首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inadequate knowledge exists on the distribution of soil moisture and shallow groundwater in intensively cultivated inland valley wetlands in tropical environments, which are required for determining the hydrological regime. This study investigated the spatial and temporal variability of soil moisture along 4 hydrological positions segmented as riparian zone, valley bottom, fringe, and valley slope in an agriculturally used inland valley wetland in Central Uganda. The determined hydrological regimes of the defined hydrological positions are based on soil moisture deficit calculated from the depth to the groundwater table. For that, the accuracy and reliability of satellite‐derived surface models, SRTM‐30m and TanDEM‐X‐12m, for mapping microscale topography and hydrological regimes are evaluated against a 5‐m digital elevation model (DEM) derived from field measurements. Soil moisture and depth to groundwater table were measured using frequency domain reflectometry sensors and piezometers installed along the hydrological positions, respectively. Results showed that spatial and temporal variability in soil moisture increased significantly (p < .05) towards the riparian zone; however, no significant difference was observed between the valley bottom and riparian zone. The distribution of soil hydrological regimes, saturated, near‐saturated, and nonsaturated regimes does not correlate with the hydrological positions. This is due to high spatial and temporal variability in depth to groundwater and soil moisture content across the valley. Precipitation strongly controlled the temporal variability, whereas microscale topography, soil properties, distance from the stream, anthropogenic factors, and land use controlled the spatial variability in the inland valley. TanDEM‐X DEM reasonably mapped the microscale topography and thus soil hydrological regimes relative to the Shuttle Radar Topography Mission DEM. The findings of the study contribute to improved understanding of the distribution of hydrological regimes in an inland valley wetland, which is required for a better agricultural water management planning.  相似文献   

2.
Differences in the impact of irrigation with freshwater versus wastewater on the underlying shallow groundwater quality were investigated in the Coastal Aquifer of Israel. Seven research boreholes were drilled to the top-most 3–5 m of the saturated zone (the water table region-WTR) in the agricultural fields. The unsaturated zone and the WTR below the irrigated fields consist mainly of clayey sands, while the main aquifer comprises mainly of calcareous sandstones and sands. We show that the salinity and composition of the groundwater at the WTR are highly variable over a distance of less than 1 km and are controlled by the irrigating water and the processes in the overlying unsaturated zone. Tritium data in this groundwater (4.6 tritium units (TU)) support that these water are modern recharge. The water at the WTR is more saline and has a different chemical composition relative to the overlying irrigation water. High SAR values (sodium adsorption ratio) in wastewater irrigation lead to absorption of Na+ onto the clay and release of Ca2+ into the recharging water, resulting in low Na/Cl (0.4 compared to 1.2 in the wastewater) and high Ca/Cl ratios. In contrast, in the freshwater-irrigated field the irrigation water pumped from the aquifer (Na/Cl=0.9; SAR=0.6) is modified into Na-rich groundwater (Na/Cl=2.0) due to reverse base-exchange reactions. The high NO3 concentration (>100 mg/l) in the WTR below both fields is derived from the agricultural activities. In the freshwater field, the source of NO3 is fertilizer leachates, whereas in the wastewater field, where less fertilizers are applied, nitrate is probably derived from nitrification of the NH4 in the wastewater. Some of the original inorganic nitrogen in the wastewater is consumed by the agricultural plants, resulting in a lower inorganic-N/Cl ratio in the WTR as compared to that in the wastewater. This study demonstrates the important role of the composition of irrigation water, combined with lithology and land use, in determining the quality of the water that recharge the aquifer below agricultural fields.  相似文献   

3.
Hydraulic properties of deeply weathered basement rocks and variably weathered sedimentary materials were measured by pumping and slug-test methods. Results from over 200 bores in 13 catchments, and eight pumping-test sites across the eastern and central wheatbelt of Western Australia were analysed. Measurements were made in each of the major lithological units, and emphasis placed on a ubiquitous basal saprolite aquifer. Comparisons were made between alternative drilling and analytical procedures to determine the most appropriate methods of investigation.

Aquifers with an average hydraulic conductivity of 0.55 m day−1 occur in variably weathered Cainozoic sediments and poorly weathered saprolite grits (0.57 m day−1). These aquifers are separated by an aquitard (0.065 m day−1) comprising the mottled and pallid zones of the deeply weathered profile. Locally higher values of hydraulic conductivity occur in the saprolite aquifer, although after prolonged periods of pumping the values decrease until they are similar to those obtained from the slug-test methods. Hydraulic conductivities measured in bores drilled with rotary auger rigs were approximately an order of magnitude lower than those measured in the same material with bores drilled by the rotary air-blast method.

