首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Marine ostracodes from 50 localities were studied to determine the age and elevation of Pleistocene sea levels in the Atlantic coastal plain from Maryland to northern Florida. Using ostracode taxon and concurrent ranges, published planktic biostratigraphic, paleomagnetic, and radiometric data, ostracode assemblage zones representing early (1.8-1.0 my), middle (0.7-0.4 my), and late (0.3-0.01 my) Pleistocene deposition were recognized and used as a basis for correlation. Ostracode biofacies signifying lagoonal, oyster bank, estuarine, open sound, and inner sublittoral environments provided estimated ranges of paleodepths for each locality. From these data the following minimum and maximum Pleistocene sea-level estimates were determined for the southeastern coastal plain: late Pleistocene, 2–10 m from Maryland to northern Florida; middle Pleistocene, 6–15 m in northern South Carolina; early Pleistocene, 4–22 m in central North Carolina, 13–35 m in southern North Carolina, and 6–27 m in South Carolina. Climatically induced glacio-eustatic sea-level fluctuations adequately account for the late Pleistocene sea-level data, but other factors, possibly differential crustal uplift, may have complicated the early Pleistocene record.  相似文献   

2.
The Richmond River Valley of northern N.S.W. contains a late Pleistocene succession dating back to approximately 250,000 yr B.P. Dinoflagellate and spore-pollen assemblages from the lowest interval, the lower “Dungarubba Clay” of Drury (1982), indicate deposition in a restricted estuarine environment at approximately 250,000 yr. Deposition in the overlying interval, the upper “Dungarubba Clay” and “Gundurimba Clay”, at approximately 120,000 yr B.P., began in a restricted estuary, but rising sea level caused inundation and deposition in a more open, marine-dominated environment. Dinoflagellate cyst assemblages from the last interglaciation (stage 5) are interpreted by analogy with those from the morphologically similar, modern Broken Bay, N.S.W. They are indicative of an open, marine-dominated environment and imply that barrier formation in the Richmond River Valley, and possibly elsewhere in northern N.S.W., did not commence until after the initial postglacial transgression. Synchronous changes in sea level and rainforest development suggest that there was no significant time lag between climate and sea-level change.  相似文献   

3.
Late Holocene sea-level highstands of amplitude 3 m are endemic to equatorial ocean basins. These highstands imply an ongoing and moderate, sub-mm/yr, sea-level fall in the far field of the Late Pleistocene ice cover that has long been linked to the process of glacial isostatic adjustment (GIA; Clark et al., 1978). Mitrovica and Peltier (1991) coined the term ‘equatorial ocean syphoning’ to describe the GIA-induced sea-level fall and they provided the first physical explanation for the process. They argued that water migrated away from far-field equatorial ocean basins in order to fill space vacated by collapsing forebulges at the periphery of previously glaciated regions. We provide a complete physical explanation for the origin of equatorial ocean syphoning, and the associated development of sea-level highstands, using numerical solutions of the equation that governs meltwater redistribution on spherical, viscoelastic Earth models. In particular, we separate the total predicted sea-level change into contributions associated with ice and meltwater loading effects, and, by doing so, isolate a second mechanism that contributes significantly to the ocean syphoning process. Ocean loading at continental margins induces a ‘levering’ of continents and a subsidence of offshore regions that has also long been recognized within the GIA literature (Walcott, 1972). We show that the influx of water into the volume created by this subsidence produces a sea-level fall at locations distant from these margins—indeed over the major ocean basins—that is comparable in amplitude to the syphoning mechanism isolated by Mitrovica and Peltier (1991).  相似文献   

4.
晚三叠-中侏罗世华南陆缘发生多期海侵-海退旋回.元素地球化学特征指示的古盐度高低和古水深深浅记录了海平面的相对升降.华南陆缘存在3个级别的海平面变化.其中, Ⅲ级海平面波动频繁, 由晚三叠世3次波动、早侏罗世4次波动和早、中侏罗世2次波动构成了此间大规模海侵-海退旋回.华南陆缘Ⅰ级海平面相对升降曲线与全球海平面长周期曲线, 在诺利克阶早期-辛涅缪尔阶晚期变化同步, 在辛涅缪尔阶晚期-阿连阶变化相悖.Ⅲ级海平面相对升降曲线与全球海平面短周期曲线, 在瑞替阶-辛涅缪尔阶晚期同发生4次波动, 时间上近乎同步.Sr/Cu值指示的元素迁移与富集反映了气候的温湿与干热.粤中-粤东地区晚三叠-早、中侏罗世经历了温湿-干热-温湿的气候变化.   相似文献   

