首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用改进的 Barnes 逐步订正法,结合一个混合层模型,构建完成了一个新版(2004-2017 年) 全球海洋(79. 5°S~79. 5°N,180°W~180°E)Argo 三维网格温、盐度资料集及衍生数据产品。 与旧版网格数据集相比,新版数据集采用一阶近似(表层温、盐度通过混合层内温、盐度线性拟合得出)的混合层模型,改善了资料集在表层的准确性;与 WOA13 资料集、同类 Argo 资料集和锚碇浮标观测资料的可靠性检验结果表明,新版全球海洋 Argo 网格数据集提供的资料是可信的,其质量也是有充分保证的。  相似文献   

2.
海表盐度(Sea Surface Salinity,SSS)是研究海洋对全球气候影响的重要参量,欧洲航天局(European Space Agency,ESA)设计研发的SMOS(Soil Moisture and Ocean Salinity)是专用于探测海水盐度的卫星之一。受射频干扰(Radio Frequency Interference, RFI)等因素的影响,SMOS卫星盐度产品的精度难以达到预期效果。为了提高SMOS卫星海表盐度产品精度,本文提出一种基于深度神经网络的海表盐度反演算法。以太平洋中部海域(150°E~180°,5°~30°N)为研究区域,利用Argo浮标实测盐度数据为参考真值,将SMOS卫星L1C、L2级产品与Argo盐度数据进行时空匹配。并根据海洋遥感和辐射传输理论,选取亮温(Brightness Temperature,TB)、海表温度(Sea Surface Temperature,SST)、降雨率(Rain Rate,RR)、波高(Significant Wave Height,SWH)、纬向风速(Zonal Wind Speed,ZWS)、经向风速(...  相似文献   

3.
为解决海洋中大量观测数据只含有温度剖面而缺乏盐度观测的问题, 基于历史观测的温盐剖面资料, 考虑到盐度卫星数据的发展, 采用回归分析方法, 在孟加拉湾建立了盐度与温度、经纬度、表层盐度的关系, 并对不同反演方法的反演结果进行检验评估。结果发现, 在不引入海表盐度(sea surface salinity, SSS)时, 最佳反演模型是温度、温度的二次项与经纬度确定的回归模型, 而SSS的引入则可以进一步优化反演结果。将反演结果与观测结果进行对比, 显示用反演的盐度剖面计算的比容海面高度误差超过2cm, 而引入SSS后的误差低于1.5cm。SSS的引入能够较为真实地反映海洋盐度场的垂直结构和内部变化特征, 既能够捕捉到对上混合层有重要影响的SSS信号, 又能够反映盐度在跃层上的季节内变化以及盐度障碍层的季节变化。水团分析显示, 与气候态相比, 盐度反演结果可以更好地表征海洋上层水团的变化特征。  相似文献   

4.
针对传统海表盐度遥感反演精度不高、影响因素较少等问题,本文基于SMAP(Soil Moisture Active Passive)卫星L2C(Level 2 C)数据、Argo(Array for Real-time Geostrophic Oceanography)数据和其他辅助数据,以太平洋部分海域(160°E~120°W,0°~30°N)为研究区域,综合考虑海面粗糙度以及白冠覆盖率等参量,利用径向基神经网络建立RBF亮温增量模型,并对平静海面亮温进行修正,然后基于Meissner-Wentz介电常数模型得到反演后的盐度值。验证结果表明:模型预测盐度和SMAP卫星盐度相对于Argo实测盐度的均方根误差分别为0.4和0.5,平均绝对误差分别为0.3和0.4。实验证明,利用RBF神经网络建立的亮温增量模型可以提高海表盐度反演的精度,对海表盐度反演具有实用意义。  相似文献   

