首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Habitable zones about main sequence stars   总被引:1,自引:0,他引:1  
Michael H. Hart 《Icarus》1979,37(1):351-357
Calculations show that a main sequence star which is less massive than the Sun has a continuously habitable zone about it which is not only closer in than the corresponding zone about the Sun, but is also relatively narrower. Let L(t) represent the luminosity after t billion years of a main sequence star of mass M, and let rinner and router represent the boundaries of the continuously habitable zone about such a star—that is, the zone in which an Earthlike planet will undergo neither a runaway greenhouse effect in the early stages of its history nor runaway glaciation after it develops an oxidizing atmosphere. Then our computer results indicate that routerrinner is roughly proportional to [L(3.5)L(1.0)]12. This ratio is smaller for stars less massive than the Sun (because they evolve more slowly), and the width of the continuously habitable zone about a main sequence star is therefore a strong function of the initial stellar mass. Our calculations show that rinner = router for M~0.83M? (i.e., K1 stars), and it therefore appears that there is no continuously habitable zone about most K stars, nor any about M stars.  相似文献   

2.
Habitable zones around main sequence stars   总被引:1,自引:0,他引:1  
Kasting JF  Whitmire DP  Reynolds RT 《Icarus》1993,101(1):108-128
A one-dimensional climate model is used to estimate the width of the habitable zone (HZ) around our Sun and around other main sequence stars. Our basic premise is that we are dealing with Earth-like planets with CO2/H2O/N2 atmospheres and that habitability requires the presence of liquid water on the planet's surface. The inner edge of the HZ is determined in our model by loss of water via photolysis and hydrogen escape. The outer edge of the HZ is determined by the formation of CO2 clouds, which cool a planet's surface by increasing its albedo and by lowering the convective lapse rate. Conservative estimates for these distances in our own Solar System are 0.95 and 1.37 AU, respectively; the actual width of the present HZ could be much greater. Between these two limits, climate stability is ensured by a feedback mechanism in which atmospheric CO2 concentrations vary inversely with planetary surface temperature. The width of the HZ is slightly greater for planets that are larger than Earth and for planets which have higher N2 partial pressures. The HZ evolves outward in time because the Sun increases in luminosity as it ages. A conservative estimate for the width of the 4.6-Gyr continuously habitable zone (CHZ) is 0.95 to 1.15 AU. Stars later than F0 have main sequence lifetimes exceeding 2 Gyr and, so, are also potential candidates for harboring habitable planets. The HZ around an F star is larger and occurs farther out than for our Sun; the HZ around K and M stars is smaller and occurs farther in. Nevertheless, the widths of all of these HZs are approximately the same if distance is expressed on a logarithmic scale. A log distance scale is probably the appropriate scale for this problem because the planets in our own Solar System are spaced logarithmically and because the distance at which another star would be expected to form planets should be related to the star's mass. The width of the CHZ around other stars depends on the time that a planet is required to remain habitable and on whether a planet that is initially frozen can be thawed by modest increases in stellar luminosity. For a specified period of habitability, CHZs around K and M stars are wider (in log distance) than for our Sun because these stars evolve more slowly. Planets orbiting late K stars and M stars may not be habitable, however, b ecause they can become trapped in synchronous rotation as a consequence of tidal damping. F stars have narrower (log distance) CHZ's than our Sun because they evolve more rapidly. Our results suggest that mid-to-early K stars should be considered along with G stars as optimal candidates in the search for extraterrestrial life.  相似文献   

3.
4.
5.
In regions of very high dark matter density such as the Galactic Centre, the capture and annihilation of WIMP dark matter by stars has the potential to significantly alter their evolution. We describe the dark stellar evolution code D ark S tars , and present a series of detailed grids of WIMP-influenced stellar models for main-sequence stars. We describe the changes in stellar structure and main-sequence evolution which occur as a function of the rate of energy injection by WIMPs, for masses of  0.3–2.0 M  and metallicities   Z = 0.0003–0.02  . We show what rates of energy injection can be obtained using realistic orbital parameters for stars at the Galactic Centre, including detailed consideration of the velocity and density profiles of dark matter. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits. If there is a spike of dark matter induced by the supermassive black hole at the Galactic Centre, single solar mass stars following orbits with periods as long as 50 yr and eccentricities as low as 0.9 could be significantly affected. Binary systems with similar periods about the Galactic Centre could be affected on even less eccentric orbits. The most striking observational effect of this scenario would be the existence of a binary consisting of a low-mass protostar and a higher mass evolved star. The observation of low-mass stars and/or binaries on such orbits would either provide a detection of WIMP dark matter, or place stringent limits on the combination of the WIMP mass, spin-dependent nuclear-scattering cross-section, halo density and velocity distribution near the Galactic Centre. In some cases, the derived limits on the WIMP mass and spin-dependent nuclear-scattering cross-section would be of comparable sensitivity to current direct-detection experiments.  相似文献   

6.
Generalized and interconsistent approximation formulas are derived to describe the relationship between the hydrogen-burning time and the zero-age stellar mass for the mass and elemental composition ranges characteristic of stars that have been formed during the lifetime of the universe. The maximum masses of population I stars are estimated based on the known statistical relationships among stellar characteristics that agree with observational data.  相似文献   

