首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small heat shock proteins encompass a widespread but diverse class of proteins,which play key roles in protecting organisms from various stressors.In the present study,the full-length cDNAs of two small heat shock proteins(MgsHSP22 and MgsHSP24.1)were cloned from Mytilus galloprovincialis,which encoded peptides of 181 and 247 amino acids,respectively.Both MgsHSP22 and MgsHSP24.1 were detected in all tissues examined by real-time PCR,with the highest expression being observed in muscle and gonad tissues.The real-time PCR results revealed that Cd signifi cantly inhibited MgsHSP22 expression at 24 h and MgsHSP24.1 at 24 and 48 h under 5 μg/L Cd 2 + exposure.MgsHSP24.1 expression was also signifi cantly inhibited after 50 μg/L Cd 2+ exposure for 48 h.With regard to antioxidant enzymes,increased GPx and CAT activity were detected under Cd 2+ stress(5 and 50 μg/L),while no signifi cant difference in SOD activity was observed throughout the experiment.Overall,both MgsHsps and antioxidant enzymes revealed their potential as Cd stress biomarkers in M.galloprovincialis.  相似文献   

2.
Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.  相似文献   

3.
The dinoflagellate Prorocentrum minimum, one of the most widespread red tide causing species, affects marine aquaculture and ecosystems worldwide. In this study, ridgetail white prawn Exopalaemon carinicauda were exposed to P. minimum cells (5 × 104 cells mL?1) to investigate its harmful effects on the shrimp. Antioxidant activities and histological changes were used as indicators of health status of the shrimp. In 72 hours, the mortality of E. carinicauda was not affected, but its antioxidant response and histology were statistically different from those of control. Elevated superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities and depressed catalase (CAT) activity were observed in gill; while increased SOD, glutathione S-transferase (GST), CAT activities and modulated GPX activity were observed in hepatopancreas. Thus, antioxidant activities in gill and hepatopancreas seem to respond differentially to harmful alga exposure. Increased malondialdehyde (MDA) content in early a few hours indicates the damage of the antioxidant defense system. Although MDA content recovered to a low level thereafter, a series of histological abnormalities including accumulation or infiltration of hemocytes, tissue lesions and necrosis were discovered in gill and hepatopancreas. Exposure to P. minimum induced sublethal effects on E. carinicauda, including temporary oxidative damage and histological injury.  相似文献   

4.
Mud crab (Scylla serrata) is an important commercial crustacean in China. An experiment was designed to study the effect of cold stress on S. serrata. After a one-week adaptation at 28oC, the temperature is suddenly reduced to 4oC. The crabs were sampled every 2 h for 10 h and dissected immediately to measure the enzyme activity. The crabs at room temperature (28oC) were used as the control group. The activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), the content of malondialdehyde (MDA) and the activity of 4 ATPases (Na , K -ATPase; Mg2 -ATPase; Ca2 -ATPase; Ca2 , Mg2 -ATPase) were measured biochemically. In contrast to the control group, the SOD activity increased significantly from 2 to 6 h after the cold stress, and then decreased. The CAT and GPX activities increased in 2 h, and then decreased gradually. The content of MDA increased gradually in 4 h. The activity of Na , K -ATPase decreased in 2 h, increased up to the top value at Hour 6, then decreased again. The activities of Mg2 -ATPase, Ca2 -ATPase and Ca2 , Mg2 -ATPase increased significantly in 6 h, insignificantly in any other hours. Under cold stress, the activity of antioxidative enzymes in S. serrata was reduced at first then stabilized, ROS-scavenging weakened, and MDA accumulated gradually in the gill after 6 h. The activity of the 4 ATPases in the crab decreased after 6 h, suggesting that the ability to regulate ion concentration has been paralyzed. Therefore, the maximum period to sustain healthy meat in the crab under cold stress is 6 hours.  相似文献   

