首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lake Balkhash,Kazakhstan   总被引:2,自引:0,他引:2  
Lake Balkhash is a large (18,000 km3), closed, and slightly saline lake in the south-west of Kazakhstan. It is divided into two basins, a south-western and an eastern basin. These have somewhat different limnological conditions, but the most obvious one is that the south-western basin has a salinity of <2 g L−1 whereas the salinity of the eastern basin is ∼4 g L−1. Numerous fish and invertebrate introductions, many successful, have been made. In 1969, a dam impounding the Kapchagay reservoir was constructed on the River Ili, the major river flowing into the lake. The impoundment of water in this reservoir caused a fall of some 1.5 m in the water-level of the lake. This fall, together with other events on the catchment, caused considerable damage to reedswamps in the lake, to the fishery and to conservation values. A number of suggestions has been made on how to prevent further damage. Some, particularly those involving a moratorium on further filling of Kapchagay reservoir and irrigation, have been implemented, at least in part. This has caused some remission in environmental damage and provides for cautious optimism with regard to the lake’s future. Even so, the environmental status of the lake remains vulnerable and many dangers persist.  相似文献   

2.
伊犁河三角洲景观结构的影响机制研究   总被引:1,自引:0,他引:1  
在遥感和水文数据的支持下,根据伊犁河三角洲作为典型的中亚干旱区内陆河流域尾闾区域特点,确定了伊犁河三角洲的景观分类系统。通过采用景观结构梯度分析法、景观干扰度指数和景观Kappa指数等方法,系统地分析了近32 a(1975-2007)伊犁河三角洲景观结构的时空演变特征,并对景观结构的影响机制做了充分地探讨。结果表明:(1)沿着一定的地形梯度和水文梯度,伊犁河三角洲流域景观表现出特殊的纵向结构、横向结构的梯度特征和景观内部特征,与地表水直接关联的景观类型表现尤为明显,如湖泊、沼泽、漫滩。(2)在人为活动和自然环境的双重影响下,近32 a伊犁河三角洲景观结构的空间变化具有一定的周期性和不稳定性,主要体现为景观类型面积和空间位置的变化,其中以湿地景观类型的变化最为显著。(3)生态干扰对景观结构的影响因景观类型的不同存在显著的差异性和时空变异性,以湖泊和沼泽受干扰作用最为明显。高、中、低三种干扰强度区域的空间分布及面积变化同样具有一定的周期性和不稳定性。(4)水利工程建设和自然环境是影响伊犁河三角洲景观结构的主要驱动力。水利工程对伊犁河的拦蓄引起景观结构变化的作用最为深远,它通过改变三角洲上游的水文情势直接影响整个区域的景观结构。而自然环境因素中的地形和水文条件主要影响湿地景观类型的时空分布,气候因子则直接影响河川径流量。  相似文献   

3.
A combination of water and sediment chemistry was used to investigate carbonate production and preservation in Lake Pumayum Co (altitude 5,030 m a.s.l.), south Tibet, China. We compared the chemical composition of lake water in various parts of the lake with that of input rivers and found that the loss of Ca2+ results from calcite sedimentation induced by evaporation and biogenic precipitation. This is supported by evaporation data from the catchment and δ18O measurements on water. Results suggest that CaCO3 is the predominant carbonate in this lake. There is a positive correlation in the sediments among concentrations of total inorganic carbon (TIC), Ca, total organic carbon (TOC), and total nitrogen, confirming that most carbonates in sediment are endogenic. The Jiaqu River is the largest inflow to Lake Pumayum Co and has a strong influence on both lake water chemistry and sediment composition. The river and lake bathymetry influence carbonate sedimentation by affecting water flow velocity and growing conditions for macrophytes. Different carbon contents and relationships between TIC and TOC in the two long cores from different depths in the lake reveal that hypolimnetic conditions also influence carbonate precipitation and preservation.  相似文献   

