首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 2 毫秒
1.
Strong magnetic fields were generated using a fast pulsed power generator, to investigate the interaction of plasma flows with magnetic fields and magnetized background plasmas. The inductive loads used in these experiments were designed using a filament and a finite element modeling approaches. Magnetic fields up to 2 MG (200 T) were measured by using the Faraday rotation technique.  相似文献   

2.
Scaling laws for interaction of ultra-intense laser beams with a collisionless plasmas are discussed. Special attention is paid to the problem of the collective ion acceleration. Symmetry arguments in application to the generation of the poloidal magnetic field are presented. A heuristic model for evaluating the magnetic field strength is proposed. PACS Numbers: 52.38Kd, 52.38.Fz, 41.75.Jv  相似文献   

3.
Laboratory experiments on the interaction of a plasma flow, produced by laser ablation of a solid target with the inhomogeneous magnetic field from the Zebra pulsed power generator demonstrated the presence of strong wave activity in the region of the flow deceleration. The deceleration of the plasma flow can be interpreted as the appearance of a gravity-like force. The drift due to this force can lead to the excitation of flute modes. In this paper a linear dispersion equation for the excitation of electromagnetic flute-type modes with plasma and magnetic field parameters, corresponding to the ongoing experiments is examined. Results indicate that the wavelength of the excited flute modes strongly depends on the strength of the external magnetic field. For magnetic field strengths ∼0.1 MG the excited wavelengths are larger than the width of the laser ablated plasma plume and cannot be observed during the experiment. But for magnetic field strengths ∼1 MG the excited wavelengths are much smaller and can then be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号