首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The uncertainties in the regional climate models (RCMs) are evaluated by analyzing the driving global data of ERA40 reanalysis and ECHAM5 general circulation models, and the downscaled data of two RCMs (RegCM4 and PRECIS) over South-Asia for the present day simulation (1971–2000) of South-Asian summer monsoon. The differences between the observational datasets over South-Asia are also analyzed. The spatial and the quantitative analysis over the selected climatic regions of South-Asia for the mean climate and the inter-annual variability of temperature, precipitation and circulation show that the RCMs have systematic biases which are independent from different driving datasets and seems to come from the physics parameterization of the RCMs. The spatial gradients and topographically-induced structure of climate are generally captured and simulated values are within a few degrees of the observed values. The biases in the RCMs are not consistent with the biases in the driving fields and the models show similar spatial patterns after downscaling different global datasets. The annual cycle of temperature and rainfall is well simulated by the RCMs, however the RCMs are not able to capture the inter-annual variability. ECHAM5 is also downscaled for the future (2071–2100) climate under A1B emission scenario. The climate change signal is consistent between ECHAM5 and RCMs. There is warming over all the regions of South-Asia associated with increasing greenhouse gas concentrations and the increase in summer mean surface air temperature by the end of the century ranges from 2.5 to 5 °C, with maximum warming over north western parts of the domain and 30 % increase in rainfall over north eastern India, Bangladesh and Myanmar.  相似文献   

2.
Runs of three regional climate models (RCMs) dynamically downscaling the outputs of atmosphere?Cocean coupling general circulation models (AOGCMs) are studied. These RCMs are NCAR-MM5, NCEP-RSM (Regional Spectral Model), and Purdue-PRM (Purdue Regional Model). A useful approach is developed to compare the variability, error, and spatial distribution of model-simulated results with respect to the Climatic Research Unit (CRU) datasets over East Asia and seven sub-regions during the 1990s. The results show that NCEP-RSM outperforms the other two in meeting criteria selected on evaluating the model performance. Furthermore, three super-ensemble approaches are tested on merging RCMs?? outputs. The inverse of the square error summation (ISES) method is selected as a suitable method with a generally good performance during the verification period. The projected future climate changes by ISES indicate larger temperature increases over high-latitude continent and smaller over low-latitude maritime areas. Rainfall will increase in summer over the central simulation domain, i.e. the eastern China, but decrease in winter, which are clearly linked to the variation in the synoptic airflows. Also, a more frequent occurrence of extreme rainfall events than what happened in the 1990s is projected. The projection over Taiwan suggests strong warming in summer, followed by autumn, winter, and spring. The interaction between the synoptic flow and the local terrain affects significantly the changes in precipitation. In general, larger change of the variability of rainfall will be over areas with lesser rainfall in the future, while lesser change will be over areas with more projected rainfall.  相似文献   

3.
 Two regional climate models have been applied to the task of generating an ensemble of realizations of the year 1982 with observed boundary conditions in areas covering parts of the Mediterranean countries. These realizations were generated by applying boundary conditions from the ECMWF ERA reanalysis project consecutively, carrying over the soil variables from the regional models from one iteration to the next. Monthly mean fields for six iterations of each model have been used as statistical ensembles in order to investigate the internal variability of the regional model dynamics. This internal variability is a necessary consequence of the non-linear physical feedback mechanisms of the RCM being active. A small value of internal variability will give better statistics for climate sensitivity signals, but will make these results less credible. The internal variability is important for the quantitative assessment of a climate sensitivity signal. With the present choice of models and integration domains the internal variabilities of surface fields and precipitation do reach levels that are less than, but in summer of comparable order of magnitude to, corresponding atmospheric variabilities of an atmospheric general circulation model. Received: 26 October 1999 / Accepted: 18 December 2000  相似文献   