5.
The frequency and periodicity of preserved graded turbidite cycles in submarine fans in the Coral Sea and Sea of Japan are correlated to times of tectonic uplift in response to major collisions in the Owen-Stanley Range of Papua and the Hida Range of Japan, respectively. Large frequencies and shorter-term periodicities of turbidites at DSDP Site 210 were coeval with early Pliocene maximum tectonic-uplift rates which occurred in the Owen-Stanley Range in response to obduction. Similarly, large frequencies and shorter-term periodicities of turbidites at Site 299 (Toyama Submarine Fan) were coeval with the late Pleistocene uplift in the Hida Range; this uplift of 1000 to 1500 m occurred in response to collision tectonics. In both cases, trends of increasing frequencies and towards shorter-term periodicities of preserved turbidite depositional events correlate to trends of increasing rates of tectonic uplift.The role of sea-level fluctuations on changing denudation rates in these two collision zones is secondary. At Site 210, larger frequencies and short-term periodicities of preserved turbidites were coeval with early Pliocene high stands of sea level, whereas at Site 299, Pleistocene sea-level fluctuations are considered minor because at low stands of sea level, both relief and denudation rates were increased by about ten to 14%. At Site 286 (New Hebrides Basin), Eocene turbidite deposition is coeval with high stands of sea level, whereas at Site 297 (Northern Shikoku Basin), turbidite deposition was coeval with both rising and falling sea level.Analysis of both frequency and periodicity of turbidites by fan subenvironment at Site 299 indicates a record of continuous deposition, and maintainance of frequency and periodicity trends controlled by tectonic uplift. Late Pleistocene channel and overbank deposits showed periodicity differences of less than 28% of an order of magnitude, whereas Miocene-Pliocene overbank and distal turbidite periodicities differed by a 19% order of magnitude. Greater differences in magnitude occurred between distal turbidites or early Pleistocene age and Pliocene age than between Miocene-Pliocene overbank and distal turbidite deposition with a magnitude difference of 860%. These findings suggest that shifting depocenters and differences in sedimentation history in subenvironments of submarine fans are secondary to the role of tectonic uplift in this particular case.The minimal rate of tectonic uplift required to generate deep-sea fan turbidities appears to be approximately 400 m/million years. This figure is tentative and is based on very few observation points.Frequency and periodicity of preserved turbidite cycles in submarine fans in active continental margins and ancient counterparts should provide an independent measurement of rates and timing of tectonic uplift, particularly in collision terrains. Because this sediment parameter is a record of a single process from a single source and a record of “event stratigraphy”, its usage is preferable over standard and bulk sediment accumulation rates determined from age depth curves.  相似文献   

6.
The NW—SE trending southern California coastline between the Palos Verdes Peninsula and San Diego roughly parallels the southern part and off-shore extension of the dominantly right-lateral, strike-slip, Newport—Inglewood fault zone. Emergent marine terraces between Newport Bay and San Diego record general uplift and gentle warping on the northeast side of the fault zone throughout Pleistocene time. Marine terraces on Soledad Mt. and Point Loma record local differential uplift (maximum 0.17 m/ka) during middle to late Pleistocene time on the southwest side of the fault (Rose Canyon fault) near San Diego.The broad Linda Vista Mesa (elev. 70–120 m) in the central part of coastal San Diego County, previously thought to be a single, relatively undeformed marine terrace of Plio—Pleistocene age, is a series of marine terraces and associated beach ridges most likely formed during sea-level highstands throughout Pleistocene time. The elevations of the terraces in this sequence gradually increase northwestward to the vicinity of San Onofre, indicating minor differential uplift along the central and northern San Diego coast during Pleistocene time. The highest, oldest terraces in the sequence are obliterated by erosional dissection to the northwest where uplift is greatest.Broad, closely spaced (vertically) terraces with extensive beach ridges were the dominant Pleistocene coastal landforms in central San Diego County where the coastal slope is less than 1% and uplift is lowest. The beach ridges die out to the northwest as the broad low terraces grade laterally into narrower, higher, and more widely spaced (vertically) terraces on the high bluffs above San Onofre where the coastal slope is 20–30% and uplift is greatest. At San Onofre the terraces slope progressively more steeply toward the ocean with increasing elevation, indicating continuous southwest tilt accompanying uplift from middle to late Pleistocene time. This southwest tilt is also recorded in the asymmetrical valleys of major local streams where strath terraces occur only on the northeast side of NW—SE-trending valley segments.The deformational pattern (progressively greater uplift to the northwest with slight southwest tilt) recorded in the marine and strath terraces of central and northern coastal San Diego County conforms well with the historic pattern derived by others from geodetic data. It is not known how much of the Santa Ana structural block (between the Newport—Inglewood and the Elsinore fault zones) is affected by this deformational pattern.  相似文献   

