首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water exchange between the coastal ocean and underlying aquifers provides a newly-recognized source of materials to the ocean. The flux of materials into the ocean from this process is termed submarine groundwater discharge (SGD). Both surficial and semi-confined aquifers contribute to SGD. Here we use 226Ra and 228Ra to quantify fluxes of SGD to Port Royal Sound, South Carolina, and to separate fluxes from the Upper Floridan (UFA) and surficial aquifers. Higher activity ratios of 228/226Ra in the surficial aquifer make this separation possible. We estimate total SGD fluxes of about 100 m3 s-1 with about 80% being derived from the surficial aquifer. The SGD flux provides about1.8 × 106 mol d-1 of NH4 with almost 90% from the surficial aquifer. Because of strong differences in the concentration of PO4 within the UFA, PO4 fluxes areless certain. Using the UFA wells with low PO4 concentrations yields a flux of 1.2 × 105 mol d-1; using wells with high concentrations yields a flux of 2.0 × 105 mol d-1. In the first case virtually all of the PO4 flux is from the surficial aquifer; in the second case, 40% is from the UFA.The UFA in this region has experienced dramatic changes as a result of withdrawals for human use. Prior to these withdrawals, total nutrient fluxes from the UFA may have been even larger. These changes in the UFA and similar coastal aquifers worldwide have the potential to significantly alter a major nutrient source for the coastal ocean.  相似文献   

2.
Water quality monitoring in Hanalei Bay, Kaua`i (Hawai`i, USA) has documented intermittent high concentrations of nutrients (nitrate, phosphate, silica, and ammonium) and fecal indicator bacteria (FIB, i.e., enterococci and Escherichia coli) in nearshore waters and spurred concern that contaminated groundwater might be discharging into the bay. The present study sought to identify and track sources of nutrients and FIB to four beaches in Hanalei Bay and one beach outside the bay, together representing a wide range of land uses. 223Ra and 224Ra activity, salinity, nutrient and FIB concentrations were measured in samples from the coastal aquifer, the nearshore ocean, springs, the Hanalei River, and smaller streams. In addition, FIB concentrations in beach sands were measured at each site, and the enterococcal surface protein (esp) gene assay was used to investigate whether the observed FIB originated from a human source. Nutrient concentrations in groundwater were significantly higher than in nearshore water, inversely correlated to salinity, and highly site specific, indicating local controls on groundwater quality. Fluxes of groundwater into Hanalei Bay were calculated using a mass-balance approach and represented at least 2–10% of river discharges. However, submarine groundwater discharge (SGD) may provide 2.7 times as much nitrate + nitrite to Hanalei Bay as does the Hanalei River. It may also provide significant fluxes of phosphate and ammonium, comprising 15% and 20% of Hanalei River inputs, respectively. SGD-derived silica inputs to the bay comprised less than 3% of Hanalei River inputs. FIB concentrations in groundwater were typically lower than those in nearshore water, suggesting that significant FIB inputs from SGD are unlikely. Positive esp gene assays suggested that some enterococci in environmental samples were of human fecal origin. Identifying how nutrients and FIB enter nearshore waters will help environmental managers address pressing water quality issues, including exceedances of the state Enterococcus water quality standard and nutrient loading to coral reefs.  相似文献   

3.
Seepage rate and chemical composition of groundwater discharge entering the Neuse River Estuary (NRE) were quantified over an annual cycle from July 2005 through June 2006. Lee type seepage meters were deployed at eight locations within the NRE to quantify the amount of submerged groundwater discharge (SGD) entering the system. Sediment porewater nitrate (NO3 ), ammonium (NH4 +), and phosphate (PO4 −3) were also quantified at each of these locations to determine groundwater chemical composition. Seepage rates for the system ranged from 0.004 to 0.035 m3 m−2 d−1. Both the average and median value for the system-wide SGD were 0.01 m3 m−2d−1. There were no significant differences between upstream and downstream seepage rates or between those at the north and south side of the estuary. Seepage rates varied greatly in time and space. Discharging groundwater was NO3 deplete but highly enriched in NH4 +. Porewater PO4 −3 levels varied but were usually present below Redfield values due to NH4 + enrichment. SGD nutrient loading represented a small part of watershed nitrogen and phosphorus loading, 0.8% and 1.0%, respectively.  相似文献   

