首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Key Tuffite is a stratigraphic marker unit for most of the zinc-rich volcanogenic massive sulfide deposits of the Matagami Camp in the Abitibi Greenstone Belt. This 2- to 6-m-thick unit was previously interpreted as a mixture of ash fall (andesitic to rhyolitic tuffaceous components) and volcanogenic massive sulfide (VMS)-related chemical seafloor precipitate (exhalative component). Previous attempts to develop geochemical exploration vectoring tools using metal content within the Key Tuffite were mostly inconclusive due to the complex nature of the Key Tuffite unit and a poor understanding of its composition, origin and relationship with the VMS-forming hydrothermal systems. Detailed mapping and thorough lithogeochemistry of the Key Tuffite in the vicinity of the Perseverance and Bracemac-McLeod deposits indicate that the Key Tuffite is a homogeneous calc-alkaline, andesitic tuff that was deposited before the VMS deposits were formed. The unit is mostly devoid of exhalative component, but it is strongly hydrothermally altered close to orebodies. This is characterized by a strong proximal chloritization and a distal sericitization, which grades laterally into the unaltered Key Tuffite. Neither the Key Tuffite nor the ore was formed by seafloor exhalative processes for the two studied deposits. This probably explains why previously proposed exploration models based on metal scavenging proved unsuccessful and suggests that a re-evaluation of the exhalative model should be done at the scale of the mining camp. However, as shown in this study, hydrothermal alteration can be used to vector towards ore along the Key Tuffite.  相似文献   

2.
Although volcanogenic massive sulfide (VMS) deposits can form within a wide variety of rift-related tectonic environments, most are preserved within suprasubduction affinity crust related to ocean closure. In stark contrast to the VMS-rich Appalachian sector of the Grampian-Taconic orogeny, VMS mineralization is rare in the peri-Laurentian British and Irish Caledonides. Economic peri-Gondwanan affinity deposits are limited to Avoca and Parys Mountain. The Tyrone Igneous Complex of Northern Ireland represents a ca. 484–464 Ma peri-Laurentian affinity arc–ophiolite complex and a possible broad correlative of the Buchans-Robert’s Arm belt of Newfoundland, host to some of the most metal-rich VMS deposits globally. Stratigraphic horizons prospective for VMS mineralization in the Tyrone Igneous Complex are associated with rift-related magmatism, hydrothermal alteration, synvolcanic faults, and high-level subvolcanic intrusions (gabbro, diorite, and/or tonalite). Locally intense hydrothermal alteration is characterized by Na-depletion, elevated SiO2, MgO, Ba/Sr, Bi, Sb, chlorite–carbonate–pyrite alteration index (CCPI) and Hashimoto alteration index (AI) values. Rift-related mafic lavas typically occur in the hanging wall sequences to base and precious metal mineralization, closely associated with ironstones and/or argillaceous sedimentary rocks representing low temperature hydrothermal venting and volcanic quiescence. In the ca. 475 Ma pre-collisional, calc-alkaline lower Tyrone Volcanic Group rift-related magmatism is characterized by abundant non-arc type Fe-Ti-rich eMORB, island-arc tholeiite, and low-Zr tholeiitic rhyolite breccias. These petrochemical characteristics are typical of units associated with VMS mineralization in bimodal mafic, primitive post-Archean arc terranes. Following arc-accretion at ca. 470 Ma, late rifting in the ensialic upper Tyrone Volcanic Group is dominated by OIB-like, subalkaline to alkali basalt and A-type, high-Zr rhyolites. These units are petrochemically favorable for Kuroko-type VMS mineralization in bimodal-felsic evolved arc terranes. The scarcity of discovered peri-Laurentian VMS mineralization in the British and Irish Caledonides is due to a combination of minimal exploration, poor-preservation of upper ophiolite sequences, and limited rifting in the Lough Nafooey arc of western Ireland. The geological and geochemical characteristics of the Tyrone Volcanic Group of Northern Ireland and peri-Gondwanan affinity arc/backarc sequences of Ireland and northwest Wales represent the most prospective sequences in the British and Irish Caledonides for VMS mineralization.  相似文献   