4.
The study examines future scenarios of precipitation extremes over Central Europe in an ensemble of 12 regional climate model (RCM) simulations with the 25-km resolution, carried out within the European project ENSEMBLES. We apply the region-of-influence method as a pooling scheme when estimating distributions of extremes, which consists in incorporating data from a ‘region’ (set of gridboxes) when fitting an extreme value distribution in any single gridbox. The method reduces random variations in the estimates of parameters of the extreme value distribution that result from large spatial variability of heavy precipitation. Although spatial patterns differ among the models, most RCMs simulate increases in high quantiles of precipitation amounts when averaged over the area for the late-twenty-first century (2070–2099) climate in both winter and summer. The sign as well as the magnitude of the projected change vary only little for individual parts of the distribution of daily precipitation in winter. In summer, on the other hand, the projected changes increase with the quantile of the distribution in all RCMs, and they are negative (positive) for parts of the distribution below (above) the 98% quantile if averaged over the RCMs. The increases in precipitation extremes in summer are projected in spite of a pronounced drying in most RCMs. Although a rather general qualitative agreement of the models concerning the projected changes of precipitation extremes is found in both winter and summer, the uncertainties in climate change scenarios remain large and would likely further increase considerably if a more complete ensemble of RCM simulations driven by a larger suite of global models and with a range of possible scenarios of the radiative forcing is available.  相似文献   

5.
Summary The East Asian (China, Korea and Japan) summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models performing coordinated experiments leading to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). Out of the 22 models examined, 14 reproduce the observed shape of the annual cycle well with peak during the boreal summer (June through August), but with varying magnitude. Three models simulate the maximum a month later and with lower magnitudes. Only one model considerably underestimates the magnitude of the annual cycle. The remaining 4 models show some deviations from the observed. Models are unable to simulate the minimum in July with peaks in June and August associated with northward shifts of the Meiyu-Changma-Baiu precipitation band. The realistic simulation of the annual cycle does not appear to depend on the model resolution. The inter-model variation is slightly larger during summer, implying larger diversity of the models in simulating summer monsoon precipitation. The spatial rainfall patterns are reasonably well simulated by most of the models, with several models able to simulate the precipitation associated with the Meiyu-Changma-Baiu frontal zone and that associated with the location of the subtropical high over the north Pacific. Simulated spatial distribution could be sensitive to model resolution as evidenced by two versions of MIROC3.2 model. The multi-model ensemble (MME) pattern reveals an underestimation of seasonal precipitation over the east coast of China, Korea-Japan peninsular and the adjoining oceanic regions. This may be related with the mass-flux based scheme employed for convective parameterization by majority of the models. Further the inter-model variation of precipitation is about 2 times stronger south of 30° N, than north of this latitude, indicating larger diversity of the coupled models in simulating low latitude precipitation. The simulated inter-annual variability is estimated by computing the mean summer monsoon seasonal rainfall and the coefficient of variability (CV). In general the mean observed seasonal precipitation of 542 mm and CV of 6.7% is very well simulated by most of the models. Except for one model mean seasonal precipitation varies from 400 to 650 mm. However the CV varies from 2 to 9%. Future projections under the radiative forcing of doubled CO2 scenario are examined for individual models and by the MME technique. Changes in mean precipitation and variability are tested by the t-test and F-ratio respectively to evaluate their statistical significance. The changes in mean precipitation vary from −0.6% (CNRM-CM3) to about 14% (ECHO-G; UKMO-HadCM3). The MME technique reveals an increase varying from 5 to 10%, with an average of 7.8% (greater than the observed CV of 6.7%) over the East Asian region. However the increases are significant over the Korea-Japan peninsula and the adjoining north China region only. The increases may be attributed to the projected intensification of the subtropical high, Meiyu-Changma-Baiu frontal zone and the associated influx of moist air from the Pacific inland. The projected changes in the amount of precipitation are directly proportional to the projected changes in the strength of the subtropical high. Further the MME suggests a possible increase in the length of the summer monsoon precipitation period from late spring through early autumn. The changes in precipitation could be stabilized by controlling the CO2 emissions.  相似文献   