4.
To determine the removal of regenerated nitrogen by estuarine sediments, we compared sediment N2 fluxes to the stoichiometry of nutrient and O2 fluxes in cores collected in the Childs River, Cape Cod, Massachusetts. The difference between the annual PO4 3− (0.2 mol P m−2 yr−1) and NH4 + (1.6 mol N m−2 yr−1) flux and the Redfield N∶P ratio of 16 suggested an annual deficit of 1.5 mol N m−2 yr−1. Denitrification predicted from O2∶NH4 + flux ratios and measured as N2 flux suggested a nitrogen sink of roughly the same magnitude (1.4 mol N m−2 yr−1). Denitrification accounted for low N∶P ratios of benthic flux and removed 32–37% of nitrogen inputs entering the relatively highly nutrient loaded Childs River, despite a relatively brief residence time for freshwater in this system. Uptake of bottom water nitrate could only supply a fraction of the observed N2 flux. Removal of regenerated nitrogen by denitrification in this system appears to vary seasonally. Denitrification efficiency was inversely correlated with oxygen and ammonium flux and was lowest in summer. We investigated the effect of organic matter on denitrification by simulating phytoplankton deposition to cores incubated in the lab and by deploying chambers on bare and macroaglae covered sediments in the field. Organic matter addition to sediments increased N2 flux and did not alter denitrification efficiency. Increased N2 flux co-varied with O2 and NH4 + fluxes. N2 flux (261±60 μmol m−2 h−1) was lower in chambers deployed on macroalgal beds than deployed on bare sediments (458±70 μmol m−2 h−1), and O2 uptake rate was higher in chambers deployed on macroalgal beds (14.6±2.2 mmol m−2 h−1) than on bare sediments (9.6±1.5 mmol m−2 h−1). Macroalgal cover, which can retain nitrogen in the system, is a link between nutrient loading and denitrification. Decreased denitrification due to increasing macroalgal cover could create a positive feedback because decreasing denitrification would increase nitrogen availability and could increase macroalgae cover.  相似文献   

5.
We examined the spatial and temporal variability in drift macroalgal abundance in two seagrass dominated estuarine systems on the Texas coast: Redfish Bay (in the Copano-Aransas Estuary) and Lower Laguna Madre. Measurements of benthic macroalgal variability were made in conjunction with a suite of biotic (seagrass biomass, percent cover, blade width and length, shoot density, epiphyte biomass, seagrass blade C:N ratios, and drift macroalgal abundance and composition) and abiotic (inorganic nitrogen and phosphorus concentrations, chlorophylla, total suspended solids, light attenuation, salinity, temperature, total organic carbon and porewater NH4 +) indicators. All parameters were measured at 30 sites within each estuary semiannually from July 2002 to February 2004. Principal components analysis (PCA) was used to examine relationships between drift macroalgal abundance and biotic and abiotic parameters. In both Redfish Bay and Lower Laguna Madre, drift macroalgal distribution was widespread, and during three of four sampling periods, abundance was equal to abovegro und biomass ofThalassia testudinum, the dominant seagrass. Drift macro algal abundance was highly variable within sites, between sites, and between seasons in both estuaries. No significant differences in drift macroalgal abundance were found between Redfish Bay and Lower Laguna Madre. In Redfish Bay, drift macroalgae (90.1±10.2 gm−2) tended to accumulate in bare patches within seagrass beds. In Lower Laguna Madre, drift macroalgae (72.7±10.7 gm−2) tended to accumulate in areas of dense seagrass cover rather than in bare areas. We found no relationship between drift macroalgal abundance and low (<2μM) water column nutrient concentrations, and although several of our measured parameters were related to drift macroalgal abundance, none alone sufficiently explained the variability in abundance noted between the two estuarine systems. The contrasting patterns of macroalgal accumulation between Redrish Bay and Lower Laguna Madre likely reflect differences in water circulation characteristics between the two regions as dictated by local physiography, in cluding the shape and orientation of the lagoons, with seasonal variations in macroalgal abundance related to changes in freshwater inflow and nutrient loading.  相似文献   