7.
Spectroscopic observations of the Be stars Eri, Oph, 66 Oph, and Ori for the period 1982–1988 are reported. The NRP hypothesis was verified on the ground of rapid line profile variability, radial velocities, and equivalent widths. The star Eri is pulsating in bothl=2 andl=8 with period 0 . d 7. Pulsation in modesl=2 andl=4 are observed in Hei profiles of Oph for May 1982. For radial velocities has been obtained a period 0 . d 913. The H and H lines of 66 Oph for April–August 1983 are in emission state with two clearly expressed components with intensity variations. All the parameters measured have the same period of variation — 0 . d 025. For Ori variations in line profiles for component Ab have been observed and a period of 0 . d 463 found for the radial velocities.  相似文献   

8.
We present new measurements of the distribution of energy in the continuum for eight Be stars in the optical region (3200-7600 Å). The effective temperatures of these stars have been estimated from their observed fluxes. It is found that, in general, pole-on stars show near-infrared excess emission. It is interesting to note that the Balmer jumps for stars having an infrared excess are systematically smaller than for those lacking the infrared excess.Variability of ultraviolet and infrared excess emissions in these stars has been discussed. The stars 59 Cyg, 66 Cyg, 28 CMa, and 27 CMa show large variations in their continuum at ultraviolet (UV) and infrared (IR) regions.  相似文献   

9.
We present 50 and 100µm photometry and size information for several main sequence stars surrounded by dust shells. The observations from NASA's Kuiper Airborne Observatory include the Vega-like stars, Beta Pic, Fomalhaut, as well as four stars suggested by Walker and Wolstencroft to belong possibly to the same class. The results of our observations are best interpreted as upper limits to the far-infrared sizes of the dust clouds around all of the stars except Fomalhaut and Beta Pic. We have also fit simple, optically thin models to the Beta Pic data to explore the range of shell parameters consistent with our limits and with previous observations.  相似文献   

10.
The parameters of solar motion and velocity ellipsoid are derived from radial velocities of spectroscopically well defined samples of the main sequence and of the giants type III stars. A short discussion of the statistical method applied is given. The results found indicate that the parameters of the velocity ellipsoid chosen arbitrarily for a group of stars does not always represent correctly the sample observed.  相似文献   

11.
Limb-darkening tables for blanketed model atmospheres fitted to main sequence stars in the F0-K0 spectral range are presented. The tables cover the wavelength range 3646-24000.  相似文献   

12.
13.
The tetrad field equations of general relativity discussed in previous articles are applied to Robertson-Walker cosmological models. A generalized Friedmann equation is derived and some of its consequences are discussed.  相似文献   

14.
Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients(ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to≈10-2M⊙yr-1for solar type stars, and up toion≈1 M-⊙yr1for very massive stars. We speculate that magnetic fields amplified in such extreme condits might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.  相似文献   

15.
We study the relation between the magnitude of the Balmer discontinuity and the effective temperature of main sequence stars. We show that the observed Balmer discontinuities exhibit a systematic divergence from the theoretical discontinuities obtained using the Kurucz models. We discuss the possible reasons for this discrepancy.Translated fromAstrofizika, Vol. 38, No. 3, 1995.  相似文献   

16.
We present the review of our previous studies related to observational evidence of the fossil field hypothesis of formation and evolution of magnetic and non-magnetic chemically peculiar stars. Analysis of the observed data shows that these stars acquire their main properties in the process of gravitational collapse. In the non-stationary Hayashi phase, a magnetic field becomes weakened and its configuration complicated, but the fossil field global orientation remains. After a non-stationary phase, relaxation of young star’s tangled field takes place and by the time of joining ZAMS (Zero Age Main Sequence) it is generally restored to a dipole structure. Stability of dipole structures allows them to remain unchanged up to the end of their life on the Main Sequence which is 109 years at most.  相似文献   

17.
The spectrophotometric observations of four Be stars and one normal B-type star are reported. The continuum energy distribution data of these stars are presented in the wavelength range of 3200–8000 Å. The observations are compared with synthetic models to estimate effective temperature and to examine the behaviour of the circumstellar envelope of Be stars on their continuum energy distributions. The excess emission from the envelope affects the continua of the Be stars HR 1786 and HR 1910 strongly in the near-ultraviolet and near-infrared regions.  相似文献   

18.
The knowledge of mass loss rates due to thermal winds in cool dwarfs is of crucial importance for modeling the evolution of physical parameters of main sequence single and binary stars. Very few, sometimes contradictory, measurements of such mass loss rates exist up to now. We present a new, independent method of measuring an amount of mass lost by a star during its past life. It is based on the comparison of the present mass distribution of solar type stars in an open cluster with the calculated distribution under an assumption that stars with masses lower than Mlim have lost an amount of mass equal to ΔM. The actual value of ΔM or its upper limit is found from the best fit. Analysis of four clusters: Pleiades, NGC 6996, Hyades and Praesepe gave upper limits for ΔM in three of them and the inconclusive result for Pleiades. The most restrictive limit was obtained for Praesepe indicating that the average mass loss rate of cool dwarfs in this cluster was lower than 6 × 10–11 M/yr. With more accurate mass determinations of the solar type members of selected open clusters, including those of spectral type K, the method will provide more stringent limits for mass loss of cool dwarfs. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
20.
Near-ultraviolet spectra, obtained with the ESRO TD-1A/S59 experiment, of the four Mn stars β Tau, γ Crv, α And, and μ Lep and six normal stars are compared. The normal stars show good agreement with synthetic spectra. The Mn stars have spectra which become hotter at shorter wavelengths. They also show strong Mnii lines and weak Mgii lines. A time-variation for Tiii λ 2828 was noted in γ Crv and α And.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号