6.
Summary South Asian summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models assessed as part of the Intergovernmental Panel on Climate Change Fourth Assessment. Out of the 22 models examined, 19 are able to capture the maximum rainfall during the summer monsoon period (June through September) with varying amplitude. While two models are unable to reproduce the annual cycle well, one model is unable to simulate the summer monsoon season. The simulated inter-annual variability from the 19 models is examined with respect to the mean precipitation, coefficient of variation, long-term trends and the biennial tendency. The model simulated mean precipitation varies from 500 mm to 900 mm and coefficient of variation from 3 to 13%. While seven models exhibit long-term trends, eight are able to simulate the biennial nature of the monsoon rainfall. Six models, which generate the most realistic 20th century monsoon climate over south Asia, are selected to examine future projections under the doubling CO2 scenario. Projections reveal a significant increase in mean monsoon precipitation of 8% and a possible extension of the monsoon period based on the multi-model ensemble technique. Extreme excess and deficient monsoons are projected to intensify. The projected increase in precipitation could be attributed to the projected intensification of the heat low over northwest India, the trough of low pressure over the Indo-Gangetic plains, and the land–ocean pressure gradient during the establishment phase of the monsoon. The intensification of these pressure systems could be attributed to the decline in winter/spring snowfall. Furthermore, a decrease of winter snowfall over western Eurasia is also projected along with an increase of winter snowfall over Siberia/eastern Eurasia. This projected dipole snow configuration during winter could imply changes in mid-latitude circulation conducive to subsequent summer monsoon precipitation activity. An increase in precipitable water of 12–16% is projected over major parts of India. A maximum increase of about 20–24% is found over the Arabian Peninsula, adjoining regions of Pakistan, northwest India and Nepal. Although the projected summer monsoon circulation appears to weaken, the projected anomalous flow over the Bay of Bengal (Arabian Sea) will support oceanic moisture convergence towards the southern parts of India and Sri Lanka (northwest India and adjoining regions). The ENSO-Monsoon relationship is also projected to weaken.  相似文献   

7.
Summary This study investigates the capabilities of two regional models (the ICTP RegCM3 and the climate version of the CPTEC Eta model – EtaClim) in simulating the summer quasi-stationary circulations over South America during two extreme cases: the 1997–1998 El Ni?o and 1998–1999 La Ni?a. The results showed that both the models are successful in simulating the interannual variability of summer quasi-stationary circulation over South America. Both the models simulated the intensification of subtropical jet stream during the El Ni?o event, which favoured the blocking of transient systems and increased the precipitation over south Brazil. The models simulated the increase (decrease) of precipitation over north (west) Amazonia during the La Ni?a (El Ni?o) event. The upper level circulation is in agreement with the simulated distribution of precipitation. In general, the results showed that both the models are capable of capturing the main changes of the summer climate over South America during these two extreme cases and consequently they have potential to predict climate anomalies.  相似文献   

8.
Four high resolution atmospheric general circulation models (GCMs) have been integrated with the standard forcings of the PRUDENCE experiment: IPCC-SRES A2 radiative forcing and Hadley Centre sea surface temperature and sea-ice extent. The response over Europe, calculated as the difference between the 2071–2100 and the 1961–1990 means is compared with the same diagnostic obtained with nine Regional Climate Models (RCM) all driven by the Hadley Centre atmospheric GCM. The seasonal mean response for 2m temperature and precipitation is investigated. For temperature, GCMs and RCMs behave similarly, except that GCMs exhibit a larger spread. However, during summer, the spread of the RCMs—in particular in terms of precipitation—is larger than that of the GCMs. This indicates that the European summer climate is strongly controlled by parameterized physics and/or high-resolution processes. The temperature response is larger than the systematic error. The situation is different for precipitation. The model bias is twice as large as the climate response. The confidence in PRUDENCE results comes from the fact that the models have a similar response to the IPCC-SRES A2 forcing, whereas their systematic errors are more spread. In addition, GCM precipitation response is slightly but significantly different from that of the RCMs.  相似文献   