Wheatbelt aquifers range from predominantly unconfined (Cainozoic sediments), to confined (saprolite grit aquifer). The poorly weathered saprolite grit aquifer has moderate to high transmissivities (4–50 m2 day−1) and is capable of producing from less than 5 to over 230 kl day−1 of ground water, which is often of a quality suitable for livestock. Yields are influenced by the variability in the permeability of isovolumetrically weathered materials from which the aquifer is derived.

The overlying aquitard has a low transmissivity (< 1 m2 day−1), especially when deeply weathered, indurated and silicified. The transmissivity of the variably weathered sedimentary materials ranges from less than 0.5 m2 day−1 to over 10 m2 day−1, depending on the texture of the materials and their position within the landscape. Higher transmissivity zones may occur as discrete layers of coarser textured materials. The salinity of the saprolite and sedimentary aquifers ranges from less than 2000 mgl−1 to greater than 250000 mgl−1 (total dissolved solids; TDS), depending on position within the landscape. Secondary soil salinization develops when groundwater discharge occurs from either saprolite or sedimentary aquifers.  相似文献   


4.
Soil water matric potentials (Ψm) and the deuterium (δ2H) composition at natural abundance levels of xylem water, soil water, river water and groundwater were used to evaluate whether trees use groundwater during the dry season in the riparian zone of the Daly River (Northern Territory, Australia). Groundwater was a significant source of water for plant transpiration, probably accounting for more than 50% of the water transpired during the dry season. Groundwater use occurred either when trees used water from the capillary fringe or when low Ψm induced by soil water uptake lifted groundwater in the vadose zone. Several water use strategies were inferred within the riparian plant community. Melaleuca argentea W. Fitzg and Barringtonia acutangula (L.) Gaertn. appeared to be obligate phreatophytes as they used groundwater almost exclusively and were associated with riverbanks and lower terraces with shallow (<5 m) water tables. Several species appeared to be facultative phreatophytes (including Cathorium umbellatum (Vahl.) Kosterm. and Acacia auriculiformis A. Cunn. ex Benth.) and tended to rely more heavily on soil water with increased elevation in the riparian zone. The levee-bound Corymbia bella K.D. Hill and L.A.S. Johnson mostly used soil water and is either a facultative phreatophyte or a non-phreatophyte. The temporal variability in groundwater utilisation by the trees is unclear because the study focused on the end of the dry season only. A decline in the regional water table as a result of groundwater pumping may affect the health of riparian zone vegetation in the Daly River because groundwater use is significant during the dry season.  相似文献   

5.
To evaluate the effects of hillslope topography on storm runoff in a weathered granite mountain, discharge rate, soil pore water pressures, and water chemistry were observed on two types of hillslope: a valley‐head (a concave hillslope) and a side slope (a planar hillslope). Hydrological responses on the valley‐head and side slope reflected their respective topographic characteristics and varied with the rainfall magnitude. During small rainfall events (<35 mm), runoff from the side slope occurred rapidly relative to the valley‐head. The valley‐head showed little response in storm runoff. As rainfall amounts increased (35–60 mm), the valley‐head yielded a higher flow relative to the side slope. For large rainfall events (>60 mm), runoff from both hillslopes increased with rainfall, although that from the valley‐head was larger than that from the side slope. The differences in the runoff responses were caused by differences in the roles of lower‐slope soils and the convergence of the hillslope. During small rainfall events, the side slope could store little water; in contrast, all rainwater could be stored in the soils at the valley‐head hollow. As the amount of rainfall increased, the subsurface saturated area of the valley‐head extended from the bottom to the upper portion of the slope, with the contributions of transient groundwater via lateral preferential flowpaths due to the high concentration of subsurface water. Conversely, saturated subsurface flow did not contribute to runoff responses, and the subsurface saturated area at the side slope did not extend to the upper slope for the same storm size. During large rainfall events, expansion of the subsurface saturated area was observed in both hillslopes. Thus, differences in the concentration of subsurface water, reflecting hillslope topography, may create differences in the extension of the subsurface saturated area, as well as variability in runoff responses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Spatial heterogeneity in the subsurface of karst environments is high, as evidenced by the multiphase porosity of carbonate rocks and complex landform features that result in marked variability of hydrological processes in space and time. This includes complex exchange of various flows (e.g., fast conduit flows and slow fracture flows) in different locations. Here, we integrate various “state‐of‐the‐art” methods to understand the structure and function of this poorly constrained critical zone environment. Geophysical, hydrometric, and tracer tools are used to characterize the hydrological functions of the cockpit karst critical zone in the small catchment of Chenqi, Guizhou Province, China. Geophysical surveys, using electrical resistivity tomography (ERT), inferred the spatial heterogeneity of permeability in the epikarst and underlying aquifer. Water tables in depression wells in valley bottom areas, as well as discharge from springs on steeper hillslopes and at the catchment outlet, showed different hydrodynamic responses to storm event rainwater recharge and hillslope flows. Tracer studies using water temperatures and stable water isotopes (δD and δ18O) could be used alongside insights into aquifer permeability from ERT surveys to explain site‐ and depth‐dependent variability in the groundwater response in terms of the degree to which “new” water from storm rainfall recharges and mixes with “old” pre‐event water in karst aquifers. This integrated approach reveals spatial structure in the karst critical zone and provides a conceptual framework of hydrological functions across spatial and temporal scales.  相似文献   

