首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Allen  Marc S. 《Solar physics》1979,64(1):71-75
Profiles of C iii 1909 and Si iii 1892 obtained on and near the limb during the 1976 flight of the University of Hawaii echelle rocket spectrograph were reduced and analyzed to determine electron densities and mass motions. The electron pressure derived (N eTe 4 × 1015 cm–3) agrees well with that determined by Cook and Nicolas (1979) from ATM data. Nonthermal velocities in the region of formation of Si iii 1892 on the disk were found to be 10–12 km s–1, somewhat lower than the values obtained by Doschek et al. (1976), also from ATM spectra. However, velocities derived at and above the limb were in closer agreement, about 17 km s–1.Geosciences Systems Department, Computer Sciences Corporation, 8728 Colesville Road, Silver Spring, Md. 20910, U.S.A.  相似文献   

2.
With the aid of the spectra taken in the years 1959–1968, a physical analysis of the atmosphere of P Cygni has been carried out and the motions of the atmosphere have been studied. The variations of radial velocities, the velocity progressions of Balmer and Hei lines, the high rate of mass loss (2×10–5 M yr–1), the features of the observed line profiles, especially that of H-K lines of Caii andD 1-D 2 lines of Nai confirm the conclusion of Van Blerkom (1978), concerning the assumption of an accelerating atmosphere for P Cygni. The electron density variation with the radius seems to ben e r –5/2, with an average value of 7×1011cm–3 at the lower boundary of the atmosphere.In order to explain the two absorption components of observed lines, an atmospheric model based on the assumption of three envelopes, two of which accelerate gradually with two different velocity laws (up to 11.2r c ), and the third of which accelerates rapidly with a standard velocity law (beyond 11.2r c ) has been developed. From this model and the observed profiles, the geometrical thicknesses of the line-forming regions of H, H, H, and H are derived.The observations were obtained at Haute Provence Observatory (CNRS).  相似文献   

3.
Positions of active regions estimated from observations of the whole solar disk in Caii K iv during the period 1977–1989 at the Coimbra Astronomical Observatory are compared with the time-dependent latitudinal distribution of background solar magnetic fields and with the latitudinal shifts of boundaries of their polarities. We confirm that the sunspot groups are located near the zonal boundaries between the opposite polarities of the solar background magnetic field during different phases of the two recent consecutive cycles of activity. We demonstrate a probable connection between the increased number of groups and the commencement of poleward migration of zonal boundaries in both hemispheres. But the influence of the dominant convective rolls seems to he still unclear. A new problem of interrelation between the zonal and sector boundaries has also appeared.  相似文献   

4.
We study the effects of the sector structure of the interplanetary magnetic field (IMF) on the Galactic cosmic ray (GCR) anisotropy at solar minimum by using Global Network neutron monitor data. The hourly neutron monitor data for 1976 were averaged for the positive (+) and negative (–) IMF sectors (+ and – correspond to the antisolar and solar directions of magnetic field lines, respectively) and then processed by the global survey method. We found that the magnitude of the GCR anisotropy vector is larger in the positive IMF sector and that the phase shifts toward early hours. The derived GCR components A r, A , and A for the different + and – sectors are then used to calculate the angle ( 46°) between the IMF lines and the Sun–Earth line, the solar wind velocity U ( 420 km/s), the ratio of the perpendicular (K ) and parallel (K ||) diffusion coefficients K /K || = ( 0.33), and other parameters that characterize the GCR modulation in interplanetary space.  相似文献   

5.
The radial velocity, intensity variations of the Caii line and chemical composition of the suspected magnetic star HD 151 199 have been studied using three 9.6 A/mm and twenty-one 40 A/mm dispersion spectrograms which were taken at St. Michel and Asiago Observatories respectively. The radial velocity and the intensity of the Caii K line suggest a variation with a 6.143 day period. The range is about 40 km/sec for the radial velocity and the K line changes in intensity by 50%. Preliminary results of the photometric data in the Geneva system show a similar trend of variation in (B 2B 1) with the same period. H and H contours and the Balmer discontinuity give eff=0.50 and logg=4. The most probable microturbulence is found to be 6.4 km/sec. The excitation temperature, exc=0.50, is derived from the Fe lines and adopted for the other elements as well. A quantitative analysis by curve of growth and weighting function method, using Mihalas and Conti's atmospherical models was made. HD 151 199 shows an overabundance of Ca, Sr, Ba, by factors of 2, 40, and 5 with respect to 30 L Mi. Euii is probably overabundant also but it is not possible to give this element a numerical value. The other elements seem to be normal.  相似文献   