7.
Holocene prograded coastal sequences at Becher/Rockingham, southern Western Australia, contain a detailed record of sea level over the last 6400 yr. Radiocarbon dating and use of a distinct stratigraphic indicator as a sea-level marker permit reconstruction of sea-level history and suggest that the sea was at least 2.5 m above present datum about 6400 yr B.P. before falling to its present level. No evidence was found for eustatic fluctuations of the scale proposed by R. W. Fairbridge [1961, in “Physics and Chemistry of the Earth” (L. H. Ahrens, F. Press, K. Rankema, and S. K. Runcorn, Eds.), Vol. 4, pp. 99–185, Pergamon, Oxford]. The sea-level record preserved on this coast can be explained by hydro-isostasy, tectonism, or eustasy, acting individually or in concert. Without a fixed reference point or analogous data from other locations, a firm conclusion on which mechanism(s) has(have) operated could not be reached. Published sea-level data from this and other coasts are often insufficiently detailed to compare with this study. Application of the techniques of this study to analogous sedimentary sequences elsewhere will provide data of comparable accuracy that would contribute to a more precise understanding of relative sea-level movements in the late Quaternary.  相似文献   

8.
The Japan Sea was profoundly different during glacial times than today. Available δ18O evidence indicates that sea surface salinity was lower by several per mil. This probably increased the stability of the water column and caused anoxic sedimentary conditions in the deep sea, as shown by the absence of benthic microfossils and the presence of laminated sediment. These changes are likely related to the effects of late Quaternary sea-level change on the shallow sills (ca. 130 m) across which the Japan Sea exchanges with the open ocean. The Hwang He (Yellow River) has previously been implicated as the source of fresh water to the Japan Sea during glaciation, but the possible roles of the Amur River and excess precipitation over evaporation must also be considered. Ambiguous radiocarbon chronologies for the latest Quaternary of Japan Sea cores do not adequately constrain the timing of salinity lowering. Previous studies have suggested that lowest sea surface salinity was achieved 27,000 to 20,000 14C yr B.P. However, if global sea-level fall restricted exchange with the open ocean circulation, then lowest salinity in the Japan Sea may have occurred as recently as 15,000 to 20,000 yr ago when sea level was lowest. If this alternative is correct, then as sea level abruptly rose about 12,000 yr ago, relatively fresh water must have been discharged to the open Pacific. This might have affected the dynamics of outflow, local faunal and floral expression of the polar front, and stable isotope ratios in foraminifera. These environmental changes could be misinterpreted as evidence for the cooling of Younger Dryas age, which has not been identified in nearby terrestrial records.  相似文献   

9.
The Quaternary deposits in the Galilee coastal plain comprise alternating calcareous sandstone, red loam, dark clay, and uncemented sand. The calcareous sandstone in the lower part of the sequence represents a Pliocene to early Pleistocene marine transgression, and is covered unconformably by the late Quaternary sequence. The base of this sequence has an estimated age of 500,000 yr. It is covered unconformably by marine calcareous sandstone in the west, which represents the global high sea-level stand of isotope stage 7.1, and is known as one of the “Tyrrhenian” events in the Mediterranean area. The overlying members represent the low sea-level stand of stage 6, the first a red paleosol indicating a relatively wet phase and the second an eolianite unit representing a drier phase. The eolianite forms longitudinal, subparallel ridges that formed contemporaneously. The overlying marine sandstone, which contains one of the diagnostic fossils of the “Tyrrhenian” events, the gastropodStrombus buboniusLMK, accumulated during the global high stand of stage 5.5. The last glacial period left no sedimentary record. The Holocene is represented by a marine clay unit that is covered by sand. The present study establishes a complete and detailed chronostratigraphic sequence for an eastern Mediterranean beach, which contains the gastropodS. buboniusLMK.S. buboniuson the Galilee coast is attributed to stage 5.5 and, therefore, establishes an east–west Mediterranean correlation, which can be used for linking Mediterranean events to paleo-sea levels and global climate changes.  相似文献   