7.
Major fault zones in mountain areas are often associated with cold‐water circulations and hydrothermal pathways. Compared with the massif as a whole, the deep groundwater flows in these high hydraulic‐conductivity zones modify the thermal state of the surrounding rock. This paper examines the thermal effects of groundwater flow in the area around the steeply dipping La Léchère deep fault zone (LFZ, French Alps) and associated shallow decompressed zone. We used a 3D numerical model drawn up from groundwater circulation data to investigate the La Léchère hydrothermal system and the thermal state of the rock in the valley sides. Hydrothermal simulations showed that convective flow into the LFZ cools the valley sides and creates a thermal upwelling under the valley floor. An unsteady thermal regime that continues for about 10,000 years is also needed to obtain the temperatures currently found under the valley floor in the LFZ. Temperature‐depth profiles around the LFZ show disturbances in the thermal gradients in the valley sides and the valley floor. Convective heat transfer into the LFZ and the decompressed zone, and conductive heat transfer in the surrounding rocks produce an unsteady, asymmetric thermal state in the rock on both sides of the LFZ.  相似文献   

8.
The effects of salinity, temperature, and light conditions on the reproduction and development of harpacticoid copepod, Nitocra affinis f. californica under controlled laboratory conditions were determined. Seven different salinity levels (5, 10, 15, 20, 25, 30, 35 ppt), four temperatures (20, 25, 30, 35 °C), three different light intensities (25, 56, 130 μmol m−2 s−1) and photoperiods (24 h:0 h, 1 h:23 h, 12 h:12 h LD cycle) were employed in this study. The highest (p < 0.05) overall reproduction and fastest development time were achieved by copepods reared under 30–35 ppt salinity. The optimum temperature required for the maximum reproduction was 30 °C while under 30 °C and 35 °C the copepod development time was shortest (p < 0.05) compared to other temperature levels. The overall reproduction was highest (p < 0.05) and development rate of N. affinis was shortest (p < 0.05) under lowest light intensity (25 μmol m−2 s−1). Continuous light (24 h:0 h LD) inhibited the egg production while, continuous darkness (1 h:23 h LD) and 12 h:12 h LD significantly favoured the overall reproductive activity of the female. Photoperiods 1 h:23 h and 12 h:12 h LD yielded highest total (p < 0.05) offspring female−1 coupled with highest (p < 0.05) survival percentage. This study illustrated that although N. affinis can tolerate wide range of environmental conditions, prolonged exposure to subnormal environments affect its reproduction and development. This study showed that this species can be mass cultured for commercial purposes and has a potential to be used for toxicity studies due to its high reproductive performance fast development and a wide range of tolerance to environmental conditions.  相似文献   