4.
The chemistry of major cations (Mg2+, Ca2+, Na+, and K+) and anions (HCO3 , SO4 2−, and Cl) in the water of Lake Pumayum Co and its inflow river was studied, revealing the obvious ionic difference among various inflow rivers and the lake. The chemical type of the lake water was Mg2+-Ca2+-HCO3 -SO4 2+, but the major ions of the main inflow rivers were Ca2+-Mg2+-HCO3 . In the lake inlet of Jiaqu River, the main inflow river, there was significant variance of water chemistry within the depth less than 2 m. However, it was almost homogeneous at other area of the lake. Therefore, with the evidence of distribution of water chemistry and oxygen isotope of lake water, a conclusion can be outlined that Jiaqu River had a distinct effect on the hydrochemistry of the water on the submerged delta, whereas this is not the case for other rivers. The Gibbs plot revealed that the dominant mechanism responsible for controlling chemical compositions of the lake water was rocks weathering in the drainage area. Ion ratios and ternary plots further explored the main processes controlling the water chemistry of the catchment, i.e., carbonate weathering, pyrite weathering, and silicate weathering. The different hydrochemistry characteristics between river water and lake water may result from the CaCO3 precipitation. The findings will benefit the explanation of the environmental significance of carbonate in paleolimnological studies in the lake.  相似文献   

5.
The Aral Sea, Lake Balkhash, and Lake Kamyslybas are closed lakes in Central Asia. They range from oligosaline to metasaline. The salinity of the Aral Sea has increased by more than 30 g L−1 since widespread irrigation began in its catchment area. Few studies of the phytoplankton have been conducted on these lakes since extensive irrigation started. The investigation reported here compares the flora of phytoplankton in these saline lakes. In the Small Aral Sea, phytoplankton density gradually decreased with increasing electrical conductivity (EC) (∼ salinity), but there was no such relation in Lake Balkhash and Lake Kamyslybas. In the Aral Sea, Dinophyceae and Bacillariophyceae were frequently observed in most areas of high EC value, and Cyanophyceae were most conspicuous in the area of medium and lower EC values. In Lake Balkhash, Cyanophyceae were most conspicuous, but Chlorophyceae were also noticeable. Most Cyanophyceae in Aral Sea formed filaments with heterocysts. The distinct characteristic of the phytoplankton of the Lake Balkhash was that all dominant species form colonies covered with a gelatinous film. Siliceousplankton diversity gradually decreased with increasing EC values in the Aral Sea and Lake Balkhash.  相似文献   

6.
白杨河-艾里克湖水现状分析   总被引:3,自引:0,他引:3  
根据白杨河、艾里克湖的地表水以及周围地下水的电导率的监测资料,结合不同时期地下水位、土壤水分的变化特点,阐述了地下水埋深和水质的时空分布规律,以及对植被分布的影响.分析结果表明:地下水埋深从白杨河河道至湖岸表现为龙口地带最深、中游河段最浅、入湖口和湖岸居中;土壤水分是湖岸区最高,其次是入湖口,河段中部最低;地表水和地下水电导率的变化均是龙口最低,其次是河段中部,入湖口和湖边最高;在湖区内从湖边到湖心水的电导率依次减小,冰的电导率最低.环湖岸地带,由湖及远地下水位埋深逐渐增加、电导率依次增加、土壤水分依次减少,与其相对应的植被类型依次为芦苇、柽柳苗、柽柳林、盐穗木.同时,研究结果表明艾里克湖将会出现水质盐化趋势,而增加入湖河水水量、疏通排盐通道,促进湖水循环活化是缓解湖水咸化的主要措施.  相似文献   

7.
西藏山南地区沉错湖泊与径流水化学特征及主控因素初探   总被引:1,自引:1,他引:0  
选取枪勇冰川径流-卡鲁雄曲(河)-沉错(湖)为研究区域,开展高原湖泊及其补给河流与冰川径流的水化学特征研究,并探讨影响主离子组成的主控因素。结果表明:夏季湖水主要离子呈均匀混合状态,pH值、电导率、TDS及优势阴阳离子在整个湖泊空间上变化不显著;总体上,从上游冰川融水径流、河水至下游湖泊,离子浓度呈现上升趋势;融水径流及河水的水化学类型主要受岩石风化作用控制,表现为SO42--Ca2+-Mg2+类型;沉错湖水的水化学类型主要受蒸发结晶作用控制,表现为SO42--Na+-Ca2+类型,在蒸发作用下Ca2+逐渐沉淀析出,Na+浓度不断升高而成为绝对优势阳离子。  相似文献   

