首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of orography and stability on valley-side drainage winds were investigated with the aid of a numerical model. The model is three-dimensional, non-hydrostatic, cast in terrain-following co-ordinates, has a surface energy budget and a 1.5 order TKE closure scheme. Experiments were conducted over a schematic three-dimensional valley to assess the influences on airflow of valley-side slope magnitude, valley cross-section shape, tilt of the valley floor and stability.In drainage flow, magnitudes of horizontal and vertical velocities and heights of their maxima are directly related to slope angle. The velocities are either insensitive to, or slightly inversely related to stability. The cooling which drives the flows is strongest over steep slopes and in large stabilities. The depth of the cooled layer, whilst increasing over steeper slopes, is inversely related to the stability. TKE increases with slope angle and decreases with increasing stability. In the downslope direction, the near-surface cooled layer significantly increases whereas the inversion intensity decreases by about 20%. These two features are due to mixing between the drainage flow and the overlying air. Tha drainage flow accelerates down the slope until it reaches the accumulated pool of cold air in the valley bottom, whereupon it slows down markedly and is accompanied by uplift over the centre of the valley.The cross-valley circulation is influenced by valley-side slope angle, valley cross-section shape and tilt of the valley floor, in addition to the effects of stability. For a given shape, the circulation is a direct function of the valley-side slope and an inverse function of the ambient stability. This relationship is described mathematically.V-shaped valleys generate stronger flows than doU-shaped valleys and a tilted valley floor also leads to a significant increase in velocities.  相似文献   

2.
Summary A two-dimensional nonhydrostatic numerical model was used to investigate the behaviour of a cold air gravity current, moving along complex terrain. It is found, that the model with a high horizontal and vertical resolution and with a closure scheme, using the turbulent kinetic energy, is suitable to simulate currents, which have the main features of those found in laboratory experiments.Simulations are presented for different orographic structures (mountain and valley), for varying thermal stratification of the environmental atmosphere (neutral, stable and stable with an elevated inversion) and for different heights of the cold air reservoir.The major effect of a hill on the advance of a gravity current is a reduction of the front speed upstream as well as (even stronger) downstream of the obstacle, where the amount of this decrease depends on thermal stratification. Near surface blocking of the air flow on the windward side occurs for all simulations. However, for small depths of the oncoming cold air, the current cannot surmount the hill and remains on the lee side.With 11 Figures  相似文献   

3.
陈军  何为  杨群  雷霆  李小兰  杜小玲 《暴雨灾害》2020,37(2):158-166

利用常规观测资料、地面加密自动站资料、雷达探测资料与NCEP 1°×1°再分析资料等,对低层偏东气流影响下贵州铜仁梵净山东侧4次强降水天气过程进行了分析,重点探讨了在低层偏东气流与地形共同作用下的强降水形成机制,并归纳低层偏东气流影响下的梵净山东侧强降水概念模型。结果表明:(1)高空槽、低层切变线、地面中尺度辐合线是影响梵净山东侧强降水的主要天气系统;(2)低层浅薄偏东气流对梵净山东侧强降水起着关键作用,当低空气流u分量随高度减小时,地形迎风坡气流辐合上升,而气流v分量随高度增加时,地形迎风坡会产生与山脉垂直的水平涡管,在地形抬升作用下涡管向上凸起形成两个涡管环流圈,涡度垂直分量使山脚附近上升气流加强而有利于山脚产生强降水;(3)梵净山东侧强降水区的形成存在三种机制,即迎风坡山脚多次触发对流形成雨量叠加效应、地面中尺度辐合线自身触发组织对流、回波沿地面中尺度辐合线东移形成“列车效应”,三种机制产生的降水带与地面中尺度辐合线走向一致。