5.
This study deals with the toxic effects of Zn2+, Cu2+, Cd2+ and NH3 on Chinese prawn (Penaeus orientalis). The median lethal concentrations of the toxic matters on Chinese prawn were determined. Cd2+>Cu2+>Zn2+>NH3-Nm is the toxic order of these chemicals to Chinese prawn. The toxic order of concentrated Zn2+ and Cd2+ in tissues and organs of Chinese prawn is in the order. gill>shell+appendage>viscera>muscle.  相似文献   

6.
We investigated the effect of tributyltin (TBT) exposure on the concentration of malondialdehyde (MDA) and the activity levels of the superoxide dismutase (SOD), catalase (CAT), and acid and alkaline phosphatase (ACP and AKP) enzymes in the small abalone, Haliotis diversicolor supertexta. We collected samples of the hepatopancreas and hemolymph 2, 6, 24, 48, 96, and 192 h after exposure to 0.35 μg (Sn)/L TBT. In the hepatopancreas, ACP activity was significantly higher in animals exposed to TBT 2, 24, and 96 h post-exposure compared with the control animals. AKP activity was also higher after 2 h, but SOD and CAT activity was unchanged. The concentration of MDA in the hemolymph was significantly higher than the control animals 2 and 6 h post-exposure. In the hemolymph of animals exposed to TBT, ACP activity was significantly lower than in the control animals 192 h post-exposure, whereas AKP activity was significantly lower 2 and 192 h post-exposure. Hemolymph SOD activity and levels of MDA were significantly lower than in the control animals 24 h after exposure but significantly higher after 96 h. Our results demonstrate that exposure to TBT cause rapid changes in ACP and AKP activity as well as altering the concentration of MDA in the hepatopancreas and hemolymph. SOD and CAT do not appear to be involved in the detoxification of TBT in the hepatopancreas of small abalone.  相似文献   

7.
Mercury (Hg) is one of the commonly encountered heavy metals, which is widespread in inshore sediments of China. In order to investigate the toxicity of Hg on marine invertebrates, we studied the effects of the divalent mercuricion (Hg2+) (at two final concentrations of 0.0025 and 0.0050 mg L−1, prepared with HgCl2) on metallothionein (MT) content, DNA integrity (DNA strand breaks) and catalase (CAT) in the gills and hepatopancreas, antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the hemolymph, gills and hepatopancreas of the portunid crab Charybdis japonica for an experiment period up to 15 d. The results indicated that MT was significantly induced after 3 d, with a positive correlation with Hg2+ dose and time in the hepatopancreas and a negative correlation with Hg2+ dose and time in the gills. While CAT in the hemolymph was not detected, it increased in the hepatopancreas during the entire experiment; SOD and GPx in the three tissues were stimulated after 12 h, both attained peak value and then reduced during the experimental period. Meanwhile, DNA strand breaks were all induced significantly after 12 h. These results suggested the detoxification strategies against Hg2+ in three tissues of C. japonica.  相似文献   

8.
There are rising concerns about the hazardous effects of heavy metals on the environment. In this study, comet assay and DNA alkaline unwinding assay were conducted on the tissues (gills, hepatopancreas, and hemocytes) of Charybdis japonica in order to illustrate genotoxicity of three heavy metal ions (Cu2+, Pb2+, and Cd2+) on the marine crabs C. japonica. The crabs were exposed to Cu2+ (10, 50, and 100 ?g.L?1), Pb2+ (50, 250, and 500 ?g L?1) and Cd2+ (5, 25, and 50 ?g L?1), and the tissues were sampled at days 0.5, 1, 3, 6, 9, and 15. DNA alkaline unwinding assay was used for testing the DNA single strand break in gills and hepatopancreas and comet assay was employed for testing the DNA damage in hemocytes. The results showed that the DNA damage (F-value) of gills in the crabs exposed to the three heavy metals was decreased gradually during the exposure periods and there was a dose-time response relationship in certain time, suggesting that the levels of DNA single strand break in all the experimental groups increased significantly compared to the controls. Changes of F-value in hepatopancreas of the crabs exposed to the three heavy metals were similar to those in gills except that the peak values were found in the 500 ?g L?1 Pb2+ treatment group at day 3 and the 50 ?g L?1 Cd2+ treatment group at day 9. The ranks of DNA damage in gills and hepatopancreas induced by the three heavy metal ions (50 ?g L?1, day 15) were Cd2+ >Pb2+ >Cu2+ and Pb2+ >Cu2+ >Cd2+. The levels of DNA damage in gills were higher than those in hepatopancreas in the same experimental group. It can be concluded that indices of DNA damage can be used as the potential biomarkers of heavy metal pollution in marine environment.  相似文献   