6.
Venice Lagoon, Italy, rests on a series of aquifers that are 1,000 m thick. Measurements of submarine groundwater discharge (SGD) were made in Venice Lagoon using benthic chambers vented to a plastic collection bag. Two hundred measurements taken in a pristine northern lagoon site (Isola la Cura) revealed flow rates as high as 200 cm d−1 with an average of 30 cm d−1. Over 100 measurements taken adjacent to a bulkhead shoreline in the Porto Marghera industrial zone (Fusina) showed flow rates as high as 30 cm d−1 and averaging 6 cm d−1. These flow rates, if representative of even a fraction of the lagoon floor, are easily able to account for the 15% deficit previously calculated between precipitation and runoff for the entire Venice Lagoon drainage basin. Land elevation surrounding the Venice Lagoon is < 10 m within 20 km of the shoreline and is unable to support any substantial onshore water table. Submarine groundwater discharge most likely represents upward artesian discharge from deeper partially confined aquifers. Over 60 samples were collected in total from both sites for nutrient analysis. Ammonium concentration was found to be 2–8 fold higher in the device water than in the lagoon water at the northern site depending on season, and 10–30 times higher at the industrial zone site. These numbers suggest that SGD may be the primary pathway for nutrients and perhaps other contaminants to enter Venice Lagoon.  相似文献   

7.
Widespread use of septic tanks in the Florida Keys increase the nutrient concentrations of limestone groundwaters that discharge into shallow nearshore waters, resulting in coastal eutrophication. This study characterizes watershed nutrient inputs, transformations, and effects along a land-sea gradient stratified into four ecosystems that occur with increasing distance from land: manmade canal systems (receiving waters of nutrient inputs), seagrass meadows, patch reefs, and offshore bank reefs. Soluble reactive phosphorus (SRP), the primary limiting nutrient, was significantly elevated in canal systems compared to the other ecosystems, while dissolved inorganic nitrogen (DIN; NH4 + and NO3 ?) a secondary limiting nutrient, was elevated both in canal systems and seagrass meadows. SRP and NH4 + concentrations decreased to low concentrations within approximately 1 km and 3 km from land, respectively. DIN and SRP accounted for their greatest contribution (up to 30%) of total N and P pools in canals, compared to dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) that dominated (up to 68%) the total N and P pools at the offshore bank reefs. Particulate N and P fractions were also elevated (up to 48%) in canals and nearshore seagrass meadows, indicating rapid biological uptake of DIN and SRP into organic particles. Chlorophylla and turbidity were also elevated in canal systems and seagrass meadows; chlorophylla was maximal during summer when maximum watershed nutrient input occurs, whereas turbidity was maximal during winter due to seasonally maximum wind conditions and sediment resuspension. DO was negatively correlated with NH4 + and SRP; hypoxia (DO<2.5 mg l?1) frequently occurred in nutrient-enriched canal systems and seagrass meadows, especially during the warm summer months. These findings correlate with recent (<5 years) observations of increasing algal blooms, seagrass epiphytization and die-off, and loss of coral cover on patch and bank reef ecosystems, suggesting that nearshore waters of the Florida Keys have entered a stage of critical eutrophication.  相似文献   