6.
Additional absorption features in the red wings of the resonance Mgii lines near 2800 Å are found in the observations of Algol made by Chen and Wood (1976) from theCopernicus satellite. The absorption features were clearly seen only during a part of the primary eclipse, in the phase interval 0.90–0.03.The observations are interpreted as produced by a stream of matter flowing from Algol B in the direction of Algol A. The measured Doppler shifts of the features give the value of 150 km s–1 as the characteristic velocity of matter in the stream. The mass transfer connected with the stream is estimated to be of the order of 10–13 M yr–1.  相似文献   

7.
A technique developed for analysing line profiles with both speed and high accuracy was used to study the physical conditions of a coronal formation near a quiescent prominence. Detailed analyses of five coronal lines (Fe xiv λ 5303, Fe x λ 6374, Ni xv λ 6702, Fe xv λ 7059, and Fe xi λ 7892) provided total intensities, Doppler width temperatures, ionization temperatures, and velocities. Dissimilar spatial fluctuations in intensity are obvious for ions grouped according to (low vs high) ionization potentials. The intensity of the green line shows a local minimum around the observed quiescent prominence; a corresponding but much more diffuse pattern is visible in the red line intensity. Large differences are observed in temperatures derived by different means. In particular, , while , and . The differences between and are taken as direct evidence of temperature inhomogeneity. One can thus put little significance in T e (xi/x). T D(λ5303) and T e (xv/xiv) fluctuate nearly in parallel at each slit height, with a weak local minimum evident around the prominence. The discrepancy between these two can be removed if a non-thermal turbulent motion of 6–16 km s−1 is assumed. Variations with height of both T D(λ5303) and T e (xv/xiv) suggest that the coronal temperature maximum is located no more than 15000 km above the top of spicules. A negative gradient of about 6 deg km−1 is found in the height variation of T D(λ5303). The height variation of the green line wavelength shows that the majority of coronal material in this region is flowing from west to east on the Sun, with the highest velocity of 12 km s−1 found at the lowest heights. This motion is in the same sense as that of the nearby coronal rain, as determined both from the spectra and wavelength-shifted Hα filtergrams. Superposed on the above flow is a systematic velocity field of up to ±5 km s−1. This field similarly reaches maximum amplitudes at lowest heights showing a local maximum around the prominence. On leave from Institute of Earth Science and Astrophysics, Shiga University, Ohtsu 520, Japan, as 1973–75 National Academy of Science/National Research Council Senior Post-Doctoral Research Associate at Sacramento Peak Observatory.  相似文献   

8.
Results of high-dispersion spectroscopy (10 Å mm–1) of the symbiotic star AX Per carried out in the years from 1979 to 1987 are reported. The emission line [FeVII] 6086 consists of a narrow and a broad component; the radial velocity of the narrow one varies according to the photometric period 681.6 days. This variation (K=30.6±1.5 km s–1) seems to be due to the orbital motion of the hot star. The radial velocity of absorption lines varies with an inverse phase dependence and a much smaller amplitude (K=5.6±2 km s–1), which may reflect the orbital motion of the red giant. The variation of the radial velocity of the emission lines of FeII, ect. (K=6.7±1.5 km s–1) might be due to the rotation of the red giant. The profile of H emission line suddenly changed around the phase of the photometric minimum, which could be explained as a result of an eclipse of the emitting region by the red giant. On the other hand, some problems remain open in the behaviour of the radial velocities of H and HeI 5876.The observed results support a binary model of AX Per consisting of a rather massive (3M ) M-type giant and a Main-Sequence star (0.6M ). AX Per seems to be in an early stage of the Case C mass transfer, and the estimated very high mass accretion rate (10–4 M yr–1) is consistent with the theoretical models. The narrow component of the emission line of [FeVII] 6086 might be emitted in radiatively driven polar jets on the hot star of which luminosity is close to the Eddington limit.A new identification as ZrII at 6106.47 Å is proposed for the emission line at 6106 Å.  相似文献   

