding to the shallow peaty aquitard and the upper portion of the underlying semiconfined aquifer, is associated with the peak of net release of As (average of 0.32 μM/y) that is followed just downstream by a net precipitation in iron sulfides at 40–60 m below surface (average of 0.30 μM/y). These results support the assumptions of peaty aquifers as drivers of As release and iron sulfides as As traps. The model also outlined the following aspects that could have a broad applicability in other alluvial As affected aquifers worldwide: (a) shallow peaty aquitards may have a greater role in driving the As release since they likely have young and more reactive organic matter; (b) the occurrence of Fe-oxide reduction and FeS precipitation, that represent the As source and sink, together with sulfate reduction occurring simultaneously close to equilibrium may restrict the As mobility limiting the extent of contamination just downstream the source of organic matter that drives its release.  相似文献   

20.
This paper presents a reconstruction of the Holocene paleo-environment in the central part of Bangladesh in relation to relative sea-level changes 200 km north of the present coastline. Lithofacies characteristics, mangal peat, diatoms and paleophysiographical evidence were considered to reconstruct the past position and C-14 ages were used to determine the time of formation of the relative sea level during the Holocene. With standard reference datum, the required m.s.l. at the surface of five sections was calculated. The relative sea-level (RSL) curve suggests that Bangladesh experienced two mid-Holocene RSL transgressions punctuated by regressions. The curve shows an RSL highstand at approximately 7500 cal BP, although the height of this highstand could not be determined because the transgressive phase was observed in a bioturbated sand flat facies. The curve shows a regression of approximately 6500 cal BP, and the RSL was considerably lower, perhaps 1–2 m, than the present m.s.l. The abundant marine diatoms and mangrove pollens indicate the highest RSL transgression in Bangladesh at approximately 6000 cal BP, being at least 4.5 to 5 m higher than the modern m.s.l. After this phase, the relative sea level started to fall, and consequently, a freshwater peat developed at approximately 5980–5700 cal BP. The abundant mangrove pollens in the salt-marsh succession shows the regression at approximately 5500 cal BP, when it was 1–2 m higher than the modern sea level. The curve indicates that at approximately 5000 cal BP and onwards, the RSL started to fall towards its present position, and the present shoreline of Bangladesh was established at approximately 1500 cal BP and has not noticeably migrated inland since.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号