9.
Quantifying the effects of anthropogenic processes on groundwater in arid regions can be complicated by thick unsaturated zones with long transit times. Human activities can alter water and nutrient fluxes, but their impact on groundwater is not always clear. This study of basins in the Trans‐Pecos region of Texas links anthropogenic land use and vegetation change with alterations to unsaturated zone fluxes and regional increases in basin groundwater NO3? concentrations. Median increases in groundwater NO3? (by 0.7–0.9 mg‐N/l over periods ranging from 10 to 50+ years) occurred despite low precipitation (220–360 mm/year), high potential evapotranspiration (~1570 mm/year), and thick unsaturated zones (10–150+ m). Recent model simulations indicate net infiltration and groundwater recharge can occur beneath Trans‐Pecos basin floors, and may have increased due to irrigation and vegetation change. These processes were investigated further with chemical and isotopic data from groundwater and unsaturated zone cores. Some unsaturated zone solute profiles indicate flushing of natural salt accumulations has occurred. Results are consistent with human‐influenced flushing of naturally accumulated unsaturated zone nitrogen as an important source of NO3? to the groundwater. Regional mass balance calculations indicate the mass of natural unsaturated zone NO3? (122–910 kg‐N/ha) was sufficient to cause the observed groundwater NO3? increases, especially if augmented locally with the addition of fertilizer N. Groundwater NO3? trends can be explained by small volumes of high NO3? modern recharge mixed with larger volumes of older groundwater in wells. This study illustrates the importance of combining long‐term monitoring and targeted process studies to improve understanding of human impacts on recharge and nutrient cycling in arid regions, which are vulnerable to the effects of climate change and increasing human reliance on dryland ecosystems.  相似文献   

10.
The Malloryville Wetland Complex, a small kettle-hole peatland, contains a diversity of peatland types. The wetland has a ‘rich’ side that contains wetland vegetation associated with solute-rich, near-neutral pH (minerotrophic) water, and a ‘poor’ side containing vegetation that grows in solute-poor and acidic (ombrotrophic) water. Vertical head gradients at piezometer clusters located in the rich side clearly show that groundwater is moving upwards towards the land surface, consistent with the vegetation types and surface water quality. In contrast, vertical head gradients also show that groundwater is moving upward in the poor side even though the vegetation and surface water chemistry are not minerotrophic. An incipient raised bog in the center of the poor side is the only site where groundwater moves consistently downward.

A peat core collected at the bog center shows that the bog site was initially covered by minerotrophic vegetation, typically found in groundwater discharge zones, which was later replaced by ombrotrophic bog vegetation. Theoretical computer simulation experiments of the bog hydrogeologic setting through time suggest that the direction of vertical groundwater flow at the bog site permanently changed from up to down when a water table mound developed under a convex-shaped fen peat mound that probably formed because of differential peat accumulation. Ombrotrophic conditions and bog vegetation probably began when the fen water table mound grew sufficiently large enough to divert the upward movement of regional groundwater. The transition from rich to poor environments probably occurred when the wetland water table was substantially below the elevation of the surrounding regional water table.  相似文献   


11.
The profile characteristics and the temporal dynamics of soil moisture variation were studied at 26 locations in Da Nangou catchment (3.5 km2) in the loess area of China. Soil moisture measurements were performed biweekly at five depths in the soil profile (0–5, 10–15, 20–25, 40–45 and 70–75 cm) from May to October 1998 using Delta-T theta probe. Soil moisture profile type and temporal variation type and their relationship to topography and land use were identified by detrended canonical correspondence analysis (DCCA) and correlation analysis. The profile distribution of time-averaged soil moisture content can be classified into three types i.e. decreasing-type, waving-type and increasing-type. The profile features of soil moisture (e.g. profile gradient and profile variability) are influenced by different environmental factors. The profile type of soil moisture is only attributed to land use while profile gradient and profile variability of soil moisture is mainly related to land use and topography (e.g. landform type and slope). The temporal dynamics of layer-averaged soil moisture content is grouped into three types including three-peak type, synchro-four-peak type and lagged-four-peak type. These types are controlled by topography rather than by land use. The temporal dynamic type of soil moisture shows significant correlation with relative elevation, slope, aspect, while temporal variance displays significant relation with slope shape. The mean soil moisture is related to both the profile and dynamics features of soil moisture and is controlled by both land use and topography (e.g. aspect, position, slope and relative elevation). The spatial variability of soil moisture across landscape varies with both soil depths and temporal evolution.  相似文献   