9.
Different amounts of vitamin C were added to diets fed to juveniles(2.5 ± 0.15 g) of sea cucumber Apostichopus japonic u s(Selenka) in an attempt to reduce the stress response of specimens exposed to nitrite stress. A commercial feed was used as the control diet and three experimental diets were made by supplementing 1 000, 1 500, or 2 000 mg vitamin C/kg diet to control diet separately in a 45-day experiment. Sea cucumbers were exposed to three different levels(0.5, 1.0, and 1.5 mg/L) of nitrite stress for 4, 8, and 12 h at four time intervals(0, 15, 30, and 45 d). Growth of the animals was recorded during the experiment. Reactive oxygen species(ROS)(i.e. hydroxyl free radical(-OH), malondialdehyde(MDA) and total antioxidant capacity(T-AOC)) and antioxidant enzyme activities(i.e., superoxide dismutase(SOD) and catalase(CAT)) were measured. Response surface methodology(RSM) was used to analyze the effect of multiple factors on ROS indices and enzyme activities. Weight gain(WG) and special growth rate(SGR) of vitamin C supplementation groups were significantly higher than those of control group( P 0.05). The levels of-OH and MDA increased under exposure time extending and nitrite concentration increasing, whereas T-AOC level decreased. SOD and CAT activities increased at 4 h and 8 h and decreased at 12 h. During the days in which the animal consumed experimental diets, the levels of-OH and MDA decreased and that of T-AOC increased. This result suggests that diets containing vitamin C could reduce the nitrite stress response in the animals and increase their antioxidant capacity. The multifactor regression equation of growth performance, ROS indices, and duration of feeding results suggest that vitamin C supplementation of 1 400–2 000 mg/kg diet for 29–35 days could reduce effectively the effects of nitrite exposure.  相似文献   

10.
We studied the effects of mercury (Hg2+) on antioxidant and digestive enzyme activities in terms of LC50 value and on hepatopancreas histostructures of juvenile Chinese mitten crabs Eriocheir sinensis in 40-day exposure to various concentrations of Hg2+ (0, 0.01, 0.05, 0.10, 0.20, and 0.30 mg/L). The results show that the activities of superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) significantly increased in the concentrations of 0.01 and 0.05 mg/L, while that of enzyme decreased in 0.10, 0.20 and 0.30 mg/L treatments. Meanwhile, Hg2+ disrupted the histostructures of the hepatopancreas, causing decreases in activities of pepsin, tryptase, amylase, and cellulose, which are synthesized in the hepatopancreas. Moreover, as the Hg2+ concentration increased, the survival rate of the crabs decreased, worst at 56.57% in 0.30 mg/L. Therefore, although crabs are able to tolerate low levels of mercury pollution, high levels lead to cellular injury and tissue damage in hepatopancreas, which then loses some of its vital physiological functions such as absorption, storage, and secretion.  相似文献   