3.
4.
Summary Small dispersed patches (< 1 cm) of chlorite + secondary clinopyroxene ± spinel occur within a unit of clinopyroxenite in a mafic/ultramafic complex located in Mann Township, approximately 47 km NE of Timmins, Ontario. Prior to hydrothermal alteration that resulted in formation of the chlorite patches, clinopyroxenite was a homogeneous, medium-grained clinopyroxene adcumulate. The abundances of major and trace lithophile elements and the compositions of magmatic clinopyroxene (augite, with average Mg number of 84.3, = 1.1, n = 80) are uniform across the section sampled. The most altered portions of clinopyroxenite consist of a total of 30 to 40% chlorite plus secondary diopsidic pyroxene with traces of spinel. Chlorite patches are, to some extent connected by very thin veins. Multiple generations of chlorite are inferred from cross-cutting relationships and variations in chlorite chemistry. Adjacent to chlorite patches, the magmatic clinopyroxene is occasionally converted to diopside. The secondary clinopyroxene is typically zoned from diopside to salite, and is characterized by very low minor element concentrations and a positive MnO-FeO correlation. Spinel in chlorite patches is iron-rich chromite. Magmatic chromite and iron-rich chromite are commonly zoned with outer rims of either ferrochromite or Cr magnetite or both. Occasionally trace amounts of copper-rich sulphides accompanied by platinum-group minerals occur only with the chlorite-clinopyroxene-spinel alteration assemblage. A proposed paragenetic sequence for the secondary minerals is based on reaction of magmatic clinopyroxene with a hydrothermal fluid during subsolidus cooling of the intrusion. The assemblage secondary clinopyroxene + chlorite ± iron-rich chromite suggests a fluid with maximum temperature of approximately 500°C.
Eine sekundäre Klinopyroxen-Chlorit-Spinell Paragenese in Klinopyroxeniten, Mann Complex, Abitibi Belt, Ontario: Eine ungewöhnliche hydrothermale Alterationsabfolge
Zusammenfassung Kleine, dispers verteile Nester (< 1 cm) von Chlorit + sekundärem Klinopyroxen ±Spinell kommen in Klinopyroxeniten eines mafisch/ultramafischen Komplexes in Mann Township, ca. 47 km NE von Timmins, Ontario, vor. Vor der Alteration, die in der Bildung der Chloritnester resultierte, handelte is sich bei diesen Gesteinen um homogene mittelkörnige Klinopyroxen-Adkumulate. Die Verteilung der Haupt- und lithophilen Spurenelemente und die Zusammensetzung der magmatischen Klinopyroxene (Augit, mg 84.3, = l. l, n = 80) sind entlang des beprobten Profils einheitlich. Die am stärksten alterierten Klinopyroxenite bestehen aus 30-40% Chlorit plus sekundärem Diopsid und Spuren von Spinell. Die Chloritnester stehen über sehr dünne Gängchen miteinander in Verbindung. Auf Grund der Texturen und des Mineralchemismus sind mehrere Chloritgenerationen zu unterschieden. In der Nähe der Chloritnester wandelt sich magmatischer Klinopyroxen fallweise in Diopsid um. Der sekundär gebildete Klinopyroxen ist zonar gebaut (Diopsid zu Salit), weist sehr geringe Gehalte an Nebenelementen auf und ist durch eine positive Korrelation von FeO mit MnO charakterisiert. Der Spinell in den Chloritnestern ist Fe-reicher Chromit. Magmatischer und Fe-reicher Chromit sind normalerweise zoniert mit Rändern von Ferrochromit oder/und Cr-Magnetit. Spuren von Cu-reichen Sulfiden, die von PGM begleitet werden, kommen vereinzelt mit der Chlorit-Klinopyroxen-Spinell Alterationsgesellschaft vor. Die vorgeschlagene paragenetische Abfolge wird durch Subsolidus-Reaktion magmatischer Klinopyroxene mit hydrothermalen Fluiden im Zuge der Abkühlung der Intrusion erklärt. Die Vergesellschaftung von sekundärem Klinopyroxen + Chlorit ± Fe-reicher Chromit läßt auf ein Fluid mit ca. 500°C Maximaltemperatur schließen.
  相似文献   

