首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The nearly EW-trending East Kunlun fault zone is the north boundary of the Bayan Har block.The activity characteristics and the position of the eastern end of its eastward extension are of great significance to probing into the dynamic mechanism of formation of the east edge of the Tibetan Plateau,and also lay the foundation for seismic risk assessment of the fault zone.The following results are obtained by analysis based on satellite image interpretation of landforms,surface rupture survey,terrace scarp deformation survey,and terrace dating data on the eastern part of the East Kunlun fault zone:(1)the Luocha segment is a Holocene active fault,where a reverse L-shape paleoearthquake surface rupture zone of about 50 km long is located;(2)the Luocha segment is characterized by left-lateral slip movement under the compression-shear condition since the later period of the Late Pleistocene,with a rate of 7.68–9.37 mm/a and a vertical slip rate of 0.7–0.9 mm/a,which are basically in accord with the activity rate of segments on its west side.The results indicate that it is a part of eastward extension of the East Kunlun fault zone;(3)the high-speed linear horizontal slip of the nearly EW-trending East Kunlun fault zone is blocked by the South China block at east,and transforms into the vertical movement of the nearly SN-NNE trending Minjiang fault zone and the Longmenshan fault zone,and the uplift of Longmenshan and Minjiang.The area where transform of the two tectonic systems occurred confines the position of the east end;(4)Luocha segment and Maqu segment constitute the"Maqu seismic gap",so,seismic risk at Maqu segment is higher than that at Luocha segment,which should attract more attention.  相似文献   

2.
On November 14, 2001, an extraordinarily large earthquake (MS8.1) occurred on the Hoh Sai Hu segment of the Eastern Kunlun Fault, in the northern Qinghai-Tibetan Plateau. The seismogenic fault, the Hoh Sai Hu segment, is a left-lateral fault with a high slip rate in geological history, with the average slip rate reaching(14.8±2.8)mm/a since the late Pleistocene. Different slip rates of the Hoh Sai Hu segment can affect fault motion in the future. Therefore, this paper analyzes the effect of different slip rates and different initial friction coefficients on the fault plane of the Hoh Sai Hu segment of the eastern Kunlun Fault on the rupture behaviors of the fault. In this research, we apply the single degree of spring block model controlled by the rateand state-dependent frictional constitutive laws. Using the fault dislocation model and based on ancient earthquake research, historical earthquakes data and the achievements of previous researchers, we obtained the parameters of this model. Through numerical simulation of the rupturing motion of the Hoh Sai Hu segment in the next 6500 years under different slip rates, we find that a faster annual slip rate will shorten the recurrence interval of the earthquake. For example, the earthquake recurrence interval is 2100a at a slip rate of 0.014m/a, which agrees with previous research, but, the recurrence interval will be 1000~1500a and 2100~2500a, corresponding to the slip rates of 0.018m/a and 0.008m/a, respectively. The fault slip rate has no regular effect on the coseismic slip rate and fault displacement in an earthquake. The initial friction coefficient on the fault surface has an effect on the earthquake recurrence interval. A smaller initial friction coefficient will lengthen the earthquake recurrence interval. At the same time, the smaller initial friction coefficient will lead to larger slip rates and fault displacement when earthquakes occur.  相似文献   

3.
The coseismic Coulomb stress change caused by fault interaction and its influences on the triggering and delaying of earthquake are briefly discussed.The Xianshuihe fault belt consists of Luhuo,Daofu,Kangding,Qianning and Ganzi fault.Luohuo(Ms=7.6,1973)-Kangding(Ms=6.2,1975)-Daofu(Ms=6.9,1981)-Ms=6.0,1982)earthquake is a seismic sequence continuous on the time axis with magnitude greater than6.0.They occurred on the Luhuo.Kangding,Daofu and Ganzi fault,respectively.The coseismic Coulomb stress changes caused by each earthquake on its surrounding major faults and microcracks are calculated,and their effects on the triggering and delaying of the next earthquake and aftershocks are analyzed.It is shown that each earthquake of the sequence occurred on the fault segment with coseismic Coulomb stress increases caused by its predecessors,and most after-shocks are distributed along the microcracks with relatively larger coseismic Coulomb stress increases resulted from the main shock.With the fault interaction considered,the seismic potential of each segment along Xianshuihe fault belt is reassessed,and contrasted with those predicted results ignoring coseismic Coulomb stress change,the significance of fault interaction and its effect on triggering and delaying of earthquake are emphasized.It is con-cluded that fault interaction plays a very important role on seismic potential of Xianshuihe fault belt,and the maximal change of future earthquake probability on fault segment is up to 30.5%.  相似文献   