8.
薛春汀  周良勇 《地理研究》2010,29(11):1961-1970
现在的洪泽湖和淮河中游河道不断淤高,致使淮河中游洪涝不断。入洪泽湖后淮河水主要流入长江。而苏北北部地区需要水,因入海泥沙数量太少而致海岸侵蚀问题不能根本解决,那里需要淮河的泥沙。为改变这种不合理的格局。在洪泽湖北岸和浅水区开挖与洪泽湖分离的河道,连接完成远期工程的淮河入海水道和拓宽、挖深的淮沭河—北六塘河—新沂河水道,使淮河水沙只经过这两条水道到达黄海,改变淮河水沙不合理的资源分配。新水道路程短,比降大,使洪泽湖和淮河中游河道不再淤高,并将进一步使淮河中游水道刷深,减轻淮河中游洪涝灾害,并为洪泽湖湖底高程降低创造条件。通过分析现在淮河的输沙量、输沙模数,与历史时期和其他流域对比,认为连云港至射阳河口这段海岸将改变为北部稳定,南部缓慢进积,形成新的淮河三角洲,彻底解决苏北海岸侵蚀问题。  相似文献   

9.
伊犁河中下游近40年土地利用与覆被变化   总被引:3,自引:0,他引:3  
针对跨界流域土地利用/覆被变化(LUCC)信息十分有限,无法满足对环境变化评估需要的现状,本文以跨界流域——哈萨克斯坦境内伊犁河中下游为研究区,利用20世纪70年代的MSS、90年代的TM、2000年和2007年的ETM卫星遥感影像,采用目视解译与决策树相结合的分类方法,可较高精度提取研究区LUCC的时空信息,通过一套数理统计模型,定量分析了区域LUCC的过程和趋势。近40年来,高覆盖度林草地、中覆盖度林草地和耕地始终是伊犁河中下游地区所占比例最大的3种土地利用/覆被类型。整个研究时段内,耕地、水库坑塘和未利用地先增加后减少,其中耕地总体呈现减少的趋势,但减少幅度逐渐减小,水库坑塘和未利用地面积总体趋于增加。高覆盖度林草地和河流呈现出持续减少的态势,而建设用地面积持续增加。中覆盖度林草地、湖泊和沼泽先增加后减少,总体呈现增加趋势。低覆盖度林草地经历了减少—增加—减少的变化过程,总体呈现减少趋势。耕地和林草地相互转换频繁,其中耕地与高覆盖度林草地之间的转换和高、中覆盖度林草地之间的转换为区域内最主要的四种变化类型。1970-2007年间,伊犁河中下游地区土地利用始终处于准平衡状态,但有向不平衡状态发展的趋势。20世纪70年代卡普恰盖水库的建立和90年代初期的政策变化改变了原有变化的随机性和平稳性,使区域内相关土地利用/覆被发生显著变化。  相似文献   

10.
Hydrochemical regime and its mechanism in Yamzhog Yumco Basin,South Tibet   总被引:1,自引:1,他引:0  
The hydrochemistry of alpine lakes reflects water characteristic and its response to climatic change. Over 300 water samples had been collected from 52 sites of 5 lakes and 7 inflowing rivers in the Yamzhog Yumco Basin, South Tibet, during 2009–2014, basing which the hydrochemical regime and its mechanism were analyzed along with the adoption of hydrological investigations in 1979 and 1984 as well. Results revealed that the waters were hard with weak alkalinity for the Yamzhog Yumco Basin. Most of them were fresh, and the rest were slightly saline. The hydrochemical types of 5 lakes (i.e., Lake Yamzhog Yum Co, Puma Yum Co, Bajiu Co, Kongmu Co, and Chen Co) were SO4 2––HCO3 –Mg2+–Na+, HCO3 –SO4 2––Mg2+–Ca2+, SO4 2––Mg2+–Na+, SO4 2––HCO3 –Ca2+, and SO4 2––Na+–Mg2+–Ca2+, respectively. As for rivers, HCO3 and SO4 2– were the major anions, and Ca2+ was the dominant cation. Lake Yamzhog Yum Co, the largest lake in the basin, exhibited remarkable spatial variations in hydrochemistry at its surface but irregular changes with depth. The weathering of evaporates and carbonates, together with evaporation and crystallization, were the major mechanisms controlling the hydrochemistry of waters in the Yamzhog Yumco Basin. Global warming also had significant impacts on hydrochemical variations.  相似文献   