5.
The Early Proterozoic sulfide deposit at Garpenberg is located in the metallogenetic province of central Sweden. It is a strata-bound massive sulfide deposit contained in a supracrustal sequence of mainly acid metavolcanic rocks. Stratiform Zn-Pb-Cu mineralization is underlain by Cu-bearing stockwork ore and an extensive alteration zone. The sulfide ores and their altered wall rocks were formed by subseafloor hydrothermal activity. The alteration pattern observed in the wall rocks of this deposit is consistent with a hydrothermal system where the fluid consists mainly of seawater and a high water/rock mass ratio predominates. The hydrothermal activity caused the destruction of the primary mineralogy, mainly feldspars, and a general redistribution of the chemical elements in the altered wall rocks which were principally depleted in Ca, Na and Eu and enriched in Mg. Eu was redeposited with the ore metals near or at the seafloor and Ca was deposited as limestone. Most of the major and trace elements show large mobility during the alteration; only Ti, Zr, Y and REE (excluding Eu) behaved as relatively immobile elements.  相似文献   

6.
7.
A distinct group of gold deposits in the Abitibi greenstone belt is spatially associated with quartz-monzonite to syenite stocks and dikes. The deposits occur mainly along major fault zones, in association with preserved slivers of alluvial-fluvial, Timiskaming-type, sedimentary rocks. The deposits consist of disseminated sulfide replacement zones with variably developed stockworks of quartz-carbonate-K-feldspar veinlets, within zones of carbonate, albite, K-feldspar, and sericite alteration. The syenitic intrusions are broadly contemporaneous with deposition of Timiskaming sedimentary rocks and, together with disseminated gold mineralization, they have been overprinted by subsequent regional folding and related penetrative cleavage. Disseminated gold orebodies occur within composite syenitic stocks or along their margins, along satellite dikes and sills, and along faults and lithologic contacts away from intrusions. Orebodies in these different positions are interpreted to represent proximal to distal components of large magmatic-hydrothermal systems centered on, and possibly genetically related to, composite syenitic stocks.  相似文献   

8.
A large scale Proterozoic breccia system consisting of numerous individual breccia bodies, collectively known as Wernecke Breccia, occurs in north-central Yukon Territory, Canada. Breccias cut Early Proterozoic Wernecke Supergroup sedimentary rocks and occur throughout the approximately 13 km thick deformed and weakly metamorphosed sequence. Iron oxide–copper–gold ± uranium ± cobalt mineralization is associated with the breccia bodies and occurs as veins and disseminations within breccia and surrounding rocks and locally forms the breccia matrix. Extensive sodic and potassic metasomatic alteration occurs within and around breccia bodies and is overprinted by pervasive calcite and dolomite/ankerite, and locally siderite, alteration, respectively. Multiple phases of brecciation, alteration and mineralization are evident. Breccia bodies are spatially associated with regional-scale faults and breccia emplacement made use of pre-existing crustal weaknesses and permeable zones. New evidence indicates the presence of metaevaporitic rocks in lower WSG that may be intimately related to breccia formation. No evidence of breccia-age magmatism has been found to date.
Julie HuntEmail:
  相似文献   

9.
Fuzzy logic mineral prospectivity modelling was performed to identify camp-scale areas in western Victoria with an elevated potential for hydrothermal-remobilised nickel mineralisation. This prospectivity analysis was based on a conceptual mineral system model defined for a group of hydrothermal nickel deposits geologically similar to the Avebury deposit in Tasmania. The critical components of the conceptual model were translated into regional spatial predictor maps combined using a fuzzy inference system. Applying additional criteria of land use restrictions and depth of post-mineralisation cover, downgrading the exploration potential of the areas within national parks or with thick barren cover, allowed the identification of just a few potentially viable exploration targets, in the south of the Grampians-Stavely and Glenelg zones. Uncertainties of geological interpretations and parameters of the conceptual mineral system model were explicitly defined and propagated to the final prospectivity model by applying Monte Carlo simulations to the fuzzy inference system. Modelling uncertainty provides additional information which can assist in a further risk analysis for exploration decision making.  相似文献   

10.
The Dorn gold deposit in northern Victoria Land, Antarctica is a fault related gold-only deposit and it represents the first described occurrence of gold mineralization in Paleozoic terranes of the Antarctic continent. The deposit is hosted in lower greenschist facies Middle Cambrian metavolcanic and metasedimentary rocks of the Bowers terrane. Gold-bearing veins are located in a brittle–ductile reverse high-strain zone, which was produced by transpressional deformation that overprints the structures of the Cambrian–Ordovician Ross Orogeny. The vein system is surrounded by a hydrothermal alteration zone that is as much as 300-m-wide, where the host rocks are partially to completely transformed into Fe–Mg carbonate-rich rocks with different degrees of replacement of the original mineralogy and texture.The type of host rock, the temperature estimates for mineralization from 290–320 °C, the quartz dominant vein system with sulfides and Fe-rich carbonates, and the controlling structures linked to a convergent margin tectonic setting together suggest that this mineralized vein system can be classified as an orogenic gold deposit. Close analogies are found with deposits of the Stawell zone in western Victoria, which is consistent with the correlation between units and hydrothermal events in northern Victoria Land and southeastern Australia.  相似文献   