12.
To examine nitrate persistence, detailed geochemical profiling, using core-squeezed water and piezometer samples, was carried out at five sites in southern Ontario where groundwater is moving downward in silt-rich aquitard sediments at rates of 16 to more than 20 cm year−1. Elevated levels of NO3-N (5–50 mg 1−1) that occur in the shallow groundwater as a result of agricultural activity, were found to be consistently attenuated, generally to very low levels (< 0.05 mg 1−1-N), at the ‘redoxcline’, the horizon marking the boundary between the surficial weathered (brown) sediments and the underlying unweathered (grey) sediments. Tritium dating suggests that groundwater at the redoxcline depths (3–5 m) was recharged between 1970 and 1980, thus the N03 depletion appears to result from biodegradation reactions since no major landuse changes have occurred during this period. The close association of the nitrate depletion zones with the redoxcline, where, in particular, sediment sulphur contents increase abruptly, and where also porewater SO42− levels increase, suggests that the dominant attenuation reaction is autotrophic denitrification using reduced sulphur compounds present in the unweathered sediment as the electron donor. Mass balance calculations suggest that the increase in the downward rate of migration of the redoxcline, owing to added sulphur consumption from NO3 contamination, is only about 1 mm year−1 at these sites. Review of the literature indicates that most silt- and clay-rich sediments have S contents in the same range, or higher, than those investigated here, thus, in most cases where aquifers are overlain by several metres or more of unweathered confining sediments, it is likely that a high degree of protection is afforded from surficial NO3 contamination.  相似文献   

13.
The organic carbon cycle of slowly permeable, clayey glacial till deposits in the Western Interior Great Plains, southern Alberta, was investigated by examining the relationship between solid organic matter (SOM) in the till sediments and dissolved organic carbon (DOC) in the till porewaters. Geochemically, the tills can be divided into two distinct zones: an upper oxidized (low SOM) till zone, and a lower unoxidized (high SOM) till zone. Till porewaters in both zones are characterized by high DOC contents. Radiocarbon dating and comparison of SOM and DOC fractions suggest DOC in the deep unoxidized zone originated during deglaciation, and is probably representative of groundwater ages in this till zone. In the oxidized zone, DOC originates from variable mixtures of soluble organic matter emplaced during deglaciation, and Cretaceous age coal fragments in this till zone. SOM in the upper till zone was mainly oxidized to CO2 gas during lowered water table conditions of the Altithermal climatic period. The subsurface production of fossil CO2 gas has serious implications for using the conventional dissolved inorganic carbon (DIC) 14C groundwater dating method in these clayey till porewaters.  相似文献   

14.
Zheng TL  Su JQ  Maskaoui K  Yu ZM  Hu Z  Xu JS  Hong HS 《Marine pollution bulletin》2005,51(8-12):1018-1025
The effect of S10, a strain of marine bacteria isolated from sediment in the Western Xiamen Sea, on the growth and paralytic shellfish poison (PSP) production in the alga Alexandrium tamarense (A. tamarense) was studied under controlled experimental conditions. The results of these experiments have shown that the growth of A. tamarense is obviously inhibited by S10 at high concentrations, however no evident effect on its growth was observed at low concentrations. Its PSP production was also inhibited by S10 at different concentrations, especially at low concentrations. The toxicity of this strain of A. tamarense is about (0.95–12.14) × 10−6 MU/cell, a peak toxicity value of 12.14 × 10−6 MU/cell appeared on the 14th day, after which levels decreased gradually. The alga grew well in conditions of pH 6–8 and salinities of 20–34‰. The toxicity of the alga varied markedly at different pH and salinity levels. Toxicity decreased as pH increased, while it increased with salinity and reached a peak value at a salinity of 30‰, after which it declined gradually. S10 at a concentration of 1.02 × 109 cells/ml inhibited growth and the PSP production of A. tamarense at different pH and salinity levels. S10 had the strongest inhibitory function on the growth of A. tamarense under conditions of pH 7 and a salinity of 34‰. The best inhibitory effect on PSP production by A. tamarense was at pH 7, this inhibitory effect on PSP production did not relate to salinity. Interactions between marine bacteria and A. tamarense were also investigated using the flow cytometer technique (FCM) as well as direct microscope counting. S10 was identified as being a member of the genus Bacillus, the difference in 16S rDNA between S10 and Bacillus halmapalus was only 2%. The mechanism involved in the inhibition of growth and PSP production of A. tamarense by this strain of marine bacteria, and the prospect of using it and other marine bacteria in the bio-control of red-tides was discussed.  相似文献   