8.
Phosphatase activity was measured in sediments from tidal freshwater habitats adjacent to the Cooper River in South Carolina representing different stages of ecological succession. It was found that sediment (0–5 cm) acid phosphatase activity, alkaline phosphatase activity and phosphodiesterase activity increased with increasing successional stage and phytomass. Acid phosphatase activity in creased from 7.5±1.2 (±1 SD) in subtidal sediment from a shallow open water habitat without vegetation to 61.2±4.9 μmol g−1 hr−1 (μmol of p-nitrophenol released per gram of dry sediment per hour) in intertidal sediments colonized by emergent macrophytes, while alkaline phosphatase activity increased from 2.1±0.1 to 19.01±1.5 μmol g−1 hr−1. Phosphodiesterase activity increased from 1.8±0.1 to 20.2±2.0 μmol g−1 hr−1 along the same gradient. Acid phosphatase activity was highly correlated (R2=0.92, P<0.001) with the organic matter content of the sediment. A study of phosphatase kinetics showed that Vmax of all phosphatases also increased along the successional gradient. Trends in phosphatase activity and Vmax correlated positively with plant biomass and negatively with concentrations of soluble reactive phosphorus in porewater, sediment extractable phosphorus, and total phosphourus. The porewater N∶P atom ratio decreased along the succession gradient from 25.3 in an early stage, open water community to 13.0 in a community dominated by emergent vegetation. The data also show that the distribution of the forms of phosphorus changed with successional stage. The change in distribution and the increased biological demand for phosphorus that paralleled succession were mediated by the activity of phosphatase enzymes.  相似文献   

9.
The aim of this study was to determine geochemical properties of groundwater and thermal water in the Misli Basin and to assess thermal water intrusion into shallow groundwater due to over-extraction. According to isotope and hydrochemical analyses results, sampled waters can be divided into three groups: cold, thermal, and mixed waters. Only a few waters reach water–rock chemical equilibrium. Thermal waters in the area are characterized by Na+–Cl–HCO3, while the cold waters by CaHCO3 facies. On the basis of isotope results, thermal waters in the Misli basin are meteoric origin. In particular, δ18O and δ2H values of shallow groundwater vary from −10.2 to −12.2‰ and −71.2 to −82‰, while those of thermal waters range from −7.8 to −10.1‰ and from −67 to −74‰, respectively. The tritium values of shallow groundwater having short circulation as young waters coming from wells that range from 30 to 70 m in depth vary from 10 to 14 TU. The average tritium activity of groundwater in depths more than 100 m is 1.59 ± 1.16, which indicates long circulation. The rapid infiltration of the precipitation, the recycling of the evaporated irrigation water, the influence of thermal fluids and the heterogeneity of the aquifer make it difficult to determine groundwater quality changes in the Misli Basin. Obtained results show that further lowering of the groundwater table by over-consumption will cause further intrusion of thermal water which resulted in high mineral content into the fresh groundwater aquifer. Because of this phenomenon, the concentrations of some chemical components which impairs water quality in terms of irrigation purposes in shallow groundwaters, such as Na+, B, and Cl, are highy probably expected to increase in time.  相似文献   

10.
Two 14-day experiments conducted in the dry summer (July 2006) and wet winter (March 2007) seasons, respectively, examined tidal, wave-driven, and seasonal variability of submarine groundwater discharge (SGD) at Stinson Beach, CA, using natural radium tracers. Tide stage, tide range, breaker height, and season each explained a significant degree of radium variability in the surf zone. A mass balance of excess radium in the surf zone was used to estimate SGD for each season, confirming larger discharge rates during the wet season. Our results indicate median groundwater discharge rates of 6 to 8 L min−1 m−1 in July 2006 and 38 to 43 L min−1 m−1 in March 2007. SGD from 200 m of Stinson Beach in March 2007 contributed a flux of phosphate and dissolved inorganic nitrogen approximately equal to that associated with all local creeks and streams within 6 km of the study site at that time.  相似文献   