11.
Late Quaternary Palaeoenvironment of Spring Lake,Alberta, Canada   总被引:1,自引:0,他引:1  
Palaeoenvironmental investigations based upon sediment cores taken from Spring Lake in the Peace River District of Alberta, Canada (latitude 55° 31 N; longitude 119° 35 W) show that the sedimentary record spans the Holocene period. Chemical and diatom changes coincide with regional climatic change since deglaciation (about 11 000 yr. B.P.). Calcite laminations in the basal 3 metres of the cores are evident, and were probably formed through elevated water temperature although photosynthetic removal of CO2 undoubtedly contributed. The disappearance of the laminations, and concurrent decrease in calcite X-ray diffraction peaks ca. 5000 yr. B.P. may have been caused by a change from a partially meromictic to a dimictic lake as the climate changed. Benthic and alkaline diatoms dominate before 5000 yr. B.P., while the planktonic Stephanodiscus hantzschii dominated between 5100 and 4200 yr. B.P. probably owing to increased nutrient levels. From ca. 4200 yr. B.P. until the present, benthic Fragilaria spp. and more circumneutral diatoms were dominant. Palaeoproduction, as measured by chlorophyll derivates, was highest in the early developmental stages of the lake, decreased coinciding with a major disturbance of the sediments and lowered water levels, and then gradually increased again until present. Only during the earlier period of peak production does biogenic calcite formation appear more important than calcite deposition caused by high water temperatures.  相似文献   

12.
基于氢氧同位素与水化学的潮白河流域地下水水循环特征   总被引:24,自引:1,他引:23  
为了研究变化环境下潮白河流域地下水水循环规律,通过现场调查,结合环境同位素及水化学应用,对潮白河流域浅层和深层地下水采样,测定其氢、氧环境同位素及水化学成分,通过分析其变化特征判明地下水的补给来源以及各含水层的相互联系。降水和地下水中的环境同位素δD和δ18O组成分析表明,降水是山前地下水的主要补给源,山区浅层地下水受蒸发影响非常强烈。水化学研究结果表明,山区地下水水质以 Ca2+和 HCO-3为主,属Ca2+-Mg2+-HCO-3型地下水。山前地下水类型为Ca2+-Mg2+-HCO-3、 Na+-K+-HCO-3、Mg2+-Ca2+-HCO-3和 Ca2+-Mg2+-Cl--SO2-4。平原区地下水为Mg2+, Na+和HCO-3。滨海冲积海积平原为Ca2+-Mg2+-HCO-3型和Ca2+-Mg2+-Cl--SO2-4型地下水。水化学分析证实了越流补给的存在。Ca2+ 和 HCO-3离子均呈山区高、山前和平原低、而滨海增高的趋势。沿潮白河流向地下水类型变化为:Ca2+-Mg2+-HCO-3 Na+=K+-HCO-3 Ca2+-Mg2+-HCO-3。  相似文献   

13.
Tonle Sap Lake, Cambodia, possesses one of the most productive inland fisheries in the world and is a vital natural resource for the country. The lake is connected to the Mekong River via the Tonle Sap River. Flow in the Tonle Sap River reverses seasonally, with water exiting the lake in the dry season and entering the lake during the summer monsoon. This flood pulse drives the lake’s biological productivity. We used Sr, Nd, and Pb isotopes and elemental concentrations in lake sediment cores to track changes in the provenance of deposits in Tonle Sap Lake. We sought to determine when the lake first began to receive water and sediment input via the Mekong River, which initiated flood pulse processes. The transition from a non-pulsing lake to the Mekong-connected system is marked by shifts to values of 87Sr/86Sr, εNd, and 207Pb/204Pb that are characteristic of Mekong River sediments. In addition, magnetic susceptibility increased and sediment elemental composition changed. Elemental (P) measures point to enhanced phosphorus loading and C/N and isotope ratios of bulk organic matter indicate a shift to greater relative contribution of organic material from aquatic versus terrestrial environments, coinciding with the initiation of flood pulse processes. On the basis of radiocarbon dating in two cores, we estimate the initiation of the annual flood pulse occurred between ~4,450 and 3,910 cal year BP.  相似文献   