  相似文献   

4.
张涛  李亮亮  李建 《暴雨灾害》2022,37(1):50-57

为更好地理解和认识小尺度地形对降水特性的影响,利用位于云贵高原地区相近的两个国家基准站太华山和昆明站2006—2018年雨季(5—10月)小时降水资料,统计分析了两站降水精细化的时空特征。结果表明,两站的海拔高度差约500 m、站距约5 km,暖季降水量差异不大,但降水的精细特征却存在明显差异,主要表现为:(1)两站的降水量和平均降水强度年际差异不明显,但太华山站多数年份的降水频次远多于昆明站;(2)降水日变化上,太华山站在11—20时的累积降水量要高于昆明站;两站降水频次均具有双峰型特征,但在03—09时和11—17时太华山站的降水频次要明显高于昆明站,00—13时和21—23时昆明站的平均降水强度高于太华山站。(3)两站的降水事件特征不同,太华山站的降水事件次数和累积降水量都明显多于昆明站,主要由持续时间在6 h以上的降水事件贡献。(4)两站降水事件主要为共有降水事件,降水特性差异也主要由共有降水事件造成。太华山站先开始(结束)降水的共有降水事件次数比昆明站多(少),持续时间(降水频次)比昆明站长(多),短、长时降水事件的降水量(降水频次)比昆明站大(多),平均降水持续时间比昆明站多0.36 h。(5)两站单独降水事件占总降水事件的39.9%,太华山站的单独降水事件数是昆明站的1.83倍,而且平均持续时间长于昆明站。

  相似文献   

5.
Orographic effects on South China Sea summer climate   总被引:1,自引:0,他引:1  
  相似文献   

6.
Summary Idealized numerical simulations using the Weather and Research Forecast (WRF) model indicate that three flow regimes, based on the moist Froude number, can be identified for a conditionally unstable, rotational, horizontally homogeneous, uniformly stratified flow over an idealized, three-dimensional, mesoscale mountain stretched spanwise to the impinging flow: (I) a quasi-stationary upslope convective system and an upstream-propagating convective system, (II) a quasi-stationary upslope convective system, and (III) a stationary upslope convective system and a quasi-stationary downstream convective system. Several major differences from a similar type of flow with no rotation over a two-dimensional mountain range are found. One important finding is that relatively strong mean flow produces a quasi-stationary mesoscale convective system (MCS) and maximum rainfall on the windward slope (upslope rain), instead of on the mountain peak or over the lee side.We found that the Coriolis force helps produce heavy upslope rainfall by making transition from flow-around the eastern part of the upslope to flow-over the western part of the upslope (transits to a higher flow regime) by deflecting the incident southerly flow to become east–southeasterly barrier winds. We found that the addition of the western flank of the arc-shaped mountain helps slow down the barrier wind from east and causes the maximum rainfall to move east of the windward slope. A lower-Froude number flow tends to produce a rainfall maximum near the concave region.Several other important facts can also be found in this study. The ratio of the maximum grid scale rainfall to the sub-grid scale rainfall increases when the moist Froude number increases. When the CAPE decreases, it is found that the upstream moist flow tends to shift to a higher Froude-number regime. Therefore, the Froude number cannot solely be used to define a moist flow regime when different CAPEs are considered. In another word, other parameters, such as CAPE, might play an important role in determining moist flow regimes.  相似文献   

7.
A quasi-one-dimensional numerical model containing a prognostic turbulent kinetic energy parameterization and simplified approximations to horizontal gradients is used to study interactions of thermally induced nocturnal slope flows with following and opposing ambient winds. It is found that a following ambient wind causes the peak perturbation wind to be weaker and to be realized at a greater height, while an opposing ambient wind leads to a stronger perturbation wind at a lower height. The reason for this response lies in the interactions of the shears of the thermal and ambient components through the mechanical production of turbulent kinetic energy.  相似文献   

8.
地形对降水的影响研究概述   总被引:23,自引:5,他引:23  
廖菲  洪延超  郑国光 《气象科技》2007,35(3):309-316
简要回顾了近些年来有关地形对降水影响的研究进展。介绍了地形的动力效应和热力效应,详细分析了地形的动力、热力效应引起的降水和云物理变化。重点分析了地形对气候尺度、天气尺度、中尺度及对流性天气系统降水的影响。简单地讨论了在研究地形对降水影响时观测分析、气候统计、理论分析及数值模拟方面存在的问题及其未来发展前景。  相似文献   