11.
Within the KUSTOS program (Coastal Mass and Energy Fluxes-the Land-Sea Transition in the Southeastern North Sea) 28 to 36 German Bight stations were seasonally surveyed (summer 1994, spring 1995, winter 1995–1996) for light conditions, dissolved inorganic nutrient concentrations, chlorophylla (chla), and photosynthesis versus light intensity (P:E) parameters. Combining P:E curve characteristics with irradiance, attenuation, and chlorophyll data resulted in seasonal estimates of the spatial distribution of total primary production. These data were used for an annual estimate of the total primary production in the Bight. In winter 1996 the water throughout the German Bight was well mixed. Dissolved inorganic nutrient concentrations were relatively high (nitrogen [DIN], soluble reactive phosphorus [SRP], and silicate [Si]: 23, 1, and 10 μM, respectively). Chla levels generally were low (< 2 μg l−1) with higher concentrations (4–16 μg l−1) in North Frisian coastal waters. Phytoplankton was limited by light. Total primary production averaged 0.2 g C m−2 d−1. Two surveys in April and May 1995 captured the buildup of a strong seasonal thermo-cline accompained by the development of a typical spring diatom bloom. High nutrient levels in the mixed layer during the first survey (DIN, SRP, and Si: 46, 0.45, and 11 μM, respectively) decreased towards the second survey (DIN, SRP, and Si: 30.5, 0.12, and 1.5 μM, respectively) and average nutrient ratios shifted further towards highly imbalanced values (DIN:SRP: 136 in survey 1, 580 in survey 2; DIN:Si: 13.5 in survey 1, 96 in survey 2). Chla ranged from 2 to 16 μg l−1 for the first survey and rose to 12–50 μg l−1 in the second survey. Phytoplankton in nearshore areas continued to be light limited during the second survey, while data from the stratified regions in the open German Bight indicates SRP and Si limitation. Total primary production ranged from 4.0 to 6.3 g C m−2 d−1. During summer 1994 a strong thermal stratification was present in the German Bight proper and shallow coastal areas showed unusually warm (up to 22°C), mixed waters. Chla concentrations ranged from 2 to 18 μg l−1. P:E characteristics were relatively high despite the low nutrient regime (DIN, SRP, and Si: 2, 0.2, and 1.5 μM, respectively), resulting in overall high total primary production values with an average of 7.7 g C m−2 d−1. Based on the seasonal primary production estimates of the described surveys a budget calculation yielded a total annual production of 430 g C m−2 yr−1 for the German Bight.  相似文献   

12.
Riparian wetlands have multiple source waters that require understanding to effectively manage water quantity and quality. Source waters were determined in an interception-wetland located a relatively flat clayey till terrain in southern Minnesota. Data loggers were used to measure precipitation, water stage from monitoring wells and a tile-drain outlet. Over 70 oxygen (δ18O), hydrogen (δD) and geochemical water samples were collected from seven locations over different seasons (9 events) from 1996 to 1999. Results indicate the dominant source water input to the wetland was drained shallow groundwater beneath intensively managed cropland (P = 0.000). Evapotranspiration was the dominant export pathway. Nitrate–nitrogen (NO3-N) concentrations significantly decreased (P = 0.000) in the cattail-willow portion of the wetland. Total phosphorous (TP) concentrations were relatively high in the grass portion of the wetland (673 ± 549 μg L−1), and relatively low in the cattail-willow portion of the wetland (139 ± 85 μg L−1) because source waters were low in TP. Overall, the interception-wetland design limited out-of-bank flooding, yet allowed sufficient gradient between the cropland and the wetland outlet to minimize potential crop damage and provide hydraulic storage for nutrient attenuation.  相似文献   

13.
We investigated the role of sandy beaches in nearshore nutrient cycling by quantifying macrophyte wrack inputs and examining relationships between wrack accumulation and pore water nutrients during the summer dry season. Macrophyte inputs, primarily giant kelp Macrocystis pyrifera, exceeded 2.3 kg m−1 day−1. Mean wrack biomass varied 100-fold among beaches (range = 0.41 to 46.43 kg m−1). Mean concentrations of dissolved inorganic nitrogen (DIN), primarily NOx-N, and dissolved organic nitrogen (DON) in intertidal pore water varied significantly among beaches (ranges = 1 to 6,553 μM and 7 to 2,006 μM, respectively). Intertidal DIN and DON concentrations were significantly correlated with wrack biomass. Surf zone concentrations of DIN were also strongly correlated with wrack biomass and with intertidal DIN, suggesting export of nutrients from re-mineralized wrack. Our results suggest beach ecosystems can process and re-mineralize substantial organic inputs and accumulate dissolved nutrients, which are subsequently available to nearshore waters and primary producers.  相似文献   