14.
Inorganic minerals form a major component of lacustrine sediments and have the potential to reveal detailed information on previous climatic and hydrological conditions. The ability to extract such information however, has been restricted by a limited understanding of the relationships between minerals and the environment. In an attempt to fill in this gap in our knowledge, 146 surface sediment samples have been investigated from 146 lakes on the Tibetan Plateau. The mineral compositions derived from these samples by X-Ray Diffraction (XRD) were used to examine the relationships between mineral compositions and the environmental variables determined for each site. Statistical techniques including Multivariate regression trees (MRT) and Redundancy Analysis (RDA), based on the mineral spectra and environmental variables, reveal that the electrical conductivity (EC) and Mg/Ca ratios of lake water are the most important controls on the composition of endogenic minerals. No endogenic minerals precipitate under hyper-fresh water conditions (EC lower than 0.13 mS/cm), with calcite commonly forming in water with EC values above 0.13 mS/cm. Between EC values of 0.13 and 26 mS/cm the mineral composition of lake sediments can be explained in terms of variations in the Mg/Ca ratio: calcite dominates at Mg/Ca ratios of less than 33, whereas aragonite commonly forms when the ratio is greater than 33. Where EC values are between 26 and 39 mS/cm, monohydrocalcite precipitates together with calcite and aragonite; above 39 mS/cm, gypsum and halite commonly form. Information on the local geological strata indicates that allogenic (detrital) mineral compositions are primarily influenced by the bedrock compositions within the catchment area. By applying these relationships to the late glacial and Holocene mineral record from Chaka Salt Lake, five lake stages have been identified and their associated EC conditions inferred. The lake evolved from a freshwater lake during the late glacial (before 11.4 cal. ka BP) represented by the lowest EC values (<0.13 mS/cm), to a saline lake with EC values slightly higher than 39 mS/cm during the early and mid Holocene (ca. 11.4–5.3 cal. ka BP), and finally to a salt lake (after 5.3 cal. ka BP). These results illustrate the utility of our mineral-environmental model for the quantitative reconstruction of past environmental conditions from lake sediment records.  相似文献   

15.
The complex relationship between the Yangtze River and Poyang Lake controls the exchange of water and sediment between the two, and exerts effects on water resources, flooding, shipping, and the ecological environment. The theory of energy is applied in this paper to investigate the physical mechanisms that determine the nature of the contact between the Yangtze River and Poyang Lake and to establish an energy difference (Fe) index to quantify the interactions between the two systems. Data show that Fe values for this interaction have increased since the 1950s, indicating a weakening in the river effect while the lake effect has been enhanced. Enclosure of the Three Gorges Reservoir (TGR) has also significantly influenced the relationship between the river and the lake by further reducing the impacts of the Yangtze River. The river effect also increases slightly during the dry season, and decreases significantly at the end of the flooding period, while interactions between the two to some extent influence the development of droughts and floods within the lake area. Data show that when the flow of the five rivers within this area is significant and a blocking effect due to the Yangtze River is also clearly apparent, floods occur easily; in contrast, when the opposite is true and the flow of the five rivers is small, and the Yangtze River can accommodate the flow, droughts occur frequently. Construction and enclosure of the TGR also means that the lake area is prone to droughts during September and October.  相似文献   

16.
Climate records during the last millennium are essential in placing recent anthropogenic-induced climate change into the context of natural climatic variability. However, detailed records are still sparse in Alaska, and these records would help elucidate climate patterns and possible forcing mechanisms. Here we present a multiple-proxy sedimentary record from Kepler Lake in south-central Alaska to reconstruct climatic and environmental changes over the last 800?years. Two short cores (85 and 101?cm long) from this groundwater-fed marl lake provide a detailed stable isotope and sediment lithological record with chronology based on four AMS 14C dates on terrestrial macrofossils and 210Pb analysis. The ??18O values of inorganic calcite (CaCO3) range from ?17.0 to ?15.7???, with the highest values during the period of 1450?C1850 AD, coeval with the well-documented Little Ice Age (LIA) cold interval in Alaska. The high ??18O values during the cold LIA are interpreted as reflecting shifts in atmospheric circulation. A weakening of the wintertime Aleutian low pressure system residing over the Gulf of Alaska during the LIA would have resulted in 18O-enriched winter precipitation as well as a colder and possibly drier winter climate in south-central Alaska. Also, elevated calcite contents of >80?% during the LIA reflect a lowering of lake level and/or enhanced seasonality (warmer summer and colder winter), as calcite precipitation in freshwater lakes is primarily a function of peak summer temperature and water depth. This interpretation is also supported by high ??13C values, likely reflecting high aquatic productivity or increased residence times of the lake water during lower lake levels. The lower lake levels and warmer summers would have increased evaporative enrichment in 18O, also contributing to the high ??18O values during the LIA. Our results indicate that changes in atmospheric circulation were an important component of climate change during the last millennium, exerting strong influence on regional climate in Alaska and the Arctic.  相似文献   