9.
We dynamically downscaled Japanese reanalysis data (JRA-25) for 60 regions of Japan using three regional climate models (RCMs): the Non-Hydrostatic Regional Climate Model (NHRCM), modified RAMS version 4.3 (NRAMS), and modified Weather Research and Forecasting model (TWRF). We validated their simulations of the precipitation climatology and interannual variations of summer and winter precipitation. We also validated precipitation for two multi-model ensemble means: the arithmetic ensemble mean (AEM) and an ensemble mean weighted according to model reliability. In the 60 regions NRAMS simulated both the winter and summer climatological precipitation better than JRA-25, and NHRCM simulated the wintertime precipitation better than JRA-25. TWRF, however, overestimated precipitation in the 60 regions in both the winter and summer, and NHRCM overestimated precipitation in the summer. The three RCMs simulated interannual variations, particularly summer precipitation, better than JRA-25. AEM simulated both climatological precipitation and interannual variations during the two seasons more realistically than JRA-25 and the three RCMs overall, but the best RCM was often superior to the AEM result. In contrast, the weighted ensemble mean skills were usually superior to those of the best RCM. Thus, both RCMs and multi-model ensemble means, especially multi-model ensemble means weighted according to model reliability, are powerful tools for simulating seasonal and interannual variability of precipitation in Japan under the current climate.  相似文献   

10.
We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.  相似文献   

11.
The WAMME regional model intercomparison study   总被引:5,自引:3,他引:2  
Results from five regional climate models (RCMs) participating in the West African Monsoon Modeling and Evaluation (WAMME) initiative are analyzed. The RCMs were driven by boundary conditions from National Center for Environmental Prediction reanalysis II data sets and observed sea-surface temperatures (SST) over four May–October seasons, (2000 and 2003–2005). In addition, the simulations were repeated with two of the RCMs, except that lateral boundary conditions were derived from a continuous global climate model (GCM) simulation forced with observed SST data. RCM and GCM simulations of precipitation, surface air temperature and circulation are compared to each other and to observational evidence. Results demonstrate a range of RCM skill in representing the mean summer climate and the timing of monsoon onset. Four of the five models generate positive precipitation biases and all simulate negative surface air temperature biases over broad areas. RCM spatial patterns of June–September mean precipitation over the Sahel achieve spatial correlations with observational analyses of about 0.90, but within two areas south of 10°N the correlations average only about 0.44. The mean spatial correlation coefficient between RCM and observed surface air temperature over West Africa is 0.88. RCMs show a range of skill in simulating seasonal mean zonal wind and meridional moisture advection and two RCMs overestimate moisture convergence over West Africa. The 0.5° computing grid enables three RCMs to detect local minima related to high topography in seasonal mean meridional moisture advection. Sensitivity to lateral boundary conditions differs between the two RCMs for which this was assessed. The benefits of dynamic downscaling the GCM seasonal climate prediction are analyzed and discussed.  相似文献   

12.
This study was targeted at evaluating the performance of six Regional Climate Models (RCMs) used in Coordinated Regional Climate Downscaling Experiment (CORDEX). The evaluation is on the bases of how well the RCMs simulate the seasonal mean climatology, interannual variability and annual cycles of rainfall, maximum and minimum temperature over two catchments in western Ethiopia during the period 1990–2008. Observed data obtained from the Ethiopian National Meteorological Agency was used for performance evaluation of the RCMs outputs. All Regional Climate Models (RCMs) have simulated seasonal mean annual cycles of precipitation with a significant bias shown on individual models; however, the ensemble mean exhibited better the magnitude and seasonal rainfall. Despite the highest biases of RCMs in the wet season, the annual cycle showed the prominent features of precipitation in the two catchments. In many aspects, CRCM5 and RACMO22 T simulate rainfall over most stations better than the other models. The highest biases are associated with the highest error in simulating maximum and minimum temperature with the highest biases in high elevation areas. The rainfall interannual variability is less evident in Finchaa with short rainy season experiencing a larger degree of interannual variability. The differences in performance of the Regional Climate Models in the two catchments show that all the available models are not equally good for particular locations and topographies. In this regard, the right regional climate models have to be used for any climate change impact study for local-scale climate projections.  相似文献   