11.
Information regarding antioxidant enzymes in amphioxus remains lacking, and this study was carried out to examine the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in different genders and tissues of amphioxus Branchiostoma belcheri tsingtauense. Results show that (1) CuZn-SOD, CAT and GPX activities in the whole amphioxus B. belcheri tsing- tauense were basically at the same levels in male and female amphioxus, whereas both T-SOD and Mn-SOD activities in male amphioxus were significantly higher than that in the female (P<0.05); (2) The testis had significantly higher T-SOD and CuZn-SOD activities than the ovary (P<0.05); (3) CuZn-SOD activity was undetectable in the guts of male and female amphioxus; (4) For both male and female am- phioxus, the activities of CAT and GPX in the gonads including testis and ovary were the lowest (P<0.05) among the tissues examined; (5) The gut and gill had the same level GPX activities while the gut had a higher CAT activity; (6) There was no clear difference in CAT and GPX activities in the corresponding tissues between male and female amphioxus. The study on SOD, CAT and GPX activities in different genders and tissues of the protochordate provides data for future comparison of amphioxus antioxidant enzymes with those of invertebrates and vertebrates.  相似文献   

12.
This study investigated the effect of a chitosan oligosaccharide-Ca complex (COS-Ca) on the depuration of cadmium (Cd) from Chlamys ferrari. After exposure to 0.5 mg L-1 CdCl2 for 3 or 7 d, the scallops were treated by COS-Ca prior to determina-tion of Cd, calcium (Ca) and zinc (Zn) contents, Cd distribution in organs, malondialdehyde (MDA) content and antioxidant variables. Results showed that COS-Ca reduced Cd content in the viscera of the scallops, with highest Cd depuration rate (47%) observed on day 3. The COS-Ca concentration substantially affected Cd depuration, and the exposure to 8.75 mg L-1 COS-Ca led to significantly higher Cd depuration rate compared with those of lower COS-Ca concentrations (1.75, 3.5, 5.25, and 7.00 mg L-1). Distribution analysis of Cd in scallop organs indicated that COS-Ca significantly reduced Cd content in the kidney throughout the 5-d experiment, as well as in the gill during the early stage of Cd depuration. In addition, COS-Ca treatment decreased glutathione peroxidase (GSH-Px) activity and MDA content while increasing superoxide dismutase (SOD) and catalase (CAT) activities on different days. Our work suggested COS-Ca complex treatment as an effective method for acceleration of Cd depuration from Cd-contaminated bivalves.  相似文献   

13.
Heavy metal pollution has become a worldwide problem in aquaculture. We studied copper (Cu2+ ) accumulation and physiological responses of two red algae Gracilaria lemaneiformis and Gracilaria lichenoides from China under Cu2+ exposure of 0-500 μg/L in concentration. Compared with G. lemaneiformis, G. lichenoides was more capable in accumulating Cu2+ , specifically, more Cu2+ on extracellular side (cell wall) than on intracellular side (cytoplasm) and in cell organelles (especially chloroplast, cell nucleus, mitochondria, and ribosome). In addition, G. lichenoides contained more insoluble polysaccharide in cell wall, which might promote the extracellular Cu2+ -binding as an efficient barrier against metal toxicity. Conversely, G. lemaneiformis was more vulnerable than G. lichenoides to Cu 2+ toxin for decreases in growth, pigment (chlorophyll a, chlorophyll b, phycobiliprotein, and β-carotene) content, and photosynthetic activity. Moreover, more serious oxidative damages in G. lemaneiformis than in G. lichenoides, in accumulation of reactive oxidative species and malondialdehyde, and in electrolyte leakage, because of lower antioxidant enzyme (superoxide dismutase and glutathione reductase) activities. Therefore, G. lichenoides was less susceptible to Cu2+ stress than G. lemaneiformis.  相似文献   

14.
Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase(SOD) and peroxidase(POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations(0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica(P 0.05). Higher concentrations(≥12 mg L-1) of uniconazole could inhibit significantly the growth, dry weight, chlorophyll-a and carbohydrate contents of P. helgolandica and P. viridis(P 0.05). Uniconazole caused a significant increase in lipid peroxidation production(MDA) at higher concentrations(≥ 9 mg L-1). The activities of antioxidant enzymes, superoxide dismutase(SOD) and catalase(CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.  相似文献   