11.
In recent years, there have been numerous calibrations of the biotite-garnet Fe-Mg exchange geothermometer. The Eastern Lac Seul region of the English River subprovince, Ontario, provides an excellent field area in which to compare these calibrations.Trend surface analysis using the temperatures obtained from garnet cores and matrix biotites-showed almost identical trends in the eastern Lac Seul region regardless of the calibration used. The absolute temperatures and the precision of each calibration do, however, show large variation. Geothermometers based solely on lnKD were found to give more precise results than the calibrations that attempt to incorporate non-Fe-Mg components. The Perchuk and Lavrent'eva (1983) thermometer yields the most precise and accurate results. If a sufficient number of samples are collected over a region, it can be used to estimate metamorphic temperature trends to ±30° C. Metamorphism and migmatization of the English River subprovince occurred during the Kenoran orogeny, 2.68 b.y. ago. Our results show that a thermal anticline has been preserved, with temperatures of 600° C at the north and south contacts with Uchi and Wabigoon Greenstone belts, increasing to 725 °C at the center of the subprovince. A garnet-cordierite in isograd occurs at 650° C and an orthopyroxene in isogradat 700° C.  相似文献   

12.
Basalt in the Furutobe District of the Kuroko mine area in Japan is characterized by abundant chlorite and epidote. Fluid inclusion studies indicate that chlorite is formed at lower temperatures (230–250°C) than epidote (250–280°C). The seawater/basalt mass ratio for the early chlorite-rich alteration was high (max. 40), but that for the later alteration was low (0.1–1.8). The CaO, Na2O and SiO2 of the bulk rock correlate negatively with MgO, while FeO and Σ Fe correlate positively with MgO. These changes in the characteristic features of hydrothermal alteration from early to late are generally similar to those for a mid-ocean ridge geothermal system accompanying basalt alteration.The MgO/FeO ratios of chlorite and actinolite and the Fe2O3 concentration of epidote from the basalt are greater than those of mid-ocean ridge basalt probably owing to the differences in the Fe2O3/FeO and MgO/FeO ratios of the parent rocks. The lower CaO concentration and the higher Na2O concentration of the bulk rock compared with altered mid-ocean ridge basalt can be interpreted in terms of the difference in original bulk rock compositions.The Furutobe basalt, as well as other submarine back arc basalts, contains more vesicles filled with hydrothermal minerals (epidote, calcite, quartz, chlorite, pyrite) than do the mid-ocean ridge basalts. The abundance of vesicles plays an important role in controlling the secondary mineralogy and geochemistry of hydrothermally altered submarine back arc basin basalts.  相似文献   

13.
We examine models for volcanogenic massive sulfide (VMS) mineralization in the ~2.7-Ga Noranda camp, Abitibi subprovince, Superior Province, Canada, using a combination of multiple sulfur isotope and trace element data from ore sulfide minerals. The Noranda camp is a well-preserved, VMS deposit-rich area that is thought to represent a collapsed volcanic caldera. Due to its economic value, the camp has been studied extensively, providing a robust geological framework within which to assess the new data presented in this study. We explore previously proposed controls on mineralization within the Noranda camp and, in particular, the exceptional Au-rich Horne and Quemont deposits. We present multiple sulfur isotope and trace element compositional data for sulfide separates representing 25 different VMS deposits and “showings” within the Noranda camp. Multiple sulfur isotope data for this study have δ34SV-CDT values of between ?1.9 and +2.5?‰, and Δ33SV-CDT values of between ?0.59 and ?0.03?‰. We interpret the negative Δ33S values to be due to a contribution of sulfur that originated as seawater sulfate to form the ore sulfides of the Noranda camp VMS deposits. The contribution of seawater sulfate increased with the collapse and subsequent evolution of the Noranda caldera, an inference supported by select trace and major element analyses. In particular, higher concentrations of Se occur in samples with Δ33S values closer to 0?‰, as well as lower Fe/Zn ratios in sphalerite, suggesting lower pressures and temperatures of formation. We also report a relationship between average Au grade and Δ33S values within Au-rich VMS deposits of the Noranda camp, whereby higher gold grades are associated with near-zero Δ33S values. From this, we infer a dominance of igneous sulfur in the gold-rich deposits, either leached from the volcanic pile and/or directly degassed from an associated intrusion.  相似文献   