13.
A scenario of European climate change for the late twenty-first century is described, using a high-resolution state-of-the-art model. A time-slice approach is used, whereby the atmospheric general circulation model, HadAM3P, was integrated for two periods, 1960–1990 and 2070–2100, using the SRES A2 scenario. For the first time an ensemble of such experiments was produced, along with appropriate statistical tests for assessing significance. The focus is on changes to the statistics of seasonal means, and includes analysis of both multi-year means and interannual variance. All four seasons are assessed, and anomalies are mapped for surface air temperature, precipitation and snow mass. Mechanisms are proposed where these are dominated by straightforward local processes. In winter, the largest warming occurs over eastern Europe, up to 7°C, mean snow mass is reduced by at least 80% except over Scandinavia, and precipitation increases over all but the southernmost parts of Europe. In summer, temperatures rise by 6–9°C south of about 50°N, and mean rainfall is substantially reduced over the same area. In spring and autumn, anomalies tend to be weaker, but often display patterns similar to the preceding season, reflecting the inertia of the land surface component of the climate system. Changes in interannual variance are substantial in the solsticial seasons for many regions (note that for precipitation, variance estimates are scaled by the square of the mean). In winter, interannual variability of near-surface air temperature is considerably reduced over much of Europe, and the relative variability of precipitation is reduced north of about 50°N. In summer, the (relative) interannual variance of both variables increases over much of the continent.  相似文献   

14.
One of the main concerns in regional climate modeling is to which extent limited-area regional climate models (RCM) reproduce the large-scale atmospheric conditions of their driving general circulation model (GCM). In this work we investigate the ability of a multi-model ensemble of regional climate simulations to reproduce the large-scale weather regimes of the driving conditions. The ensemble consists of a set of 13 RCMs on a European domain, driven at their lateral boundaries by the ERA40 reanalysis for the time period 1961–2000. Two sets of experiments have been completed with horizontal resolutions of 50 and 25 km, respectively. The spectral nudging technique has been applied to one of the models within the ensemble. The RCMs reproduce the weather regimes behavior in terms of composite pattern, mean frequency of occurrence and persistence reasonably well. The models also simulate well the long-term trends and the inter-annual variability of the frequency of occurrence. However, there is a non-negligible spread among the models which is stronger in summer than in winter. This spread is due to two reasons: (1) we are dealing with different models and (2) each RCM produces an internal variability. As far as the day-to-day weather regime history is concerned, the ensemble shows large discrepancies. At daily time scale, the model spread has also a seasonal dependence, being stronger in summer than in winter. Results also show that the spectral nudging technique improves the model performance in reproducing the large-scale of the driving field. In addition, the impact of increasing the number of grid points has been addressed by comparing the 25 and 50 km experiments. We show that the horizontal resolution does not affect significantly the model performance for large-scale circulation.  相似文献   

15.
超强厄尔尼诺事件对中国东部春夏季极端降水频率的影响   总被引:2,自引:0,他引:2  
利用中国国家气象信息中心提供的中国地面逐日降水0.5°×0.5°格点数据集,研究了超强厄尔尼诺事件衰减年春、夏季中国东部极端降水发生概率的变化,并通过诊断超强厄尔尼诺自身及其衍生模态各自的水汽输送和垂直运动特征,探讨了超强厄尔尼诺事件对中国东部极端降水的影响机制。结果表明,超强厄尔尼诺事件衰减年春季,整个中国东部尤其是江淮以北地区,极端降水事件发生概率显著增大。同年夏季,长江流域极端降水发生概率比常规年份高出近1倍,而在华南和华北地区则相对减小。诊断分析显示,春季超强厄尔尼诺自身及其与热带太平洋地区年循环相互作用衍生出的组合模态(C-mode)均对降水的环流背景影响显著,热带太平洋西北部低空存在强盛的反气旋性异常环流,导致大量水汽在中国东部汇聚并上升,有利于该地区极端降水事件的发生。夏季,厄尔尼诺事件已经消亡,但与C-mode影响相关联的西北太平洋异常反气旋环流仍然存在,长江流域维持极端降水事件发生的有利条件。此外,研究也显示,超强厄尔尼诺事件衰减年春、夏季中国东部对流层中上层持续有异常经向风活动,频繁的南北冷暖气流交汇可能导致强对流事件发生次数增多,这也为该区域极端降水的频发提供了支持。   相似文献   