10.
We constructed a detailed relative sea-level rise curve for the last 1500 years using a novel approach, i.e. charting the rate of relative sea-level rise using microfaunal and geochemical data from a coastal salt marsh sequence (Clinton, CT, USA). The composition of benthic foraminiferal assemblages and the iron abundance in peats were used to describe shifts in marsh environment through time quantitatively. The resulting sea-level rise curve, with age control from 14C dating and the onset of anthropogenic metal pollution, shows strong increases in the rate of relative sea-level rise during modern global warming (since the late nineteenth century), but not during the Little Climate Optimum (ad 1000–1300). There was virtually no rise in sea-level during the Little Ice Age (ad 1400–1700). Most of the relative sea-level rise over the last 1200 years in Clinton appears to have occurred during two warm episodes that jointly lasted less than 600 years. Changes from slow to fast rates of relative sea-level rise apparently occurred over periods of only a few decades. We suggest that changes in ocean circulation could contribute to the sudden increases in the rate of relative sea-level rise along the northeastern USA seaboard. Relative sea-level rise in that area is currently faster than the worldwide average, which may result partially from an ocean surface effect caused by hydrodynamics. Our data show no unequivocal correlation between warm periods (on a decaal to centennial time-scale) and accelerated sea-level rise. One period of acclerated sea-level rise may have occurred between about ad 1200 and 1450, which was the transition for the Little Climate Optimum to the Little Ice Age, i.e. a period of cooling (at least in northwestern Europe). Local changes in tidal range might also have contributed to this apparent increase in the rate of relative sea-level, however. The second period of accelerated sea-level rise occurred during the period of modern global warming that started at the end of the last century.  相似文献   

11.
The occurrence of a series of raised coral reefs from the uplifted island of Malakula (Vanuatu, SW Pacific) provide an opportunity to examine sea-level fluctuations over at least the past 120,000 years. Thirteen fossil coral samples from Malakula were analyzed by the thermal ionization mass spectrometry (TIMS) U/Th dating technique, yielding information on sea levels during late marine isotope stage 3 and early stage 4. Our findings are in good agreement with sea-level estimates from raised coral terraces in Papua New Guinea and the recent sea-level reconstruction from the deep-sea sedimentary δ18O records. In particular, our coral data appear to confirm that sea levels at about 45,000–50,000 yr B.P. were only 30 to 60 m below the present level. Combined with other evidence of sea-level change, our data provide a strong case for much higher sea levels and therefore markedly reduced continental ice volume at 47,000 to 49,000 years ago.  相似文献   

12.
The mathematical form of a time–height sea-level curve representing intermediate-frequency fluctuations superimposed on an underlying upward trend yields a simple method for estimating the minimum amplitude of fluctuations from field measurements of the thickness of silt–peat couplets. Drawing on data from the Thames Estuary and the Fenland Basin, fluctuations of relative sea-level with minimum amplitudes between 0.08 m and 0.91 m seem to have occurred in the southeast British region during the mid-Flandrian. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
The Pleistocene outburst floods from glacial Lake Missoula, known as the “Spokane Floods”, released as much as 2184 km3 of water and produced the greatest known floods of the geologic past. A computer simulation model for these floods that is based on physical equations governing the enlargement by water flow of the tunnel penetrating the ice dam is described. The predicted maximum flood discharge lies in the range 2.74 × 106−13.7 × 106 m3 sec−1, lending independent glaciological support to paleohydrologic estimates of maximum discharge.  相似文献   