14.
Theoretical diffusive flux rates for dissolved reactive phosphate (DRP) were determined for sediments in a small area of the Indian River, Florida for the period March–May 1982. Flux rates from the sediment varied from 29 to 70 × 10?6g per m2 per day in seagrass associated sediments to 3–25 × 10?6g per m2 per day for an area devoid of seagrass. Simultaneous measurements of groundwater seepage velocities indicated greater velocities in seagrass associated sediments (1.03 × 10?6m per sec) than an area devoid of grass (0.77 × 10?6m per sec). Measured seepage flux accounted for more than 99% of the combined estimated diffusive and seepage flux of DRP for nearshore seagrass sediments. Also noted was an apparent direct relationship between tidal height, DRP and seepage velocity in nearshore sediments (25 m from shore) which further demonstrates the importance of hydrogeologic variables to these areas.  相似文献   

15.
This paper analyses flow and transport of pesticides from the unsaturated zone to groundwater so as to predict concentration of those contaminants in the Fucino Plain’s groundwater, by site investigations and numerical simulations. Pesticides were detected in surface water (peaks of 13 μg L−1) and groundwater (peaks of 0.37 μg L−1). Modelling tools made it possible to identify that pattern of precipitation, organic matter content, and root thickness are the key factors involved in vertical seepage of pesticides. Numerical simulations indicated that a significant fraction of contaminants is leached from the most surficial soil layers through runoff, while only a secondary fraction is mobilised towards groundwater. Likelihood of contaminating deep groundwater is fairly low, whereas surface waters show higher susceptibility. Results of the proposed conceptual hydrogeological model show that pesticides are more likely to be entrained by mixing of stream water with shallow groundwater in periods of high water exploitation from shallow wells.  相似文献   

16.
Community Oxygen and Nutrient Fluxes in Seagrass Beds of Florida Bay, USA   总被引:1,自引:0,他引:1  
We used clear, acrylic chambers to measure in situ community oxygen and nutrient fluxes under day and night conditions in seagrass beds at five sites across Florida Bay five times between September 1997 and March 1999. Underlying sediments are biogenic carbonate with porosities of 0.7–0.9 and with low organic content (<1.6%). The seagrass communities always removed oxygen from the water column during the night and produced oxygen during daylight, and sampling date and site significantly affected both night and daytime oxygen fluxes. Net daily average fluxes of oxygen (?4.9 to 49 mmol m?2 day?1) ranged from net autotrophy to heterotrophy across the bay and during the 18-month sampling period. However, the Rabbit Key Basin site, located in the west-central bay and covered with a dense Thalassia testudinum bed, was always autotrophic with net average oxygen production ranging from 4.8 to 49 mmol m?2 day?1. In November 1998, three of the five sites were strongly heterotrophic and oxygen production was least at Rabbit, suggesting the possibility of hypoxic conditions in fall. Average ammonium (NH4) concentrations in the water column varied widely across the bay, ranging from a mean of 6.9 μmol l?1 at Calusa in the eastern bay to a mean of 0.6 μmol l?1 at Rabbit Key for the period of study. However, average NH4 fluxes by site and date (?240 to 110 μmol m?2 h?1) were not correlated with water column concentrations and did not vary in a consistent diel, seasonal, or spatial pattern. Concentrations of dissolved organic nitrogen (DON) in the water column, averaged by site (15–25 μmol l?1), were greater than mean NH4 concentrations, and the range of day and night DON fluxes (?920 to 1,300 μmol m?2 h?1), averaged by site and date, was greater than the range of mean NH4 fluxes. Average DON fluxes did not vary consistently from day to night, seasonally or spatially. Mean silicate fluxes ranged from ?590 to 860 μmol m?2 h?1 across all sites and dates, but mean net daily fluxes were less variable and most of the time contributed small amounts of silicate to the water column. Mean concentrations of filterable reactive phosphorus (FRP) in the water column across the bay were very low (0.021–0.075 μmol l?1); but site average concentrations of dissolved organic phosphorus (DOP) were higher (0.04–0.15 μmol l?1) and showed a gradient of increasing concentration from east to west in the bay. A pronounced gradient in average surficial sediment total phosphorus (1.1–12 μmol g DW?1) along an east-to-west gradient was not reflected in fluxes of phosphorus. FRP fluxes, averaged by site and date, were low (?5.2 to 52 μmol m?2 h?1), highly variable, and did not vary consistently from day to night or across season or location. Mean DOP fluxes varied over a smaller range (?8.7 to 7.4 μmol m?2 h?1), but also showed no consistent spatial or temporal patterns. These small DOP fluxes were in sharp contrast to the predominately organic phosphorus pool in surficial sediments (site means?=?0.66–7.4 μmol g DW?1). Significant correlations of nutrient fluxes with parameters related to seagrass abundance suggest that the seagrass community may play a major role in nutrient recycling. Integrated means of net daily fluxes over the area of Florida Bay, though highly variable, suggest that seagrass communities might be a source of DOP and NH4 to Florida Bay and might remove small amounts of FRP and potentially large amounts of DON from the waters of the bay.  相似文献   