15.
Philippe Vidon 《水文研究》2012,26(21):3207-3215
Determining how riparian zone hydrological conditions may change in response to precipitation in various geomorphic settings is critical to determine the occurrence of hot moments of biogeochemical transformations for phosphorus, nitrogen, sulfate, mercury and greenhouse gases in these systems. The author investigate water table response to precipitation at a high temporal resolution (15 min) in a riparian zone located in a deeply incised glacial till valley (20 m) with approximately 2 m of alluvium over a confining layer, in Indiana, USA. During storms, larger water table fluctuations (approximately 100 cm) occurred near the stream than near the toe slope (10–25 cm). A quick rise in water table near the stream occurred for all storms, with partial flow reversals occurring for three of seven storms. The quick rise of the water table near the stream was associated with a decrease in hillslope water contributions to the stream during storms and the development of a water table down valley gradient for most storms. Water table fluctuations, groundwater flow velocities and electrical conductivity data indicated that riparian zone water table response to precipitation was primarily regulated by pressure wave processes. Regardless of the storm, high water tables persisted for at least 2 days after the cessation of precipitation. Although this suggests that high‐resolution precipitation data may be useful to quantify hot moments of biogeochemical transformation associated with high water tables in riparian zones, precipitation data alone are not sufficient to correctly estimate the magnitude of riparian water table level changes during storms. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The characteristics of the groundwater cycle were researched using stable isotope technology in western Sri Lanka where climatic conditions change greatly within a relatively short distance. The effects of local climate, surface water and topography on the groundwater cycle in the study area with similar geological conditions were investigated. Sri Lanka can be divided spatially into a dry zone, an intermediate zone and a wet zone, and also temporally into the rainy season and the dry season. The zonal characteristics of the groundwater cycle were also elucidated using stable isotopic technology. As an input δ diagram of precipitation in the study area, there are obvious seasonal changes in the isotopic composition and a magnitude effect, both in the wet zone and dry zone. In the wet zone, the slope of the regression line between δ D and δ 18O and deuterium excess is close to 8 and 10, respectively. However, in the dry zone, the slope of the regression line between δ D and δ 18O and deuterium excess is much less than 8 and 10, respectively. In the wet zone, there is an obvious seasonal change in the isotopic composition of groundwater. The groundwater was recharged by precipitation during the whole year. The isotopically lighter groundwater was found at the valley bottom in the rainy season there. Under the very heavy precipitation conditions, the slope of the regression line between δ D and δ 18O and deuterium excess for groundwater was close to 8 and 10, respectively. In other cases, the slopes of the regression lines are less than 8. In the dry zone, the groundwater was recharged by precipitation only in the rainy season. The isotopically lighter groundwater was found on the ridge of the valley in the rainy season. The slope of the regression line between δ D and δ 18O and deuterium excess for groundwater was much less than 8 and 10, respectively. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Hydrogen and oxygen isotopes of water are common environmental tracers used to investigate hydrological processes, such as evaporation, vegetation water use, surface water–groundwater interaction, and groundwater recharge. The water isotope signature in surface water and groundwater evolves from the initial rain signature. In mountain terrain, rain water stable isotope composition spatially varies due to complex orographic precipitation processes. Many studies have examined the isotope–elevation relationships, while few have quantitatively investigate the terrain aspect and slope effect on rain isotope distribution. In this paper, we examine the orographic effects more completely, including elevation, terrain slope and aspect, on stable isotope distribution in the Mount Lofty Ranges (MLR) of South Australia, using a multivariate regression model. The regression of precipitation isotope composition suggests that orographic effects are the dominant controls on isotope spatial variability. About 75% of spatial variability in δ18O and deuterium excess is represented by the regression using solely orography-related variables (elevation, terrain aspect and slope), with about 25% of δ18O spatial variability attributed to the terrain aspect and slope effect. The lapse rate is about −0.25‰ for every 100 m at both windward and leeward slopes. However, at the same elevation, δ18O at the leeward slope (eastern MLR) is 0.5‰ larger than that at the windward slope. The difference can be explained by different mechanisms – continuous rain-out processes on the windward side and sub-cloud evaporation on the leeward side. Both δ18O and deuterium excess maps (1 km resolution) are constructed based on the regression results for the MLR. Both maps are consistent with groundwater of local precipitation origin, and useful to examine groundwater recharge.  相似文献   