9.
We outline a method to explore the column density of the Local Interstellar Medium (LISM) using absorptions in the resonance H and K lines of Mgii. The intrinsic strengths of these lines in the temperature and density conditions prevailing in warm clouds (T eff<104 K) in the LISM allows them to be used to explore many lines of sight where lines such a NaD and Caii H and K are too weak, but where L is saturated. The number of measurable lines-of-sight is greatly enhanced by using cool stars as the background emitters, but this implies reliable separation of the LISM components from stellar chromospheric selfabsorptions. We explain how to do this, and how to use a combination of column density and radial velocity data to measure the spatial extent and the physical parameters of the single cloud in which the Sun is embedded. This proves to be an oblate spheroid, of characteristic diameter 8 pc, withT eff 104 K,n(Hi) of 0.1 cm–3 and a mass <5M , streaming in the LSR from a point 1=4°,B=+16° with velocity equal to 16 km s–1, and is surrounded by the much hotter lower density ionized gas of the local supernova bubble.  相似文献   

10.
Twenty-five coudé spectrograms (22 with dispersion 12 Å mm–1 and three 7 Å mm–1) of 6 Cassiopeiae (A3 Ia) have been studied. The observations were made at the Haute Provence Observatory. The results of the analysis suggest a correlation between the variations of the equivalent widths, the microturbulence and the radial velocity. The radial velocity and turbulent velocity present a rapid variation with time, even in intervals as short as about an hour. The hydrogen lines are slightly asymmetric but the strongest Feii lines are clearly asymmetric. We found that the amount of asymmetry of the strongest Feii lines (I>6) correlates with the loggf value, with the estimated laboratory intensityI, and with the equivalent widthW .The observations have been made at the Astronomical Observatory of Haute Provence (CNRS). This work has been supported by TUBITAK (Scientific and Technical Research Council of Turkey), and partially by CNR (Consiglio Nazionale delle Ricerche) of Italy.  相似文献   

11.
High spatial resolution spectral observations of five hedgerow prominences were made in H, He i D3 and Ca ii H and K.The observed relations between the lines were not the same in all prominences. The Ca ii H and K lines were 2–4 times brighter relative to H and D3 than predicted theoretically. The optical thickness of H was less than for the H and K lines, the H was optically thin in medium faint prominence structures. Faint structures appeared slightly hotter than bright structures.On leave from Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, Oslo 3, Norway.  相似文献   

12.
During the total solar eclipse of 11 June, 1983, an imaging dual-channel Fabry-Pérot interferometer was used to obtain line profiles simultaneously in the green 5303 Å [Fe xiv] and the red 6374 Å [Fe x] coronal lines at various positions in the corona. Extensive microdensitometry followed by multi-Gaussian curve-fitting analysis has resulted in the determination of coronal temperatures and velocity separations between different pockets of coronal gas in the line of sight over a large extent of the corona. Fewer high temperature zones are to be found in the corona of 1983 compared with our similar green-line measurements of the solar maximum corona of 1980. The data are consistent with a temperature maximum occurring at 1.2 R , as found at the 1980 eclipse, but our new data are insufficient to observe farther out than this radius and so determine the position of a maximum. The velocity field in the corona at the 1983 eclipse is less structured compared with that at the 1980 eclipse and is mainly confined to the zone 20–30km s–1.  相似文献   

13.
Ø. Hauge  H. Sørli 《Solar physics》1973,30(2):301-308
Two new Th ii lines have been identified in the spectrum of the solar photosphere. The abundance derived from these lines together with the previously known Th ii line at 4019 Å, is log Th = 0.85 ± 0.20 in the log H = 12.00 scale. Analysis of three Pb i lines in the photospheric spectrum resulted in an abundance of log pb = 1.90 ± 0.10. The solar Th/Pb ratio is: Th/ Pb = 0.09 -0.005 0.09 .  相似文献   