15.
A new extracellular κ-carrageenase, namely CgkP, 34.0 kDa in molecular weight, was purified from Pseudoalteromonas sp. QY203. CgkP showed relatively high activity at acidities ranging from pH6.0 to pH9.0 and temperatures ranging from 30℃ to 50℃ with the highest activity at 45℃ and pH7.2. Sodium chloride increased its activity markedly, and KCl increased its activity slightly. The divalent and trivalent metal ions including Cu2+ , Ni2+ , Zn2+ , Mn2+ , Al3+ and Fe3+ significantly inhibited its activity, while Mg2+ did not. CgkP remained 70% of original activity after being incubated at 40℃ for 48 h, and remained 80% of the activity after being incubated at 45℃ for 1 h. It exhibited endo-κ-carrageenase activity, mainly depolymerizing the κ-carrageenan into disaccharide and tetrasaccharide. CgkP was more thermostable than most of previously reported κ-carrageenases with a potential of being used in industry.  相似文献   

16.
温度和盐度对军曹鱼幼鱼生长与抗氧化酶活性的影响   总被引:2,自引:0,他引:2  
在实验室条件下,采用两因素交叉分组的方法,初步研究了环境因子(温度和盐度)对军曹鱼幼鱼肌肉抗氧化酶比活力的影响。温度设3个水平(26、29、32),盐度设4个水平(11、19、27、35),两个因素按其各自水平共产生12种组合。军曹鱼幼鱼在玻璃钢水槽内养殖20d后取样测定超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPX)的比活力。结果表明:盐度因子诱导了军曹鱼的抗氧化应激反应,抗氧化酶活力随盐度降低而升高,SOD、CAT和GPX比活力分别从35时的17.74±3.38、19.44±2.66和13.70±2.99U/mg上升到11时的30.14±1.76、35.63±10.59和17.44±4.32U/mg;温度、盐度及因素间的交互作用对SOD和CAT比活力有显著影响(P<0.05);温度对GPX比活力无显著影响(P>0.05),而盐度及因素间的交互作用对GPX比活力影响显著(P<0.05)。  相似文献   

17.
【目的】探究保活运输中低氧胁迫对珍珠龙胆石斑鱼(Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂)氧化应激的影响。【方法】诱导体质量为(498.2±27.3)g的杂交石斑鱼进入休眠状态,并放置在溶解氧为(1.74±0.21)mg·L?1的低氧环境下,低氧胁迫0、6、12、24、48、72 h后,取样测定血清应激指标,肌肉、肝脏、鳃组织氧化应激指标及肌肉、肝脏能量利用指标。【结果】低氧胁迫过程中,杂交石斑鱼血糖含量在胁迫6 h时最大,72 h时恢复胁迫前水平;皮质醇含量在胁迫过程均显著高于胁迫前;肌肉超氧化物歧化酶(SOD)活性随胁迫时间的增加而上升,肝脏、鳃SOD活性先上升后下降;肌肉、肝脏过氧化氢酶(CAT)活性呈先升后降的趋势,鳃CAT活性在胁迫12、72 h显著低于胁迫前;肌肉、肝脏丙二醛(MDA)含量在胁迫过程中均增加,鳃MDA含量先降后升;肌肉谷胱甘肽还原酶(GSH)含量在胁迫12 h达到最大值,肝脏GSH含量呈先上升后下降的趋势,鳃中GSH含量在12 h时显著高于胁迫前,之后逐渐升高;总抗氧化能力(T-AOC)在肌肉、肝脏、鳃中均呈上升的趋势;肌肉和肝脏中糖原的含量显著减少,肌肉乳酸脱氢酶(LDH)活性显著增加,肝脏LDH先降后升。显著性水平均为0.05。【结论】低氧胁迫会刺激珍珠龙胆石斑鱼产生应激反应,影响体内正常的氧化应激系统,并对不同组织造成不同程度的氧化损伤。  相似文献   