16.
The analysis of possible regional climate changes over Europe as simulated by 10 regional climate models within the context of PRUDENCE requires a careful investigation of possible systematic biases in the models. The purpose of this paper is to identify how the main model systematic biases vary across the different models. Two fundamental aspects of model validation are addressed here: the ability to simulate (1) the long-term (30 or 40 years) mean climate and (2) the inter-annual variability. The analysis concentrates on near-surface air temperature and precipitation over land and focuses mainly on winter and summer. In general, there is a warm bias with respect to the CRU data set in these extreme seasons and a tendency to cold biases in the transition seasons. In winter the typical spread (standard deviation) between the models is 1 K. During summer there is generally a better agreement between observed and simulated values of inter-annual variability although there is a relatively clear signal that the modeled temperature variability is larger than suggested by observations, while precipitation variability is closer to observations. The areas with warm (cold) bias in winter generally exhibit wet (dry) biases, whereas the relationship is the reverse during summer (though much less clear, coupling warm (cold) biases with dry (wet) ones). When comparing the RCMs with their driving GCM, they generally reproduce the large-scale circulation of the GCM though in some cases there are substantial differences between regional biases in surface temperature and precipitation.  相似文献   

17.
This study presents the evaluation of simulations from two new Canadian regional climate models (RCMs), CanRCM4 and CRCM5, with a focus on the models’ skill in simulating daily precipitation indices and the Standardized Precipitation Index (SPI). The evaluation was carried out over the past two decades using several sets of gridded observations that partially cover North America. The new Canadian RCMs were also compared with four reanalysis products and six other RCMs. The different configurations of the Canadian RCM simulations also permit evaluation of the impact of different spatial resolutions, atmospheric drivers, and nudging conditions. The results from the new Canadian models show some improvement in precipitation characteristics over the previous Canadian RCM (CRCM4), but these differ with the seasons. For winter, CanRCM4 and CRCM5 have better skill than most other models over all of North America. For the summer, CRCM5 0.44° performs best over the United States, while CRCM4 has the best skill over Canada. Good skill is exhibited by CanRCM4 and CRCM4 in simulating the 6-month SPI over the Prairies and the western US Corn Belt. In general, differences are small between runs with or without large-scale spectral nudging; differences are small when different boundary conditions are used.  相似文献   