4.
The results from interpretation of the aerophotos and in-situ seismogeological researches show that there are some obvious late-Quaternary activities along the Moxi-Mianning segment of the Xianshuihe-Anninghe fault zone, with the characteristics of sinistral-slip movement accompanied by some significant vertical slip components. Since late-Quaternary, the average horizontal slip rate of the segment at the south of Moxi along the Xianshuihe fault is 6.0~9.9mm/a and 4.7~5.3mm/a along the segment at the north of Mianning of the Anninghe fault. The results from the investigation of coseismic dislocation and ground rupture show that the ground rupture caused by 1876 Kangding-Luding earthquake with M 7 3/ 4 can extend to the south of Tianwan. The segment at the north of Mianning of the Anninghe fault has a background for producing M7.5 earthquake and the geological record of the last strong earthquake must be the proofs of the 1327 earthquake with M>6.0 with poor historical records.  相似文献   

5.
Seismic and field observations indicate that the M_w7.4 Maduo earthquake ruptured the Jiangcuo fault,which is a secondary fault~85 km south of the northern boundary of the Bayan Hor block in western China.The kinematic characteristics of the Jiangcuo fault can shed lights on the seismogenic mechanism of this earthquake.Slip rate is one of the key parameters to describe the kinematic features of a fault,which can also provide quantitative evidences for regional seismic hazard assessments.However,due to lack of effective observations,the slip rate of the Jiangcuo fault has not been studied quantitatively.In this study,we consider the interaction between the Jiangcuo fault and the eastern Kunlun fault,and estimate the slip rates of the two faults using the interseismic GPS observations across the seismogenic region.The inferred results show that the slip rates of the Jiangcuo fault and the Tuosuo Lake segment of the Kunlun fault are 1.2±0.8 and 5.4±0.3 mm a~(–1),respectively.Combining the slip rate with the average slip inferred from the coseismic slip model,the earthquake recurrence interval of the Jiangcuo fault is estimated to be 1800_(700)~(+3700)years (1100–5500 years).Based on the results derived from previous studies,as well as calculations in this study,we infer that the slip rate of the Kunlun fault may decrease gradually from the Tuosuo Lake segment to the eastern tip.The Jiangcuo fault and its adjacent parallel secondary faults may have absorbed the relative motion of blocks together with the Kunlun fault.  相似文献   

6.
In this paper, we briefly describe the principle of tracking energy radiation sources of large earthquakes using fre- quency-domain far-field array technique, present general steps of tracking energy radiation sources, and take the 2001 Kunlun Mountain Pass earthquake as an example to analyze key factors for setting parameters while pro- cessing data. Using broadband waveform data from a seismic array in Ethiopia and Kenya (EK Array), we obtain that the rupture initiation point of the 2001 Kunlun Mountain Pass earthquake is located in the east of Buka Daban Peak (35.92°N, 91.70°E), and the rupture duration time is less than 160 s, the rupture length about 520 km, with 180 km in the west of the initiation point and 340 km in the east, respectively. The western segment of the earth- quake fault bends towards southwest near Buka Daban Peak, which is in concordance with the surface rupture trace. The eastern segment apparently bends towards northeast near Xidatan, which is in agreement with the strike of Xidatan fault, but 30 km away from Xidatan fault. In addition, the results imply that the western segment of the earthquake fault appears erect while the eastern segment appears to be gradually dipping southwards.  相似文献   

7.
Madoi-Gadê fault is an active fault in the Bayan Har block.According to field investigation,there is an earthquake surface rupture fairly well preserved on the Gadê segment of the Madoi-Gadê fault zone.The length of the rupture is approximately 50km,with a general strike of NW.The maximum horizontal sinistral displacement is about 7.6m and the maximum vertical displacement is about 4m.A large number of earthquake traces are to be found along the rupture zone,and the phenomena on the surface rupture are also...  相似文献   

8.
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990‘s up to the present, the characteristics of distribution and displacement of surface rupture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M ≈ 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.  相似文献   