14.
The offshore stratigraphy of the Quaternary Gubik Formation of Arctic Alaska has been studied on high-resolution seismic profiles with a maximum sub-seafloor penetration of about 100 m. In general, marine transgressive subunits of the Gubik Formation are wedge-shaped on the shelf, thickening slightly seaward to the shelf break, beyond which they are offset by landslides and slumps. Beneath the eastern third of the Alaskan Beaufort shelf, active folding has created two persistent structural depressions, the Eastern and Western Wedge Terranes, in which the wedge morphology is especially well developed. The youngest transgressive marine wedge, which was deposited in such a way as to fill these depressions, leaving a generally flat present-day shelf surface, is inferred to be late Wisconsin or younger in age because it overlies a prominent disconformity interpreted to have been formed during the late Wisconsin glacial sea-level minimum. The thickness of this youngest wedge, Unit A, locally exceeds 40 m on the outer shelf, yet apparently relict gravel deposits collected from its seabed surface indicate that the depositional rate is presently quite low on the middle and outer shelf. Lithologies of the gravels are exotic to Alaska, but similar to suites exposed in the Canadian Arctic Islands. These observations suggest a depositional scenario in which the retreating Laurentide Ice Sheet shed sediment-laden icebergs from the Canadian Arctic Islands into the Arctic Ocean following the late Wisconsin glacial maximum. These bergs were then rafted westward by the Beaufort Gyre and grounded on the Alaskan shelf by northeasterly prevailing winds. Especially large numbers of bergs accumulated in the wedge terrane embayments—created as sea level rose—and melted there, filling the embayments with their sedimentary cargo. As glacial retreat slowed, depositional rates on the shelf dwindled.This mode of deposition in the Alaskan Beaufort wedge terranes may be typical of early post-glacial transgressive phases throughout Quaternary time. It has resulted in the preservation of disconformities that apparently formed during glacioeustatic lowstands, and whose seaward termination depths, appropriately corrected, may yield estimates of lowstand magnitudes. Knowledge of global sea-level fluctuations back through the Sangamon Interglacial (oxygen isotope stage 5e) and possible correlations with dated onshore deposits have facilitated a tentative correlation of major disconformities in the Beaufort Sea record with major 18O enrichment maxima in the oxygen isotope curve back through stage 8. In this tentative scheme, close similarities between the two data sets occur both in magnitudes and in numbers of fluctuations intervening between major correlation points. Further testing of the Quaternary depositional model suggested here and of the resulting sea level curve awaits the collection and dating of core samples from the Beaufort wedge terranes.  相似文献   

15.
为了查明曹妃甸浅层地下水水化学及咸化成因,采集研究区河水、地下淡水、微咸水、咸水、卤水、雨水和海水等不同类型水样,对其水化学组成、离子比、Piper三线图、吉布斯图、氢氧同位素组成及14C测年结果进行了分析。结果表明:(1)曹妃甸浅层地下水包括全新世沉积层潜水和晚更新世沉积层微承压水,且非原始封存在地层中而是形成于全新世中晚期。(2)地下潜水向海方向分布有淡水、微咸水、咸水水质类型,微承压水以咸水和卤水为主要水质类型;近冲洪积扇前缘水化学特征主要受岩石风化作用控制,围填海区及河口处水化学特征受海水混合作用控制,滨海平原区水化学特征主要受蒸发/结晶作用控制。(3)曹妃甸浅层地下水咸化过程主要是晚更新世以来海侵海退时期形成海洋蒸发盐经大气降水和河水多期溶滤所致,其盐分来源于海水蒸发盐,河口及围填海区地下潜水盐分主要来源于现代海水入侵。  相似文献   

16.
二叠纪末期的全球淹没事件   总被引:9,自引:0,他引:9       下载免费PDF全文
本文根据华南层序地层学分析,着重研究了晚二叠世的淹没事件。研究表明,晚二叠世海平面变化曲线不同于C.A.Ross和J.R.Ross(1987)的海平面变化曲线。根据华南地区和世界其它地区的古生物分析和层序地层分析,晚二叠世海平面变化结论如下:(1)二叠纪末期,全球发生海泛淹没事件,海平面急剧上升,而不是下降;(2)晚二叠世晚期的海进开始于吴家坪末期,至长兴期末期(二叠纪末期)达到高峰时期。  相似文献   

17.
Land subsidence due to decline in head in confined aquifers, related to municipal and industrial water pumpage, is widespread in the Atlantic Coastal Plain. Although not a major engineering problem, subsidence greatly complicates adjustment of precise leveling and distorts prediction of future sea-level rise. When preconsolidation stress equivalent to about 20 m of head decline is exceeded compaction of fine-grained sediments of the aquifer system begins, and continues until a new head equilibrium is attained between fine and coarse units. The ratio subsidence/head decline is quite consistent, ranging from 0.0064 in southeastern Virginia to 0.0018 at Dover, Delaware and Atlantic City, New Jersey. Higher values are related to the occurrence of montmorillonite as the predominant clay mineral present. Review of tide gauge records indicates that gauges not affected by land subsidence or other local secular effects have been sinking relative to sea level since 1940 at rates averaging about 2.5 mm/yr, of which 0.6 mm/yr is ascribed to glacio-isostatic adjustment to unloading of North America resulting from melting of late Pleistocene glaciers, and about 0.9 mm/yr is ascribed to steric sea-level rise related to ocean warming. The residual 1 mm/yr of relative sea-level rise is not well understood, but may be related to regional tectonic subsidence of the Atlantic coast.  相似文献   