18.
Harutaka  Sakai  Minoru  Sawada  Yutaka  Takigami  Yuji  Orihashi  Tohru  Danhara  Hideki  Iwano  Yoshihiro  Kuwahara  Qi  Dong  Huawei  Cai  Jianguo  Li 《Island Arc》2005,14(4):297-310
Abstract   Newly discovered peloidal limestone from the summit of Mount Qomolangma (Mount Everest) contains skeletal fragments of trilobites, ostracods and crinoids. They are small pebble-sized debris interbedded in micritic bedded limestone of the Qomolangma Formation, and are interpreted to have been derived from a bank margin and redeposited in peri-platform environments. An exposure of the Qomolangma detachment at the base of the first step (8520 m), on the northern slope of Mount Qomolangma was also found. Non-metamorphosed, strongly fractured Ordovician limestone is separated from underlying metamorphosed Yellow Band by a sharp fault with a breccia zone. The 40Ar–39Ar ages of muscovite from the Yellow Band show two-phase metamorphic events of approximately 33.3 and 24.5 Ma. The older age represents the peak of a Barrovian-type Eo-Himalayan metamorphic event and the younger age records a decompressional high-temperature Neo-Himalayan metamorphic event. A muscovite whole-rock 87Rb–86Sr isochron of the Yellow Band yielded 40.06 ± 0.81 Ma, which suggests a Pre-Himalayan metamorphism, probably caused by tectonic stacking of the Tibetan Tethys sediments in the leading margin of the Indian subcontinent. Zircon and apatite grains, separated from the Yellow Band, gave pooled fission-track ages of 14.4 ± 0.9 and 14.4 ± 1.4 Ma, respectively. These new chronologic data indicate rapid cooling of the hanging wall of the Qomolangma detachment from approximately 350°C to 130°C during a short period (15.5–14.4 Ma).  相似文献   

19.
ABSTRACT

Floodplains are composed of complex depositional patterns of ancient and recent stream sediments, and research is needed to address the manner in which coarse floodplain materials affect stream–groundwater exchange patterns. Efforts to understand the heterogeneity of aquifers have utilized numerous techniques typically focused on point-scale measurements; however, in highly heterogeneous settings, the ability to model heterogeneity is dependent on the data density and spatial distribution. The objective of this research was to investigate the correlation between broad-scale methodologies for detecting heterogeneity and the observed spatial variability in stream/groundwater interactions of gravel-dominated alluvial floodplains. More specifically, this study examined the correlation between electrical resistivity (ER) and alluvial groundwater patterns during a flood event at a site on Barren Fork Creek, in the Ozark ecoregion of Oklahoma, USA, where chert gravels were common both as streambed and as floodplain material. Water table elevations from groundwater monitoring wells for a flood event on 1–5 May 2009 were compared to ER maps at various elevations. Areas with high ER matched areas with lower water table slope at the same elevation. This research demonstrated that ER approaches were capable of indicating heterogeneity in surface water–groundwater interactions, and that these heterogeneities were present even in an aquifer matrix characterized as highly conductive. Portions of gravel-dominated floodplain vadose zones characterized by high hydraulic conductivity features can result in heterogeneous flow patterns when the vadose zone of alluvial floodplains activates during storm events.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR X. Chen  相似文献   

20.
The hydrogeochemistry of shallow groundwater has been characterized in the Allt a'Mharcaidh catchment in the Scottish Cairngorms in order to: (i) assess the spatial and temporal variation in groundwater chemistry; (ii) identify the hydrogeochemical processes regulating its evolution; and (iii) examine the influence of groundwater on the quality and quantity of stream flow. Shallow groundwater in superficial drift deposits is circumneutral (pH∽7·1) and base cation concentrations are enriched compared with precipitation and drainage water from overlying podzolic soils. Modelling with NETPATH suggests that the dominant geochemical processes that account for this are the dissolution of plagioclase, K-feldspar and biotite. Groundwater emerging as springs from weathered granite underlying high altitude (>900 m) alpine soils shows similar characteristics, though weathering rates are lower, probably as a result of reduced residence times and lower temperatures. Chemical hydrograph separation techniques using acid neutralizing capacity (ANC) and Si as tracers show that groundwater is the dominant source of baseflow in the catchment and also buffers the chemistry of stream water at high flows: groundwater may account for as much as 50–60% of annual runoff in the catchment. Climate and land use in the Cairngorms are vulnerable to future changes, which may have major implications for hydrogeological processes in the area. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号