17.
Stable isotopes and trace elements in ostracod shells have been used widely in paleolimnological investigations of past lake hydrochemistry and climate because they provide insights into past water balance and solute evolution of lakes. Regional differences in lake characteristics and species-specific element fractionation, however, do not permit generalization of results from other regions or ostracod species to the southern Tibetan Plateau, in part because most common taxa from the southern Tibetan Plateau are endemic to the area. This study evaluated relations between present-day environmental conditions and the geochemical composition of modern ostracod shells from the southern Tibetan Plateau, to assess the suitability of using shell chemistry to infer hydrological conditions. We studied nine lakes and their catchments, located along a west–east transect in the south-central part of the Tibetan Plateau. Stable oxygen and carbon isotope values and trace element concentrations in recent shells from the four most abundant ostracod species (Leucocytherella sinensis, ?Leucocythere dorsotuberosa, Limnocythere inopinata, Tonnacypris gyirongensis) were measured, together with hydrochemical properties of host waters at the time of sampling. Results revealed significant between-species differences in stable isotope fractionation and trace element incorporation into shell calcite. Stable oxygen and carbon isotope values of ostracod shells were correlated significantly with the stable isotope composition of the respective water body \( \left( {\updelta^{18} {\text{O}}_{{{\text{H}}_{ 2} {\text{O}}}} \,{\text{and }}\updelta^{13} {\text{C}}_{{{\text{H}}_{ 2} {\text{O}}}} } \right) \), reflecting salinity and productivity, respectively. Offsets between δ18Oshell and δ13Cshell and inorganic calcite, the latter representing isotopic equilibrium, suggest shell formation of T. gyirongensis during spring melt. L. sinensis reproduces throughout the monsoon season until September and shows several consecutive generations, and L. inopinata molts to the adult stage after the monsoon season in August/September. The influence of pore water δ13C was displayed by L. inopinata, suggesting shell calcification within the sediment. Mg/Cashell is primarily influenced by water Mg/Ca ratios and salinity and confirms the use of this shell ratio as a proxy for precipitation-evaporation balance and lake level. In addition, Sr/Ca and Ba/Ca can be used to infer changes in salinity, at least in closed-basin lakes with calcite saturation. Observed effects of water Sr/Ca and salinity on Sr/Ca incorporation are biased by the presence of aragonite precipitation in the lakes, which removes bioavailable Sr from the host water, resulting in low Sr/Cashell values. Changes in carbonate mineralogy affect the bioavailability of trace elements, a process that should be considered in paleoclimate reconstructions. Oxygen isotopes and Mg/Cashell ratios were unaffected by water temperature. Positive correlations among Fe/Ca, Mn/Ca and U/Ca in ostracod shells, and their negative correlation with δ13C, which reflects organic matter decay, show the potential to infer changes in redox conditions that can be used to reconstruct past oxygen supply to bottom waters and thus past water-circulation changes within lakes. The intensity of microbial activity, associated with organic matter decomposition, can be inferred from U/Ca ratios in ostracod shells. These findings highlight the value of fossil ostracod records in lake deposits for inferring paleoenvironmental conditions on the southern Tibetan Plateau.  相似文献   