14.
The surface photometry of S254–S257 has been carried out by means of a wide range image processing technique in the reduction system. The photographic plates in the H+[NII] andV-bands are taken with the Schmidt telescope. Especially, we have obtained the calibrated map of theHii region, superposing two or more plates with different exposure times, and removing the star images. Three kinds of calibrated maps of theHii regions are drawn: (1)E-map in the (H+[NII]+continuum) (2)V-map in the continuum atV-band, (3)(E-V)-map in the (H+[NII]) line emission. The intensity profiles across the nebular centers were also obtained. Based on calibrated maps, the morphological structure and mass distribution of S255 and S257 are discussed. The location of observed nebulae on the (m Hm v) diagram, wherem H andm v denote the surface brightness, expressed in the magnitude per square arcmin, is shown together with that of some other nebulae. Some arguements on the age sequence of observedHii regions are presented.  相似文献   

15.
Calculations of electron temperature (T e) and density (N e) sensitive line ratios in Sixi involving transitions in the 358–604 wavelength range are presented. These are shown in the form of ratio-ratio diagrams, which should in principle allow bothN e andT e to be deduced for the Sixi line-emitting region of a plasma. However a comparison of these with observational data for two solar flares, obtained with the Naval Research Laboratory's S082A spectrograph on boardSkylab, reveals that the experimental ratios are much larger than expected from theory, which is probably due to the Sixi lines in the S082A spectra being blended with transitions from species including Nev, Fexi, and Fexii. Possible future applications of the Sixi results to spectral data from the Coronal Diagnostic Spectrometer on the Solar and Heliospheric Observatory are briefly discussed.  相似文献   

16.
Slitless flash spectrograms in heights below 8000 km above the solar limb were obtained by the University of Kyoto Expedition at Atar, Mauritania. The integrated intensities of Fexiv 5303, Fex 6374, Fexi 7892, and the continuum are measured as a function of height above the solar limb at eleven points (P.A. = 284–300°) around the third contact point. It is found that a significant amount of the emission in Fex 6374 originates in chromospheric levels well below 8000 km. This implies that the interspicular region of the chromosphere is occupied by coronal material. The average values of the electron temperature and the electron density in the interspicular region are derived from the Fex 6374 and the Fexi 7892 intensities on the assumption of spherical symmetry: T e = 0.9–1.1 × 106 K and N e = 9–10 × 108 cm–3. The intensity variations of the coronal lines and the continuum with position angle are also studied. Strong correlations between Fexiv 5303 and the continuum and between Fex 6374 and Fexi 7892 are found. From the Fex 6374 intensities it is inferred that there is a density fluctuation in the innermost corona by at least a factor of two.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 271.  相似文献   

17.
Results are given of the detailed analysis of fourteen Fe xxv-xxiii lines ( = 1.850–1.870 Å) in the spectra of a solar flare on 16 Nov. 1970. The spectra were obtained with a resolution of about 4 × 10–4 Å, which revealed lines not previously observed and allowed the measurement of line profiles. The measured values of the wavelengths and emission fluxes are presented and compared with theoretical calculations. The analysis of the contour of the Fe xxv line ( = 1.850 Å) leads to the conclusion that there is unidirectional macroscopic gas motion in the flare region with the velocity (projection on the line of sight) ± 90 km s–1.Measurements of the 8.42 Å Mg xii and 9.16 Å Mg xi lines in the absence of solar flares indicate prolonged existence of active regions on the solar disk with T e = 4–6 × 106K and emission measure ME 1048 cm–3. The profile of the Mg xii line indicates a macroscopic ion motion with a velocity up to 100 km s–1.  相似文献   