9.
Results are presented from two sets of laboratory model experiments on the effects of an isolated seamount upon the flow of an intermediate-water slope current along a continental shelf. The experimental results for initial ambient conditions of respectively two-layer and linearly stratified fluids show that the structure of such a boundary current depends primarily on the values of the appropriate set of dimensionless dynamical parameters (namely the Burger (Bu), Ekman (Ek) and Rossby (Ro) numbers), as well as the dimensionless lateral separation of the seamount and shelf and the proportional height of the seamount relative to the distance from the bottom at which the intermediate-water flows. Comparisons of the present results with those from a previous two-layer fluid study with no obstacle present reveals that the presence of the obstacle does not alter significantly the stability of the current even when situated close to the shelf. However, for such configurations, the density, velocity and vorticity fields in the local zone of interaction between the current and the obstacle are distorted significantly by the presence of the obstacle, provided that the summit of the obstacle penetrates the level of current flow. Measurements of density, velocity and vorticity fields show no significant dependence of the flow interaction upon the detailed bathymetry of the shelf-slope. For stable intermediate-water slope currents, the nature of the interaction with the obstacle is determined primarily by (i) the lateral separation of the obstacle and the shelf edge and (ii) the Ro of the flow. For sufficiently low values of the former and high values of the latter, the interaction results in a splitting of the incident flow around the obstacle, with cyclonic and anticyclonic eddy pairs being generated in the lee. Geostrophic equilibrium is seen to be maintained in the current, even in the near wake of the obstacle. For cases in which the summit of the seamount is below the initially-undisturbed intermediate water level, no Taylor column-like division of the slope current occurs and no significant distortion of the current structure (velocity and density) occurs for the parameter ranges investigated. For linearly stratified cases, measurements show that no significant local elevation or depression of the density interfaces is observed in the interaction zone. The distributions of the local buoyancy frequencies calculated from the density profiles reveal that the minimum value of the frequency upstream of the obstacle is smaller than that downstream, indicating that the flow interactions generate local mixing downstream, with consequent erosion of the density interfaces.  相似文献   

10.
A systematic investigation of the effects of various parametrizations of dissipation, e.g. quadratic and linear frictional drag, harmonic lateral viscosity, and harmonic lateral diffusion on inertial flow over a sill and possible hydraulic control is presented. Rotation effects are ignored and the geometry is assumed to vary only slowly with downstream distance so that the flow may be considered one-dimensional. Results are given both for a single-active layer and for two-active layers with a rigid lid.If the parametrization is only a function of the dependent variables and not of their spatial derivatives, then it may be possible to hydraulically control the flow. A general expression is derived for the possible control point and the two gradients there, which are functions of the slope and possibly of flow rate. Specific energy is irreversibly removed from the flow and non-controlled as well as controlled flows can exhibit significant asymmetry in fluid depth over a sill. The upstream specific energy, and hence depth of the lower layer, of the controlled flow is greater than for an ideal fluid. Frictional effects modify the behaviour of long gravity waves, such that they are dispersive and damped with time. The system will only exhibit hydraulic control if these effects are small.For a viscous single layer of fluid, the gradient in surface elevation is always uniquely defined, so classically defined hydraulic control, as such, cannot exist. However, for values of non-dimensional lateral eddy viscosity coefficient, , where q is the flow rate, there is a narrow band of specific energies centred around that for the control solution in an ideal fluid, Ecrit, for which the surface elevation, h is very asymmetric over the sill; the solutions resemble the inviscid, hydraulically controlled solutions. Outside this range, either the fluid depth tends to zero, or the surface elevation is almost uniform over the sill. A ‘control’-type solution exists which has the conjugate values of the inviscid equation up- and downstream of the sill, where the gradient in fluid depth, and hence the viscous term, is zero. For larger values of AM, the band of specific energies is much wider, and the upstream specific energy of the ‘control’-type solution is much lower than that for an inviscid fluid. Long gravity waves are dispersive and damped with time. There is a short-wave cut-off, k2 > h/(4AM2), above which waves are stationary in the flow. Longer waves, k2 h/(4AM2), are critical if , as for an ideal fluid. If these waves can propagate significant distances, then any observed asymmetry in h will be due to inertial and not to viscous effects. The behaviour of unidirectional, two-layer flow is similar. The governing equation for viscous, two-layer exchange flow is singular, and typically excludes the ‘control’-type solutions found for unidirectional flows.Establishing the existence and behaviour of steady inertial flows in the presence of lateral diffusion between layers is more difficult. It significantly alters the single-layer solutions once the non-dimensional coefficient AH is large, i.e. . The flow rate may become zero on the downslope as all the fluid diffuses into the inert, infinitely deep, overlaying layer. The fluid depth is maintained by reverse flow from downstream. In this case, the depth of the active layer tends to zero downstream for all values of specific energy. For two-layer flow, both unidirectional and exchange, the governing equation is such that the lower-layer flow rate and interfacial height return to their upstream values.Motivation for the study is provided by the increasingly fine spatial resolution achievable in large-scale numerical models of the ocean general circulation, and the question of whether they are capable of simulating some form of hydraulic control. Application to modelling oceanic flows over a sill is discussed.  相似文献   