5.
针对传统海表盐度的物理机制反演模型拟合过程复杂且反演精度不高等问题,借助大范围、全天时、L波段探测的SMAP卫星微波海洋遥感产品,以北太平洋(135°~165°E,15°~45°N)范围为研究海域,利用深层神经网络(Deep Neural Network, DNN)和支持向量机(Support Vector Machine, SVM)建立海表盐度(Sea Surface Salinity, SSS)遥感反演模型。验证结果表明:DNN与SVM模型测试集反演SSS与Argo(Array for Real-time Geostrophic Oceanography))实测SSS的均方根误差(Root Mean Square Error, RMSE)分别为0.179 0和0.257 0,平均绝对误差(Mean Absolute Error, MAE)为0.129 3和0.182 1,最小绝对误差为0.642 6和2.038 0,最大绝对误差为1.324 1和2.373 2,反演模型数据与实测Argo数据拟合后的的相关系数分别为0.89和0.84。总体来看,DNN模型比SVM模型的反演精度更高,...  相似文献   

6.
Argo浮标观测已成为全球海洋观测系统的重要支柱,但因缺乏表层观测,使得Argo观测资料在海洋和大气研究中的应用仍有一定的局限性。基于一个简化的海洋温度参数模型,由Argo剖面观测及气候态数据所确定的垂向海洋温度参数,得到表层与次表层温度的函数关系,进而利用太平洋海域的Argo次表层温度数据来推算表层温度场。其中,海温参数模型的相关参数采用最大角度法求得,利用此方法得到的混合层深度,温跃层梯度,温跃层下边界等参数较以往的迭代法更精确。与传统采用外插方式得到的表层温度场及卫星反演的SST相比,推算的Argo表层温度与GTSPP、Argo NST等实测资料的标准差有了显著地降低;与Argo NST现场观测数据的相关性分析也表明,推算的表层温度与实测资料有着更好地一致性;通过相关分析检验,在理论上验证了在太平洋海域利用海温参数模型推算海表温度的可行性。本研究为弥补当前Argo资料缺乏表层观测的缺陷,构建完备的Argo网格化温度数据集提供了新途径,具有重要的科学意义和应用价值。  相似文献   

7.
利用遥感SST反演上层海洋三维温度场   总被引:2,自引:0,他引:2  
张春玲 《海洋与湖沼》2014,45(1):114-125
通过统计相关分析验证了一个简单的温度参数模型在太平洋海域的较好适用性。基于Argo观测资料及WOA09气候态温度数据,采用最大角度法求得此模型的相关参数,并利用高分辨率卫星遥感海表温度反演了太平洋上层海域空间分辨率为1°×1°的气候态月平均三维温度场。与实测资料的比较分析表明反演结果是较为真实可靠的,并可作为海洋数值模式积分的初猜场,为实现现场观测(如:Argo)与卫星观测的优势互补,构建太平洋海域完整的三维温度分析场提供一种新途径。  相似文献   

8.
利用逐步订正法构建了2002年1月-2009年12月期间太平洋海域(60oS-60oN,120oE-80oW)的逐月温、盐度网格资料,其垂向分辩率在5-1950m水深范围内为48层,水平分辨率为1o×1o。对网格资料的误差分析表明,整个太平洋海域温度和盐度标准差的平均值分别为0.097℃和?0.017。将构建的Argo(Array?for?Real-time?Geostrophic?Oceanography,Argo)网格资料集与研究海域获取的CTD(Conductance-Temperature-Depth,)、TAO(Tropical?Atmosphere/Ocean?array,TAO)和WOA05(World?Ocean?Alta?5)等资料集进行的比较和分析发现,2006年之前,由于Argo资料相对较少,导致构建的网格资料集存在一定的误差;而在2006年以后的Argo网格资料则与历史观测资料比较一致。况且,由构建的Argo网格资料集揭示的太平洋海域温、盐度分布的主要特征来看,其与WOA05资料集所反映的结果也十分吻合,且前者揭示的特征比后者要更加细致些。这充分说明了,利用逐步订正法构建的Argo网格资料集是值得信赖的,也是可靠的。  相似文献   