17.
Previous work has documented large fluxes of freshwater and nutrients from submarine groundwater discharge (SGD) into the coastal waters of a few volcanic oceanic islands. However, on the majority of such islands, including Moorea (French Polynesia), SGD has not been studied. In this study, we used radium (Ra) isotopes and salinity to investigate SGD and associated nutrient inputs at five coastal sites and Paopao Bay on the north shore of Moorea. Ra activities were highest in coastal groundwater, intermediate in coastal ocean surface water, and lowest in offshore surface water, indicating that high-Ra groundwater was discharging into the coastal ocean. On average, groundwater nitrate and nitrite (N + N), phosphate, ammonium, and silica concentrations were 12, 21, 29, and 33 times greater, respectively, than those in coastal ocean surface water, suggesting that groundwater discharge could be an important source of nutrients to the coastal ocean. Ra and salinity mass balances indicated that most or all SGD at these sites was saline and likely originated from a deeper, unsampled layer of Ra-enriched recirculated seawater. This high-salinity SGD may be less affected by terrestrial nutrient sources, such as fertilizer, sewage, and animal waste, compared to meteoric groundwater; however, nutrient-salinity trends indicate it may still have much higher concentrations of nitrate and phosphate than coastal receiving waters. Coastal ocean nutrient concentrations were virtually identical to those measured offshore, suggesting that nutrient subsidies from SGD are efficiently utilized.  相似文献   

18.
Much work in recent years has reported on the role of submarine groundwater discharge (SGD) on coastal biogeochemistry, but most of those studies have focused on temperate or tropical climates where year-round rainfall recharges surficial aquifers. The aim of this work, however, was to examine SGD behaviors in an arid setting??Marina Lagoon on the Egyptian Mediterranean coast. SGD was estimated via radon surveys and time-series measurements in lagoon waters during two campaigns (wet season in March 2009 and dry season in July 2010). Relatively higher values of radon were detected in March (maximum >30?dpm/L) compared to July (up to 16?dpm/L), which would indicate either enhanced input rates, or lower mixing/atmospheric losses during the wet season. Lower salinity waters within Marina Lagoon were characterized by higher radon and higher concentrations of dissolved inorganic nitrogen (DIN) and silica (DISi), characteristic of groundwater inputs. Based on lagoon and groundwater radon measurements and an advection-diffusion model, SGD average rates between 0.83 to 2.4?×?108?L/day were estimated for both surveys. Since no seasonal pattern was detected, we suspect that either (1) SGD is derived from a regional aquifer not influenced by recharge from local rainfall or (2) local water use for irrigation and domestic purposes artificially recharges the surficial aquifer in the dry summer (tourist) months, which compensates for the lack of rainfall occurring at that time.  相似文献   