11.
Numerical model simulations of sea-breeze circulations in the presence of idealized topography are subjected to dimensional analysis in order to capture the dynamics of the sea-breeze circulation combined with an upslope-flow circulation. A secondary objective is to reconcile previous results based on observations. The analysis is based on a scaling analysis of sea-breeze speed, depth and volume flux. This study is motivated by the fact that the literature of sea breezes interacting with upslope flows is generally qualitative. Results show clear scaling regimes and strong interaction between the two thermally driven circulations. We distinguish three regimes, depending on slope length, slope angle, stability and surface heat flux. The first and third regimes obey the scaling laws of pure sea-breeze scaling. The second regime shows a significant decrease in the scaled volume flux relative to pure sea-breeze scaling. Dynamical relations in the second regime show a strong influence on the circulation of upslope stable air advection.  相似文献   

12.
A series of experiments were performed in a rotating annulus of fluid to study effects of rotation rate on planeta-ry-scale baroclinic wave flows. The experiments reveal that change in rotation rate of fluid container causes variation in Rossby number and Taylor number in flows and leads to change in flow patterns and in phase and amplitude of quasi-stationary waves. For instance, with increasing rotation rate, amplitude of quasi-stationary waves increases and phase shifts upstream. On the contrary, with decreasing rotation rate, amplitude of quasi-stationary waves decreases and phase shifts downstream. In the case of the earth’s atmosphere, although magnitude of variation in earth’s rotation rate is very small, yet it causes a very big change in zonal velocity component of wind in the atmosphere and of currents in the ocean, and therefore causes a remarkable change in Rossby number and Taylor number deter-mining regimes in planetary-scale geophysical flows. The observation reveals that intensity and geographic location of subtropic anticyclones in both of the Northern and Southern Hemispheres change consistently with the variation in earth’s rotation rale. The results of fluid experiments are consistent, qualitatively, with observed phenomena in the atmospheric circulation.  相似文献   

13.
The interaction of katabatic winds with ambient winds has been investigated for an idealized valley using Clark's nonhydrostatic model. Ambient ridgetop wind speeds ranged from 0.5 to 6 m/s, and made angles with the valley axis ranging from 0 ° to 90 °: cooling of the valley was based on measured values of sensible heat fluxes taken from observations in Colorado's Brush Creek Valley. The depth and strength of the down-valley winds decreased with increasing ambient wind speeds but showed relatively little sensitivity to wind directions in the range of 10 ° to 60 ° from the valley axis. An observed inverse linear decrease of drainage depth with wind speed in a 100 m thick layer above the ridgetops was also found in the simulations for parts of the valley but not near the valley mouth. Vertical motions over the valley showed marked patchiness, and implications of this structure on valley flow dynamics are discussed.This work was supported by the U.S. Department of Energy (DOE) under Contract DE-AC06-76RLO 1830.  相似文献   