9.
综合利用Argo温、盐度观测剖面资料,以及中国南极科学考察时沿途获取的XBT温度剖面,分析探讨了苏拉威西海域(117°E-127°E,0°-8°N)上表层温度和盐度的气候态分布和变化特征.结果 表明,苏拉威西海域的温度范围约为2.5℃~30℃,盐度约为33.2‰ ~ 35.1‰.与垂向变化相比,温、盐度水平梯度均较小,...  相似文献   

10.
文章利用果蝇优化广义回归神经网络算法FOAGRNN (fruit fly optimization algorithm, FOA; generalized regression neural network, GRNN)对SODA (simple ocean data assimilation)再分析数据进行训练, 构建海表温度、盐度、海面高度与次表层温盐场之间的投影关系模型, 并在全球范围使用SODA和卫星遥感数据评估了模型的应用性能。首先, 利用独立的2016年SODA海表数据作为模型输入进行理想重构试验, 结果显示全球重构温、盐平均均方根误差(MRMSE)分别为0.36℃和0.08‰, 与世界海洋图集WOA13资料相比减小约50%和60%。然后, 利用卫星观测的海表信息作为模型输入进行实际应用试验, 并与Argo观测剖面进行比较评估。试验结果表明, 重构模型能有效表征海水温、盐特征, 其中重构温、盐MRMSE分别为0.79℃和0.16‰, 相比WOA气候态减小27%和11%。误差的垂向分布显示, 重构温度RMSE从海表向下迅速增大, 至100m达到峰值1.35℃, 而后又迅速回落,至250m处为0.81℃, 跃层往下不断减小; 重构盐度RMSE基本随深度增大而减小, 误差峰值位于25m附近, 约为0.25‰。此外, Argo浮标跟踪分析和区域水团统计结果也表明模型能够较好地刻画海洋三维温盐场的内部结构特征。  相似文献   

11.
以2016年SMAP 8日均、月均海表盐度(Sea Surface Salinity, SSS)产品与SMOS日均、月均SSS产品为研究对象,基于Argo浮标实测盐度数据与Argo月均盐度网格产品,进行了质量评估,并开展了SMAP和SMOS盐度遥感产品间的交叉比对。结果表明:SMAP 8日均、月均SSS产品均比SMOS日均、月均SSS产品更接近于Argo盐度数据;SMAP SSS产品在12个月里的标准差均小于SMOS SSS产品,SMAP SSS产品年均偏差与标准差在大部分海域小于SMOS SSS产品,除高纬度地区,4种SSS产品与Argo数据的平均偏差和标准差随纬度变化浮动不大;SMAP 8日均、月均与SMOS日均、月均产品的年平均SSS空间分布特征一致,SMAP 8日均与SMOS日均、SMAP与SMOS月均SSS产品间的年平均偏差在全球范围内总体在-0.50~0.50,标准差总体为0~1.00。  相似文献   

12.
基于Argo浮标的热带印度洋混合层深度季节变化研究   总被引:2,自引:0,他引:2  
根据2004-2005年热带印度洋(30°S以北)的Argo浮标(自持式海洋剖面观测浮标)温度-盐度剖面观测资料,采用位势密度判据(Δσθ=0.03 kg/m3),针对每个Argo浮标的温度-盐度观测剖面确定了海洋混合层的深度,然后采用Krig插值方法构建了3°×3°空间分辨率的月平均网格化混合层深度产品。通过与已有气候平均混合层深度资料的比较表明了该产品的合理性,在此基础上进一步对热带印度洋海盆尺度的混合层深度空间特征和季节变化规律进行了讨论。研究结果表明,Argo浮标资料可用于热带印度洋混合层变化的研究,为进一步研究热带印度洋海-气相互作用提供了基础资料。  相似文献   