18.
The southern shore of Lake Michigan is the type area for many of ancestral Lake Michigan’s late Pleistocene lake phases, but coastal deposits and features of the Algonquin phase of northern Lake Michigan, Lake Huron, and Lake Superior are not recognized in the area. Isostatic rebound models suggest that Algonquin phase deposits should be 100 m or more below modern lake level. A relict shoreline, however, exists along the lakeward margin of the Calumet Beach that was erosional west of Deep River and depositional east of the river. For this post-Calumet shoreline, the elevation of basal foreshore deposits east of Deep River and the base of the scarp west of Deep River indicate a slightly westward dipping water plane that is centered at ∼184 m above mean sea level. Basal foreshore elevations also indicate that lake level fell ∼2 m during the development of the shoreline. The pooled mean of radiocarbon dates from the surface of the peat below post-Calumet shoreline foreshore deposits indicate that the lake transgressed over the peat at 10,560 ± 70 years B.P. Pollen assemblages from the peat are consistent with this age. The elevation and age of the post-Calumet shoreline are similar to the Main Algonquin phase of Lake Huron. Recent isostatic rebound models do not adequately address a high-elevation Algonquin-age shoreline along the southern shore of Lake Michigan, but the Goldthwait (1908) hinge-line model does.  相似文献   

19.
Stable isotopes and trace-element content of calcite ostracod valves and aragonite mollusc shells from the Pliocene lacustrine succession of Villarroya allow depicting the geochemical record of environmental changes and to compare our data to the paleoenvironmental reconstruction obtained from other proxies. The lower sequences (A and B) are characterized by relatively high isotopic and Me/Ca values in the biogenic carbonates. The recorded large variations of δ18O in these carbonates mainly reflect variations in the δ18Ow due to precipitation–evaporation processes and, to a lesser extent, variations in temperature of calcification. The δ13C data inform about changes in DIC although they are probably biased by the vital effects of the studied taxa. Minor and trace element contents in ostracod (Mg/Ca, Sr/Ca) and mollusc shells (Sr/Ca) are mainly linked to the Me/Ca of the lake water (Me/Caw), and to a lesser extent to temperature and to uptake kinetic effects. Several possible mechanisms may make the Me/Caw to vary: long periods of Ca-carbonate (calcite, aragonite) deposition after charophyte development, and different inputs for Ca and Mg to the lake due to changes in drainage area configurations through time, including the changes in saline inputs (Na-Cl type) to the lake. The stable isotopes and the calculated Sr/Caw and Mg/Caw from sequence C display lower values than those from sequences A and B. The isotopic values from biogenic carbonates of unit C indicate isotopically diluted waters in a hydrologically open lacustrine environment. Distinct δ13C and δ18O plots for molluscs from unit C reflect the different biotopes and metabolism type. For several intervals of the Villarroya succession there is no direct relationships among: (i) salinity changes inferred from invertebrate paleoecology, (ii) paleoenvironmental slices based on isotopic signatures and Me/Caw calculations (from biogenic carbonate geochemistry) and (iii) climate in the hinterland deduced from pollen data. Lakes where geochemical behaviour is constrained by sporadic saline inputs and/or relative depletion in Ca due to long periods of Ca-carbonate precipitation or biomineralization, like the Pliocene Villarroya lake was, do not show clear correlation patterns between geochemical signals and climate proxies. In these lakes only major environmental trends display unambiguous geochemical signatures, and only some main shifts in the geochemical signature profiles may be correlated with significant global and/or regional environmental changes that have been reported from other paleoenvironmental records. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Lake Jilantai-Hetao, a megalake, was formed some time before 60–50 ka, along the Great North Bend of the Yellow River. The basin is now dry, with most of the area covered by aeolian sand. We are investigating this profound hydrologic change using a number of research approaches. Paleoshorelines of this megalake are best preserved in the Jilantai area in the southwestern portion of the megalake basin. We collected aquatic mollusk shells from littoral sediments at different altitudes around Jilantai and measured their strontium isotope compositions. 87Sr/86Sr ratios in shell carbonates are different between the high lake phase (~1,080–1,050 m altitude) and the low lake phase (~1,044–1,030 m altitude), with a small shift in average strontium ratios to more radiogenic values during the low lake phase. Based on regional hydrology and physical geography, we conclude that water from the Yellow River was the dominant water source supplying this megalake. 87Sr/86Sr ratios of modern water samples suggest the Yellow River was the dominant water source during the high lake phase, but that the relative contribution of Yellow River water to the megalake was reduced, and that the relative contributions of local precipitation and groundwater increased, during the low lake phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号