18.
The infaunal polychaete Perinereis aibuhitensis Grube, distributed widely along Asian coasts and estuaries, is considered a useful animal model in ecotoxicological tests and a promising candidate in biomonitoring programs. This paper deals with the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidases (GSH-Px) in infaunal polychaete P. aibuhitensis exposed to a series of sublethal water-bound cadmium (Cd) concentrations (0, 0.34, 1.72, 3.44, 6.89, and 17.22 mg L−1) under a short-term exposure (1–8 d). The results indicate that the SOD and GSH-Px activities in P. aibuhitensis are stimulated first and then renewed to the original level. The CAT activity of worms decreases at an earlier exposure time but increases to the control values at a later exposure time. Our study suggests that Cd can interfere with the antioxidant defense system of P. aibuhitensis. However, the changes in antioxidant enzyme activities for this species do not show the best promise as biomarkers in Cd biomonitoring of estuarine and coastal zones because weak or non-dose-effect relationships between the antioxidant enzymes activities and Cd levels are found.  相似文献   

19.
The effects of cadmium(Cd)on metal accumulation,microelements contents,and antioxidant responses in Hexagram-mos otakii were studied.The fish were exposed to 0.2,2.5,or 10μg L?1 Cd for 12 or 24 days.Then,the concentration of Cd and mi-croelements(Ca,Fe,Zn,and Se)were determined in the liver and kidney.Moreover,the activities of antioxidant enzymes including superoxide dismutase(SOD),catalase(CAT),and glutathione-S-transferase(GST),and the content of malondialdehyde(MDA)in the liver and kidney were also measured.A continuous accumulation of Cd was observed throughout the experimental period.Cd accumulation was higher in liver than that in the kidney,while Ca and Fe contents were lower in liver than those in the kidney.Cd exposure resulted in a decrease of Ca and Fe concentrations in the kidney,while there was no effect on the liver.Zn and Se remained unaffected with exposure to Cd.Cd exposure induced severe oxidative stress in H.otakii,as indicated by significant induction of the activities of SOD,CAT,and GST,and a simultaneous increase of MDA content.These data show that antioxidant enzymes and mi-croelements contents can be used as potential biomarkers to monitor environmental health in fish.  相似文献   

20.
The objective of this study was to examine the effect of benzo[a]pyrene(Ba P) on the detoxification and antioxidant systems of two microalgae,Isochrysis zhanjiangensis and Platymonas subcordiformis.In our study,these two algae were exposed to Ba P for 4 days at three different concentrations including 0.5 μg~(L-1)(low),3 μg~(L-1)(mid) and 18 μg~(L-1)(high).The activity of detoxification enzymes,ethoxyresorufin O-deethylase(EROD) and glutathione S-transferase(GST) increased in P.subcordiformis in all Ba P-treated groups.In I.zhanjiangensis,the activity of these two enzymes increased at the beginning of exposure,and then decreased in the groups treated with mid-and high Ba P.The activity of antioxidant enzyme superoxide dismutase(SOD) increased in I.zhanjiangensis in all Ba P-treated groups,and then decreased in high Ba P-treated group,while no significant change was observed in P.subcordiformis.The activity of antioxidant enzyme catalase(CAT) increased in I.zhanjiangensis and P.subcordiformis in all Ba Ptreated groups.The content of malondialdehyde(MDA) in Isochrysis zhanjiangensis increased first,and then decreased in high Ba P-treated group,while no change occurred in P.subcordiformis.These results demonstrated that Ba P significantly influenced the activity of detoxifying and antioxidant enzymes in microalgae.The metabolic related enzymes(EROD,GST and CAT) may serve as sensitive biomarkers of measuring the contamination level of Ba P in marine water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号