18.
The West African monsoon (WAM) circulation and intensity have been shown to be influenced by the land surface in numerous numerical studies using regional scale and global scale atmospheric climate models (RCMs and GCMs, respectively) over the last several decades. The atmosphere–land surface interactions are modulated by the magnitude of the north–south gradient of the low level moist static energy, which is highly correlated with the steep latitudinal gradients of the vegetation characteristics and coverage, land use, and soil properties over this zone. The African Multidisciplinary Monsoon Analysis (AMMA) has organised comprehensive activities in data collection and modelling to further investigate the significance land–atmosphere feedbacks. Surface energy fluxes simulated by an ensemble of land surface models from AMMA Land-surface Model Intercomparison Project (ALMIP) have been used as a proxy for the best estimate of the “real world” values in order to evaluate GCM and RCM simulations under the auspices of the West African Monsoon Modelling Experiment (WAMME) project, since such large-scale observations do not exist. The ALMIP models have been forced in off-line mode using forcing based on a mixture of satellite, observational, and numerical weather prediction data. The ALMIP models were found to agree well over the region where land–atmosphere coupling is deemed to be most important (notably the Sahel), with a high signal to noise ratio (generally from 0.7 to 0.9) in the ensemble and a inter-model coefficient of variation between 5 and 15%. Most of the WAMME models simulated spatially averaged net radiation values over West Africa which were consistent with the ALMIP estimates, however, the partitioning of this energy between sensible and latent heat fluxes was significantly different: WAMME models tended to simulate larger (by nearly a factor of two) monthly latent heat fluxes than ALMIP. This results due to a positive precipitation bias in the WAMME models and a northward displacement of the monsoon in most of the GCMs and RCMs. Another key feature not found in the WAMME models is peak seasonal latent heat fluxes during the monsoon retreat (approximately a month after the peak precipitation rates) from soil water stores. This is likely related to the WAMME northward bias of the latent heat flux gradient during the WAM onset.  相似文献   

19.
A detailed analysis is undertaken of the Atlantic-European climate using data from 500-year-long proxy-based climate reconstructions, a long climate simulation with perpetual 1990 forcing, as well as two global and one regional climate change scenarios. The observed and simulated interannual variability and teleconnectivity are compared and interpreted in order to improve the understanding of natural climate variability on interannual to decadal time scales for the late Holocene. The focus is set on the Atlantic-European and Alpine regions during the winter and summer seasons, using temperature, precipitation, and 500 hPa geopotential height fields. The climate reconstruction shows pronounced interdecadal variations that appear to “lock” the atmospheric circulation in quasi-steady long-term patterns over multi-decadal periods controlling at least part of the temperature and precipitation variability. Different circulation patterns are persistent over several decades for the period 1500 to 1900. The 500-year-long simulation with perpetual 1990 forcing shows some substantial differences, with a more unsteady teleconnectivity behaviour. Two global scenario simulations indicate a transition towards more stable teleconnectivity for the next 100 years. Time series of reconstructed and simulated temperature and precipitation over the Alpine region show comparatively small changes in interannual variability within the time frame considered, with the exception of the summer season, where a substantial increase in interannual variability is simulated by regional climate models.  相似文献   

20.
The 2m temperature (T2m) and precipitation from five regional climate models (RCMs), which participated in the ENSEMBLES project and were integrated at a 25-km horizontal resolution, are compared with observed climatological data from 13 stations located in the Croatian coastal zone. The twentieth century climate was simulated by forcing RCMs with identical boundary conditions from the ERA-40 reanalysis and the ECHAM5/MPI-OM global climate model (GCM); climate change in the twenty-first century is based on the A1B scenario and assessed from the GCM-forced RCMs’ integrations. When forced by ERA-40, most RCMs exhibit cold bias in winter which contributes to an overestimation of the T2m annual cycle amplitude and the errors in interannual variability are in all RCMs smaller than those in the climatological mean. All models underestimate observed warming trends in the period 1951–2010. The largest precipitation biases coincide with locations/seasons with small observed amounts but large precipitation amounts near high orography are relatively well reproduced. When forced by the same GCM all RCMs exhibit a warming in the cold half-year and a cooling (or weak warming) in the warm period, implying a strong impact of GCM boundary forcing. The future eastern Adriatic climate is characterised by a warming, up to +5 °C towards the end of the twenty-first century; for precipitation, no clear signal is evident in the first half of the twenty-first century, but a reduction in precipitation during summer prevails in the second half. It is argued that land-sea contrast and complex coastal configuration of the Croatian coast, i.e. multitude of island and well indented coastline, have a major impact on small-scale variability. Orography plays important role only at small number of coastal locations. We hypothesise that the parameterisations related to land surface processes and soil hydrology have relatively stronger impact on variability than orography at those locations that include a relatively large fraction of land (most coastal stations), but affecting less strongly locations at the Adriatic islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号