18.
Analysis of carbon and oxygen isotopic compositions of large benthic foraminifera tests (Marginopora vertebralis) that lived in the Great Australian Bight during the late Pleistocene, reveal that the tests are enriched by 1 to 3‰ in both 18O and 13C relative to modern specimens from the same region. The intolerance of M. vertebralis for cool waters negates lower ocean water temperature as an explanation for such high δ18O values. The oxygen isotopic compositions are thus interpreted to reflect tests secreted in hypersaline waters of up to 56 ppt salinity, concentrated from seawater by evaporation. M. vertebralis thrives today in waters of similar salinity at Shark Bay, Western Australia. The Pleistocene sedimentary assemblage supports an interpretation that environments broadly similar to those in outer modern-day Shark Bay were wide spread across the Great Australian Bight during portions of marine isotope stages 2, 3 and 4. The high δ13C values of the Pleistocene M. vertebralis are interpreted to reflect enhanced photosynthetic activity that depletes dissolved carbonate in 12C in such shallow, saline settings. These hypersaline environments formed during periods of lower sea-level when shallow-waters (< 20 m depth) extended from the shoreline over ~ 100 km across what is currently a relatively deep shelf. This study indicates that shelf bathymetry was a critical determinant of past environments of deposition across the Great Australian Bight.  相似文献   

19.
In the Sierra Nevada, the “Recess Peak Glaciation” has been previously defined on the basis of deposits exhibiting relative-age characteristics intermediate between those of the Little Ice Age deposits and those of early Holocene or older moraines. In the absence of reliable chronological control, the Recess Peak deposits were assigned an early Neoglacial age. Although numerous moraines in the central and southern Sierra have been attributed to this interval, regional snowline gradients reconstructed from these deposits lack internal consistency and appear to represent several distinctly different episodes of glacier advance. As a basis for comparison with the Recess Peak data, modern and late Pleistocene regional snowlines were reconstructed using accumulation-area ratios and cirque-floor altitudes. These reconstructions display regionally consistent gradients, rising gradually southward and more steeply eastward. Based on these data, the full-glacial late Pleistocene snowline depression is estimated to have been ≥800 m. Estimates of Recess Peak snowline depression vary widely, ranging from 140 to 500 m, and a reconstructed regional gradient rises northward, in opposition to the late Pleistocene and modern snowlines. Limited radiocarbon dating and the irregular pattern derived from the Recess Peak snowline data suggest that, even in the type area, these deposits resulted from both pre- and post-Hypsithermal glacier advances.  相似文献   

20.
This paper presents examples of various large tidal sandbodies from the Eocene Roda Sandstone in the southern Pyrenees and the Late Pleistocene and Early Holocene in the East China Sea. An attempt is made to summarize the geometric variability of these large tidal sandbodies in relation to the sediment supply and tidal discharge of the depositional system. Transverse sand bars were developed in low-sinuosity, high-gradient channels with high influxes of coarse sediments and water from fluvial systems. Tidal point bars were formed in meandering low-gradient estuarine channel where tidal influence was stronger and sediment was finer than those of the transverse sand bar. A tidal delta complex was built up at the estuary mouth with an abundant sediment supply and an increased tidal discharge. Tidal sand ridges were formed when relict fluvial or deltaic sands were eroded and reworked by strong tidal currents during subsequent sea-level rise.

Since the sediment supply and the tidal discharge of the depositional system were closely related to the eustatic sea-level change and basin subsidence, i.e. the relative sea-level change, special attention will be given to the relationship between geometric variability of tidal sandbodies and the sequence stratigraphic framework in which various sandbodies occurred. Three orders of eustatic sea-level fluctuations can be recognized. The third-order eustatic sea-level cycle, together with basin subsidence, controlled the development of systems tracts and the occurrence of different tidal sandbodies, such as estuary and tidal flat facies during the late stage of a LSW systems tract (type 1 sequence) or a SM systems tract (type 2 sequence); tidal point bar facies, tidal delta facies or tidal sand-ridge facies during a TR systems tract; estuary facies during an early HS systems tract; and fluvial sand bar facies in a late HS systems tract and the early stage of a SM or LSW systems tract. There are also the fourth-order and fifth-order eustatic fluctuations, which are superimposed on the third-order eustatic changes and have important control on the build-up, abandonment and preservation of composite and single tidal sandbodies, respectively.

Since the deposition of tidal sandbodies is very sensitive to eustatic sea-level changes, recognition of various tidal sandbodies is important in sequence stratigraphy analyses of sedimentary basins and in the facies prediction of clastic sediments in basin modelling.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号