14.
Archean shoshonitic lamprophyre dikes are prevalent along majortranslithospheric structures that demark tectonostratigraphicterranes in the Abitibi greenstone belt of the Superior Province.The lamprophyres post-date volcanism, tonalitic batholiths,deformation, and metamorphism of the terranes, and are mostprominently developed in trans-tensional graben, where theyare associated with molasse sediments and an alkaline suiteof plutons, stocks, and trachytes. Mineralogically, the dikesare characterized by zoned phiogopite or hornblende phenocrystsand/or diopsidic pyroxene, restriction of feldspar to the groundmass,globular segregations of K-feldspar and calcite, olivine ‘pilite’,and accessory Ti-magnetite, Cr-spinel, apatite, titanite, andSr-rich calcite; crustal xenoliths are sporadically present. Compositionally, weakly altered primititive dikes have contentsof SiO2 (41–48 wt.%), TiO2 (06–11 wt.%), P2O5(041–076 wt.%), Cr (258–915 ppm), Co (36–84ppm), Ni (159–368 ppm), and Sc (15–32 ppm), mg-numbers(72–79), and K2O/Na2O ratios (10–43) similar tothose of Phanerozoic shoshonitic lamprophyres. The primitivedikes are also characterized by extreme enrichments of K, Rb,Ba, Cs, U, and Th, enhanced light rare earth elements (REE),and fractionated REE patterns [Lan=33–274; (La/Yb)n=16–87].On mid-ocean ridge basalt (MORB) normalized plots the dikesshow coherent patterns, with (1)enrichment of K, Rb, and Barelative to Sr and LREE, (2) variable enrichments of Rb andBa relative to K, (3) troughs at Ta–Nb and Ti, and (4)variable negative P and positive Sm anomalies. Compositionalvariations of lamprophyre suites within restricted areas areinterpreted to reflect melting of compositionally heterogeneoussources, variable degrees of assimilation–fractional crystallization,and mixing of distinct batches of lamprophyric magmas. Primary18O values of the magmas are close to 63 as given by resistantpyroxene; these are 18O-relative to MORB, but comparable withPhanerozoic alkali basalts and lamprophyres. Mica, clinopyroxene,hornblende, and feldspar do not retain magmatic equilibriumfractionations for oxygen isotopes. A concordant U–Pbage of 26742 Ma was obtained from titanite, similar to theages of shoshonitic plutons in the same area. The lamprophyredikes possess a total range of Nd between 041 and 211(1),and define a distinct field in common with other late Archeanshoshonites on an f(Sm/Nd) vs. Nd plot. Pyroxenes yield a low87Sr/86Sr(0701102), whereas whole-rock Rb-Sr isotope systematicsare disturbed. Lamprophyres are not known from pre-27-Ga terranes. Their compositionand inferred geodynamic setting is consistent with an originin a depleted mantle wedge, enriched in large ion lithophileelements (LILE) and LREE during subduction by slab and sediment(low Sr/Nd) dehydration. Partial melting may have been triggeredby rebound and decompression that followed accretional collisionof two allochthonous greenstone terranes at a plate margin.The onset of shoshonitic magmatism at 27 Ga coincides withthe transition from tonalite–trondhjemite–granodiorite(TTG) dominated magmatism with high (La/Yb)n and low Yb (slabmelting) to mantle-wedge derived granites featuring lower (La/Yb)nand higher Yb (slab dehydration), owing to decreasing heat flow.Accretion of greenstone belts, and their buoyant harzburgiticroots, consolidated a thick subcontinental mantle lithosphereby 27 Ga, which was subsequently the source of Jurassic kimberlitesthat intruded the persistently reactivated Archean translithosphericstructures.  相似文献   