18.
The physical properties in the coronal disturbance (CD) (W90, N25°) associated with an active prominence are investigated on the basis of the intensities and profiles of 5694 Å Caxv and 6702 Å Nixv lines and continuum measured in the eclipse coronal spectra of 31 July, 1981. The spectrograms have been taken with a dispersion of between 7 to 10 Å mm-1 and a solar image of 15 mm in diameter. The following characteristics of the CD have been deduced. The CD occurred cospatially with an active prominence and consisted of two discrete regions with different temperatures penetrating each other. (1) Caxv region: T e= 3.8 × 106 K, the length along the slit of the spectrograph Z 65000 km, the effective line-of-sight length L 20000 km, the average electron density , nonthermal velocities V t= (20–32) km s-1. (2)Nixv-Caxiii region: T e= 2.3 × 106 K, Z 37000 km, L 35000 km, n e 1 × 109 cm-3, V t= (23–30) km s-1. A macroscopic mass motion has been discovered within the Nixv region of the CD from the Doppler shifts of the 6702 Å Nixv line: V r= + 27 km s-1 on the lower and V r= - 12 km s-1 on the upper border of the CD. The average height of the CD was H 0.08 R . The radial velocities in the prominence found from the emission line tilts are + 12 and - 8 km s-1 on its lower and upper borders. A similar picture of the mass motion in the CD and the prominence speaks in favour of an intimate relation between them.  相似文献   

19.
Extreme ultraviolet spectra of several active regions are presented and analyzed. Spectral intensities of 3 active regions observed with the NRL Skylab XUV spectroheliograph (170–630 Å) are derived. From this data density sensitive line ratios of Mg viii, Si x, S xii, Fe ix, Fe x, Fe xi, Fe xii, Fe xiii, Fe xiv, and Fe xv are examined and typically yield, to within a factor of 2, electron pressures of 1 dyne cm–2 (n e T = 6 × 1015 cm–3 K). The differential emission measure of the brightest 35 × 35 portion of an active region is obtained between 1.4 × 104 K and 5 × 106 K from HCO OSO-VI XUV (280–1370 Å) spectra published by Dupree et al. (1973). Stigmatic EUV spectra (1170–1710 Å) obtained by the NRL High Resolution Telescope and Spectrograph (HRTS) are also presented. Doppler velocities as a function of position along the slit are derived in an active region plage and sunspot. The velocities are based on an absolute wavelength scale derived from neutral chromospheric lines and are accurate to ±2 km s–1. Downflows at 105 K are found throughout the plage with typical velocities of 10 km s–1. In the sunspot, downflows are typically 5 to 20 km s–1 over the umbra and zero over the penumbra. In addition localized 90 and 150 km s–1 downflows are found in the umbra in the same 1 × 1 resolution elements which contain the lower velocity downflows. Spectral intensities and velocities in a typical plage 1 resolution element are derived. The velocities are greatest ( 10 km s–1) at 105 K with lower velocities at higher and lower temperatures. The differential emission measure between 1.3 × 104 K and 2 × 106 K is derived and is found to be comparable to that derived from the OSO-VI data. An electron pressure of 1.4 dynes cm–2 (n e T = 1.0 × 1016 cm–3 K) is determined from pressure sensitive line ratios of Si iii, O iv, and N iv. From the data presented it is shown that convection plays a major role in determining the structure and dynamics of the active region transition zone and corona.  相似文献   

20.
R. Grant Athay 《Solar physics》1990,126(1):135-152
Selected Civ V 0 lines (lines separating adjacent regions of strong blue shift and strong red shift) located near the solar limb and oriented parallel to the radius vector from disk center are shown to be closely aligned with H dark filaments in active regions. The filaments, in turn, are known to lie in the vicinity of magnetic neutral lines. The radial orientation of the V 0 lines minimizes uncertainties in image registration and their location near the limb ensures that the observed fluid motion has major components paralleling V 0. It follows that the filaments are located at sites of velocity shear, and, by inference, of magnetic shear. For a case in which a given V 0 line is observed near both east and west limbs, the gradient of Doppler velocity across the V 0 line reverses sign from one limb to the other as is expected for horizontal steady flow. Thus, the velocity vectors remain fixed with respect to the filament.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号