13.
依据再分析的海洋温度、盐度月平均资料和观测的热通量资料,确定了北太平洋中纬度晚冬海表温度(SST)持续异常现象较明显的海域是位于38°-42°N,158°E-172°W的西部海域和位于35°-42°N,172°W-145°W的东部海域.分析结果表明,西部海域,晚冬SST持续异常现象的主要机制是海洋上混合层的"再现机制";而东部海域晚冬SST的持续异常现象主要是海面净热通量的持续异常所致.由于冬季北太平洋西风异常导致的上混合层深度季节的差异在1976年前后的不同,1976年后晚冬混合层深度深,"再现机制"的作用明显,SST持续异常现象更容易出现.  相似文献   

14.
简要介绍了全球海洋Argo 网格资料集的制作过程,并着重探讨了该数据集与历史观测资料集(如WOA09 和TAO), 以及同类型的Argo 网格数据集等进行的比较与验证结果,发现利用逐步订正法构建的Argo 网格资料与其他数据集相比,除 了相互间吻合程度较高,能较客观地呈现出全球海洋中的一些大、中尺度海洋特征外,由Argo 资料揭示的一些重要物理海 洋特征的结构显得更细致,更能反映这些现象的演变过程和变化规律;加上Argo 资料严格的质量控制过程,确保了重构的 网格数据集的质量和可靠性。该资料集不仅可以作为研究全球海洋状况或揭示物理海洋现象的基础资料,还可为海洋数值模 式的开边界和初始场提供参考依据。  相似文献   

15.
为了建立高精度的海洋表面盐度预测模型,采用BP神经网络的方法,针对SMOS卫星level 1C级亮度温度数据和辅助数据建立了一种海表面盐度预测模型,以ARGO浮标观测值作为海表盐度实测值来检验新模型预测结果的准确度,同时利用验证集对模型的精度进行验证.结果表明:通过新模型预测的海表盐度(SSS0)比SMOS卫星的3个粗...  相似文献   

16.
提出基于距平分析的Argo海表温度场(SST)重构方法,即在Argo浮标观测点提取温度距平值序列进行Kriging插值生成距平场,并叠加气候态SST的方法重构Argo海温场。以Argo数据相对稀少的2003年8月份和Argo数据相对较多的2012年8月份印度洋海域(60°S—30°N,25°—125oE)为例,重构水平分辨率为1°×1°的海表温度场。分析表明:(1)这种基于距平分析方法重构的海温场与对Argo数据直接Kriging插值获得的结果相比在精度上有大幅提高;(2)重构的温度场与最优插值海表温度场(OISSTV 2.0)的等温线具有高度的一致性,并且在Argo浮标附近海域有更好的细节表现;(3)即使在Argo数据相对稀少的海域,基于距平分析方法重构的海温场也能保持较高的精度要求,包括边缘海域和南大洋极锋附近均有较好表现。  相似文献   

17.
本文使用HYCOM数值模式,根据两种海气通量数据集(COADS、ECMWF)和两种海气通量块体参数化方案(常数块体参数化方案和非常数块体参数化方案)的不同结合,构成4组数值实验,分别模拟了赤道及北太平洋的气候态海表温度.实验结果表明:1)在本文的实验中,非常数块体参数化方案优于常数块体参数化方案;在太平洋40°N-20°S区域内,采用前者得到的年平均海表温度比Pathfinder卫星资料高约0.21 °C,而采用后者得到的年平均海表温度比Pathfinder卫星资料高约0.63 °C.2)HYCOM数值模式很好的模拟了赤道及北太平洋的气候态海表温度变化及西太平洋暖池空间分布的月变化.特别是实验2(采用COADS数据集和非常数块体参数化方案),在太平洋40°N - 20°S区域内,冬春两季平均SST仅比Pathfinder卫星数据集高0.02 °C.3)不同的海气通量数据会对模式结果产生明显的影响.对比采用COADS数据集的实验2结果与采用ECMWF数据集的实验4结果可以发现,在模拟区域的西北部,实验2比实验4的年平均SST高约1 °C;在模拟区域的东南部,实验4比实验2的年平均SST高约1 °C.两者差的最大值出现在58°N、140°E附近及中国渤海,约为4 °C(实验2比实验4的年平均SST高约4 °C).  相似文献   