19.
Subterranean estuary occupies the transition zone between hypoxic fresh groundwater and oxic seawater, and between terrestrial and marine sediment deposits. Consequently, we hypothesize, in a subterranean estuary, biogeochemical reactions of Fe respond to submarine groundwater discharge (SGD) and sea level rise. Porewater and sediment samples were collected across a 30-m wide freshwater discharge zone of the Indian River Lagoon (Florida, USA) subterranean estuary, and at a site 250 m offshore. Porewater Fe concentrations range from 0.5 μM at the shoreline and 250 m offshore to about 286 μM at the freshwater-saltwater boundary. Sediment sulfur and porewater sulfide maxima occur in near-surface OC-rich black sediments of marine origin, and dissolved Fe maxima occur in underlying OC-poor orange sediments of terrestrial origin. Freshwater SGD flow rates decrease offshore from around 1 to 0.1 cm/day, while bioirrigation exchange deepens with distance from about 10 cm at the shoreline to about 40 cm at the freshwater-saltwater boundary. DOC concentrations increase from around 75 μM at the shoreline to as much as 700 μM at the freshwater-saltwater boundary as a result of labile marine carbon inputs from marine SGD. This labile DOC reduces Fe-oxides, which in conjunction with slow discharge of SGD at the boundary, allows dissolved Fe to accumulate. Upward advection of fresh SGD carries dissolved Fe from the Fe-oxide reduction zone to the sulfate reduction zone, where dissolved Fe precipitates as Fe-sulfides. Saturation models of Fe-sulfides indicate some fractions of these Fe-sulfides get dissolved near the sediment-water interface, where bioirrigation exchanges oxic surface water. The estimated dissolved Fe flux is approximately 0.84 μM Fe/day per meter of shoreline to lagoon surface waters. Accelerated sea level rise predictions are thus likely to increase the Fe flux to surface waters and local primary productivity, particularly along coastlines where groundwater discharges through sediments.  相似文献   

20.
Responses of autotrophic and heterotrophic processes to nutrients and trace elements were examined in a series of experimental estuarine food webs of increasing trophic complexity using twenty 1-m3 mesocosms. Nutrients (nitrogen and phosphorus) and trace elements (a mix of arsenic, copper, cadmium) were added alone and in combination during four experimental runs spanning from spring 1997 to spring 1998. Diel changes in dissolved oxygen were used to examine whole system gross primary production (WS-GPP), respiration (WS-RESP), and net ecosystem metabolism (NEM). Nutrient and trace element additions had the greatest effect on WS-GPP, WS-RESP, and NEM; trophic complexity did not significantly affect any of these parameters (p>0.3). Effects of trophic complexity were detected in nutrient tanks where bivalves significantly (p=0.03) reduced WS-GPP. Nutrient additions significantly enhanced WS-GPP and to a lesser extent WS-RESP during most mesocosm runs. The system shifted from net heterotrophy (−17.2±1.8 mmol C m−3 d−1) in the controls to net autotrophy (29.1±7.6 mmol C m−3 d−1) in the nutrient tanks. The addition of trace elements alone did not affect WS-GPP and WS-RESP to the same extent as nutrients, and their effects were more variable. Additions of trace elements alone consistently made the system more net heterotrophic (−24.9±1.4 mmol C m−3 d−1) than the controls. When trace elements were added in combination with nutrients, the nutrient-enriched system became less autotrophic (1.6±3.1 mmol C m−3 d−1). The effects of trace elements on NEM occurred primarily through reductions in WS-GPP rather than increases in WS-RESP. Our results suggest that autotrophic and heterotrophic processes respond differently to these stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号