15.
林子宗群火山岩广泛发育在冈底斯带的南部,长期以来被认为是印度与亚洲大陆碰撞过程中的火山响应,对冈底斯带南缘的地质演化具有重要意义。迄今对林子宗群火山岩的研究主要集中在冈底斯带的中东部,未见有冈底斯带西部地区林子宗群火山岩的研究报道。对冈底斯带西部狮泉河地区的林子宗群火山岩进行了年代学与元素地球化学研究。结果表明,研究区年波组主要包括玄武安山岩、安山岩与流纹岩,属钙碱性—高钾钙碱性系列;帕那组火山岩主要为流纹岩,属于高钾钙碱性和钾玄岩系列。岩石富集大离子亲石元素Rb、Th、U等,亏损高场强元素Nb、Ta、Ti、Sr、Ba等,与冈底斯带中东部林子宗群火山岩一致,具有岛弧火山岩的特征。此外,帕那组流纹岩LA-ICP-MS锆石U-Pb年龄为53.9±0.5Ma,比冈底斯带中东部帕那组形成时代更早。结合前人的研究成果表明,印度与亚洲大陆的碰撞具有西早东晚的特点。  相似文献   

16.
付文春  康志强      潘会彬 《地质通报》2014,33(06):850-859
林子宗群火山岩广泛发育在冈底斯带的南部,长期以来被认为是印度与亚洲大陆碰撞过程中的火山响应,对冈底斯带南缘的地质演化具有重要意义。迄今对林子宗群火山岩的研究主要集中在冈底斯带的中东部,未见有冈底斯带西部地区林子宗群火山岩的研究报道。对冈底斯带西部狮泉河地区的林子宗群火山岩进行了年代学与元素地球化学研究。结果表明,研究区年波组主要包括玄武安山岩、安山岩与流纹岩,属钙碱性—高钾钙碱性系列;帕那组火山岩主要为流纹岩,属于高钾钙碱性和钾玄岩系列。岩石富集大离子亲石元素Rb、Th、U等,亏损高场强元素Nb、Ta、Ti、Sr、Ba等,与冈底斯带中东部林子宗群火山岩一致,具有岛弧火山岩的特征。此外,帕那组流纹岩LA-ICP-MS锆石U-Pb年龄为53.9±0.5Ma,比冈底斯带中东部帕那组形成时代更早。结合前人的研究成果表明,印度与亚洲大陆的碰撞具有西早东晚的特点。  相似文献   

17.
《International Geology Review》2012,54(14):1745-1767
ABSTRACT

Ferroan granites (585–530 Ma) have been described in the Transversal subprovince of the Borborema Province (BP) and in Pan-African counterparts. They comprise two groups: Group 1 – slightly peraluminous to metaluminous, alkali-calcic rocks, with low Fe# mica and crystallized under intermediate fO2 (Aroeiras Complex and Serra Branca – Coxixola dike swarms); Group 2 metaluminous to slightly peraluminous, alkalic to alkali-calcic rocks, with high Fe# mica and crystallized under low fO2 (Queimadas and Prata intrusions). Group 1 marks transition from collision to transcurrence (ca. 585 Ma), or from transcurrence to uplift and transtension (ca. 545 Ma). Group 2 – represents granitoids intruded during extensional tectonics in transcurrent setting (ca. 550 Ma), or coeval with deposition of transtensional intracratonic basins (ca. 530 Ma). Hf and Nd model ages are older than 2.0 Ga, suggesting that the ferroan granitoids involved partial melting of Paleoproterozoic rocks. The data presented in this paper show that the ferroan magmatism was widespread in the BP and its counterparts in Africa in pre-drift reconstructions.  相似文献   