18.
采用Argo以及Aquarius卫星观测的海表盐度月平均资料研究了热带南印度洋海表盐度的季节变化特征。结果表明,在60°—80°E,5°—15°S海域海表盐度具有显著季节变化特征;夏半年盐度升高,冬半年盐度降低;但是其异常中心与降水异常中心不对应,降水不能解释盐度的季节变化。盐度收支分析显示,在夏半年,海表盐度增加的主要原因是经向平流将赤道地区的高盐输送至该地区;其中4—5月期间,海洋垂向卷夹作用加强,对海表高盐异常也起到重要作用。在冬半年,大气降水增加,海洋表层环流使得降水引起的局部低盐水体在该区域辐合;同时,向西的纬向平流将东南印度洋的低盐水体继续输送到该地区,二者对冬半年海表盐度降低都有重要贡献。  相似文献   

19.
根据2种海气通量数据集(COADS、ECMWF)和2种海气通量块体参数化方案(常数块体参数化方案和非常数块体参数化方案)的不同结合,构成4组数值实验,使用HYCOM数值模式分别模拟了赤道及北太平洋的气候态海表温度。实验结果表明:(1)非常数块体参数化方案优于常数块体参数化方案;在太平洋40°N~20°S区域内,采用前者得到的年平均海表温度比Pathfinder卫星资料高约0.21℃,而采用后者得到的年平均海表温度比Path-finder卫星资料高约0.63℃。(2)HYCOM数值模式很好地模拟了赤道及北太平洋的气候态海表温度变化及西太平洋暖池空间分布的月变化。特别是实验2(采用COADS数据集和非常数块体参数化方案),在太平洋40°N~20°S区域内,冬、春两季平均SST仅比Pathfinder卫星数据集高0.02℃。(3)不同海气通量数据会对模拟结果产生明显影响。对比采用COADS数据集的实验2结果与采用ECMWF数据集的实验4结果可以发现,在模拟区域的西北部,实验2比实验4的年平均SST高约1℃;在模拟区域的东南部,实验4比实验2的年平均SST高约1℃。两者差的最大值出现在58°N、140°E附近及中国渤海,实验2比实验4的年平均SST高约4℃。  相似文献   

20.
利用Argo浮标资料分析横跨吕宋海峡20.5°N断面的水文特征   总被引:2,自引:0,他引:2  
黄志达  胡建宇 《台湾海峡》2010,29(4):539-546
基于Argo浮标资料,分析了一条横跨南海北部、吕宋海峡和西太平洋(20.5°N,114°~130°E)断面的海水温度、盐度的分布特征.其结果表明:Argo剖面资料得到的2008年秋季20.5°N断面海水的温度、盐度分布态势与气候态秋季的分布基本一致,主要差异在于南海次表层水的盐度极大值和西太平洋次表层水的盐度极大值,2008年秋季二者均比气候态秋季的低0.1左右.通过动力计算(选取1 200 m为速度零面)表明:Argo浮标剖面资料与融合的卫星高度计产品得到的20.5°N,117.5°~124.5°E断面的表层地转流北分量的分布比较吻合;吕宋海峡中部(20°~21°N)的黑潮主轴大致位于121.5°E附近,其东边界可达123°E,而西边界仅限于121°E以西,其可能原因是该季节黑潮的左侧存在着一个气旋式环流,阻碍了黑潮西进;黑潮在20.5°N断面的体积流量为27×106m3/s左右,最大流速约为55 cm/s,出现在70 m层左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号