14.
地形云和降水过程在区域水循环、水资源、生态环境及气候变化中具有十分重要的作用。本文利用中尺度数值模式WRF 数值模拟试验,以及通过引入表示大气层流速度、层结稳定度和地形特征的关系参数——湿Froude 数(Fw),研究了北京2009 年5 月1 日湿条件不稳定大气层结下,地形云和降水形成过程与地形动力抬升和地形重力波传播之间的关系及形成机理。研究表明,在地形最大高度2 km、半宽10 km 的条件下,层流速度从2.5 m/s 逐步增加到25 m/s 时,对应的湿Fw 数从0.19 增加到1.81。当Fw≤1 时,地形的阻挡起主要作用,由地形抬升形成的地形云主要产生在迎风坡一侧。地形重力波主要产生在迎风坡,并向上游传播,先形成层状云,最后演变为准稳定浅对流波状云。最大降水主要发生在紧靠山顶的迎风坡一侧,但当Fw 很小时,地形云不产生降水。当Fw>1 时,地形抬升形成的云主要发生在山顶附近,而地形重力波主要形成在背风坡,并向下游方向传播,形成准稳定波状云。最大降水主要产生在紧靠山顶的背风坡一侧。另外,在弱湿条件不稳定大气层流下,地形降水主要由地形动力抬升造成的暖云微物理过程产生,地形重力波形成的波状云几乎不产生降水。  相似文献   

15.
非洲地形对印度夏季风影响的数值试验   总被引:1,自引:0,他引:1  
利用IAP9L AGCM模式对印度夏季风风场进行了数值模拟,基本上模拟出了印度夏季风系统中各风系分布;在此基础上,通过改变模式中非洲大陆的地形高度,设计了一组地形敏感性试验,对比了敏感性试验和控制试验的结果,分析非洲地形高度对印度夏季风的影响。结果表明,非洲地形高度升高使得阿拉伯海热带区域、南印度洋副热带区域和非洲大陆东南部在低层分别出现异常反气旋、气旋和反气旋环流,这些异常环流使非洲大陆东岸的越赤道气流增强,阿拉伯海热带地区的西风气流增强;地形升高也会使印度半岛区域低层水汽通量辐合增强,整层垂直上升速度加强,降水增加,故非洲地形升高最终导致了印度夏季风增强;而非洲地形高度降低,则情况相反,这充分说明了非洲大陆地形是印度夏季风形成的关键因子。  相似文献   

16.
This study evaluates cloud and precipitation features over the orography of southern Baffin Island in the southeast Canadian Arctic during the Storm Studies in the Arctic (STAR) field project in autumn 2007. Three case studies provide the basis for a comparative analysis of how cloud and precipitation features from upstream ocean regions are modified by the orography, in addition to the variability of these features over diverse synoptic and sea-ice conditions. Using data collected by a research aircraft with an onboard W-band Doppler radar and microphysical instrumentation, multiple factors were found to play roles in enhancing and/or reducing cloud and precipitation over the orography of the region. Gravity waves, terrain shape, atmospheric stability, and atmosphere–ocean exchanges were all associated with precipitation enhancement. In addition, several factors that reduce precipitation were identified, including sublimation, high sea-ice extent, and low-level blocking in the upstream environment. Accretion and aggregation were identified as important particle growth mechanisms over the orography. By increasing particle density and/or mass, the probability of ice particles precipitating to the surface increased. These results indicate that the complexity of these critical features over terrain in high-latitude regions poses considerable challenges for modelling.  相似文献   