18.
The Chevrier gold deposit is located in the northeastern part of the Abitibi Subprovince within the Chevrier volcanic centre (CVC). This calc-alkaline volcanic centre evolved from mafic to felsic in a submarine environment, and the Chevrier deposit is spatially associated with the uppermost unit composed mostly of massive dacite to rhyolite, dated at 2730 Ma. The Chevrier deposit is divided in two zones. The North Zone is composed of high-grade, discordant quartz-carbonate veins and disseminated pyrite mostly within melanocratic gabbro dykes, whereas, the South Zone is within a low-grade, concordant pyrite envelope associated with quartz-carbonate-pyrite veinlets. Both zones are highly deformed and show strong carbonate, sericite and chlorite alterations. Although these zones share many characteristics with orogenic deposits, the crosscutting of the Chevrier deposit by structures associated with the major deformation events suggests that mineralization was prior to these events. Furthermore, felsic dykes associated with the formation of the CVC crosscut auriferous veins and zones, therefore suggesting a synvolcanic timing for the gold mineralization. Characteristics of the zones, such as similar vein composition and alteration mineral assemblages and location within the volcanic pile, suggest that they are part of a single hydrothermal event where the South Zone represents the shallower part of the deposit. The Chevrier deposit is classified as a noncarbonate-hosted stockwork and disseminated deposit and shows many similarities with strata-bound gold deposits of the Andacollo mining district of Chile. Dating of mineralization at the Chevrier deposit indicates that the emplacement of gold occurred more than 25 Ma before the onset of the orogeny affecting this part of the Abitibi subprovince. It also illustrates how synvolcanic mineralization can be misinterpreted as an orogenic deposit without the presence of crosscutting relationships with dykes, faults or other structures.Contribution No. 2005-5130-01 of the Ministère des Ressources naturelles et de la Faune du Québec.  相似文献   

19.
Hydrothermal iron ores at Divri?i, east Central Anatolia, are contained in two orebodies, the magnetite-rich A-kafa and the limonitic B-kafa (resources of 133.8 Mt with 56% Fe and 0.5% Cu). The magnetite ores are hosted in serpentinites of the Divri?i ophiolite at the contact with plutons of the Murmano complex. Hydrothermal biotite from the Divri?i A-kafa yield identical weighted mean plateau ages of 73.75?±?0.62 and 74.34?±?0.83 Ma (2σ). This biotite represents a late alteration phase, and its age is a minimum age for the magnetite ore. Similar magnetite ores occur at Hasançelebi and Karakuz, south of Divri?i. There, the iron ores are hosted in volcanic or subvolcanic rocks, respectively, and are associated with a voluminous scapolite ± amphibole ± biotite alteration. At Hasançelebi, biotite is intergrown with parts of the magnetite, and both minerals formed coevally. The weighted mean plateau ages of hydrothermal biotite of 73.43?±?0.41 and 74.92?±?0.39 Ma (2σ), therefore, represent mineralization ages. Hydrothermal biotite from a vein cutting the scapolitized host rocks south of the Hasançelebi prospect has a weighted mean plateau age of 73.12?±?0.75 Ma (2σ). This age, together with the two biotite ages from the Hasançelebi ores, constrains the minimum age of the volcanic host rocks, syenitic porphyry dikes therein, and the scapolite alteration affecting both rock types. Pyrite and calcite also represent late hydrothermal stages in all of these magnetite deposits. The sulfur isotope composition of pyrite between 11.5 and 17.4‰ δ34S(VCDT) points towards a non-magmatic sulfur source of probably evaporitic origin. Calcite from the Divri?i deposit has δ18O(VSMOV) values between +15.1 and +26.5‰ and δ13C(VPDB) values between ?2.5 and +2.0‰, which are compatible with an involvement of modified marine evaporitic fluids during the late hydrothermal stages, assuming calcite formation temperatures of about 300°C. The presence of evaporite-derived brines also during the early stages is corroborated by the pre-magnetite scapolite alteration at Divri?i, and Hasançelebi-Karakuz, and with paleogeographic and paleoclimatic reconstructions. The data are compatible with a previously proposed genetic model for the Divri?i deposit in which hydrothermal fluids leach and redistribute iron from ophiolitic rocks concomitant with the cooling of the nearby plutons.  相似文献   

20.
The Madenkoy-Siir region lies in southeastern Anatolia, Turkey to the northeast of Siirt. The study area is in the southeastern Anatolian Thrust Belt, which forms the boundary between the Border Folds on the northern edge of the Arabian plate and the Taurids. In the region, limestones of the Midyat Group of Eocene-Miocene age and alternating marls and sandstones of the Lice Formation of Early-Middle Miocene age are the autochthonous units. Three thrust slices were emplaced over the autochthonous units during the Miocene Epoch. The lowest slice consists of interbedded sandstones, mudstones, marls, limestones, and conglomerates of the Sason flysch, the Madenkoy spilite, and the Toptepe conglomerate, all of Eocene age; the middle slice consists of the Guleman ultramafic rocks of Cretaceous age; and the uppermost slice consists of the Bitlis metamorphic rocks of Paleozoic age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号