17.
本文在GRAPES_TMM(Global/Regional Assimilation and Prediction System for Tropical Mesoscale Model)——中国南海台风模式版(面向南海和东南亚)中发展和引进了KA95(Kim and Arakawa,1995)地形重力波拖曳参数化方案(GWDO),并对2012年主要的9个登陆台风进行了试验对比研究,考察了不同标准Richardson数(Ric)的GWDO试验对台风路径和强度预报的影响。结果表明,在引入地形重力波拖曳参数化过程后,模式对台风登陆时路径和强度的预报能力均要有提高,对台风预报时长越长,GWDO的影响也更为显著。对双台风“SAOLA”和“DAMREY”试验结果表明,GWDO对台风外围距台风中心150 km的对流层中下层风速减弱较为明显,减弱了GRAPES区域模式对台风强度预报偏强的现象,对台风强度长时间预报改善更为明显。不同标准Ric对重力波拖曳力的计算较为敏感,当Ric取1.0时,动能迅速的在低层被频散,能量无法有效地上传;Ric取0.25时,大部分的能量在中高层被频散。总的来说,Ric取0.75时对台风路径和强度预报改进更为显著,其结果可为业务预报提供指导意义。  相似文献   

18.
An attempt has been made to apply Arnol’d type nonlinear stability criteria to the diagnostic study of the persistence (stability) or breakdown (instability) of the atmospheric flows. In the case of the blocking high, the cut-off low and the zonal flow, the relationships of the geostrophic stream function versus the po-tential vorticity of the observed atmosphere are analyzed, which indicates that Arnol'd second type nonlinear stability theorem is more relevant to the observed atmosphere than the first one. For both the sta-ble and unstable zonal flows, Arnol’d second type nonlinear stability criteria are applied to the diagnosis. The primary results show that our analyses correspond well to the evolution of the atmospheric motions. The synoptically stable zonal flows satisfy Arnol'd second type nonlinear stability criteria; while the synoptically unstable ones violate the nonlinear stability criteria.  相似文献   

19.
The impacts of background (or ambient) and local atmospheric thermal stabilities, and slope steepness, on nighttime thermally induced downslope flow in meso- domains (i.e., 20–200 km horizontal extent) have been investigated using analytical and numerical model approaches. Good agreement between the analytical and numerical evaluations was found. It was concluded that: (i) as anticipated, the intensity of the downslope flow increases with increased slope steepness, although the depth of the downslope flow was found to be insensitive to slope steepness in the studied situations; (ii) the intensity of the downslope flow is generally independent of background atmospheric thermal stability; (iii) for given integrated nighttime cooling across the nocturnal boundary layer (NBL), Q s the local atmospheric thermal stability exerts a strong influence on downslope flow behavior: the downslope flow intensity increases when local atmospheric thermal stability increases; and (iv) the downslope flow intensity is proportional to Q s 1/2.  相似文献   

20.
Summary A series of experiments was performed in a rotating annulus of fluid to study effects of rotation rate on planetary-scale baroclinic wave flows. The experiments reveal that change in rotation rate of fluid container causes variation in Rossby number and Taylor number in flows and leads to change in flow patterns and in phase and amplitude of quasi-stationary Waves. For instance, with increasing rotation rate, amplitude of quasi-stationary waves increases and phase shifts upstream. On the contrary, with decreasing rotation rate, amplitude of quasi-stationary waves decreases and phase shifts downstream. In the case of the earth's atmosphere, although magnitude of variation in earth's rotation rate is very small, yet it causes a very big change in zonal velocity component of wind in the atmosphere and of currents in the ocean, and therefore causes a remarkable change in Rossby number and Taylor number determining regimes in planetary-scale geophysical flows. The observation reveals that intensity and geographic location of subtropic anticyclones in both of the Northern and Southern Hemispheres change consistently with variation in earth's rotation rate. The results of fluid experiments are consistent, qualitatively, with observed phenomena in the atmospheric circulation.With 12 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号