9.
Earthquake surface rupture is the result of transformation from crustal elastic strain accumulation to permanent tectonic deformation. The surface rupture zone produced by the 2001 Kunlunshan earth- quake (Mw7.8) on the Kusaihu segment of the Kunlun fault extends over 426 km. It consists of three relatively independent surface rupture sections: the western strike-slip section, the middle transten- sional section and the eastern strike-slip section. Hence this implies that the Kunlunshan earthquake is composed of three earthquake rupturing events, i.e. the Mw=6.8, Mw=6.2 and Mw≤7.8 events, respec- tively. The Mw≤7.8 earthquake, along the eastern section, is the main shock of the Kunlunshan earth- quake, further decomposed into four rupturing subevents. Field measurements indicate that the width of a single surface break on different sections ranges from several meters to 15 m, with a maximum value of less than 30 m. The width of the surface rupture zone that consists of en echelon breaks de- pends on its geometric structures, especially the stepover width of the secondary surface rupture zones in en echelon, displaying a basic feature of deformation localization. Consistency between the Quaternary geologic slip rate, the GPS-monitored strain rate and the localization of the surface rup- tures of the 2001 Kunlunshan earthquake may indicate that the tectonic deformation between the Ba- yan Har block and Qilian-Qaidam block in the northern Tibetan Plateau is characterized by strike-slip faulting along the limited width of the Kunlun fault, while the blocks themselves on both sides of the Kunlun fault are characterized by block motion. The localization of earthquake surface rupture zone is of great significance to determine the width of the fault-surface-rupture hazard zone, along which direct destruction will be caused by co-seismic surface rupturing along a strike-slip fault, that should be considered before the major engineering project, residental buildings and life line construction.  相似文献   

10.
An earthquake of Mw6.4 occurred in Pishan County in Xinjiang Province, northwestern Tibetan Plateau, on July 3,2015. The epicenter was located on an active blind thrust system located at the northern margin of the Western Kunlun Mountain Orogenic Belt southwest of the Tarim Basin. We constructed a shovel-shaped fault model based on the layered-crust model with reference to the seismic reflection profile, and obtained the rupture process of the earthquake from the joint inversion of Interferometric Synthetic Aperture Radar(InSAR) measurements, far-field waveform data, and Global Positioning System(GPS) data. The results show that the seismic fault dips southward with a strike of 109°, and the rupture direction was essentially northward. The fault plane rupture distribution is concentrated, with a maximum recorded slip of 73 cm. The main features of the fault are as follows: low inclination angle(25°–10°), thrust slip at a depth of 9–13 km, rupture propagation time of about 12 s, no significant slip in soft or hard sedimentary layers at 0–4 km depth and propagation from the initial rupture point to the surrounding area with no obvious directionality. The InSAR time-series analysis method is used to determine the deformation rate in the source region within 2 years after the earthquake, and the maximum value is ~17 mm yr-1 in the radar line-of-sight direction. Obvious post-earthquake deformation is evident in the hanging wall, with a similar trend to the coseismic displacement field. These results suggest that the Pishan earthquake has not completely released the accumulated energy of the region, given that the multilayer fold structure above the blind fault is still in a process of slow uplift since the earthquake. Post-earthquake adjustment models and aftershock risk analysis require further study using more independent data.  相似文献   

11.
Based on the lateral segmentation and vertical stratification characteristics of the crustal medium in Sichuan-Yunnan region,and the asymmetry of the static dislocations on the coseismic fault plane of the Wenchuan M_S8. 0 earthquake,we built a three-dimensional viscoelastic finite element model of the crust in the Sichuan-Yunnan region. The postseismic impact of the Wenchuan M_S8. 0 earthquake on the Sichuan-Yunnan region was studied.The results show that:① The far-field horizontal deformation caused by the viscoelastic relaxation of the medium in the 10 years after the earthquake is about 0-20 mm within the Sichuan-Yunnan diamond-shaped block,which has a greater influence on north side and smaller on south side.② In the 10 years after the earthquake,the far-field vertical deformation caused by the viscoelastic relaxation effect of the medium is small,and it shows an increase of about 0-4 mm in most areas of the Sichuan-Yunnan diamond-shaped block.③ The Xianshuihe fault and the eastern segment of the East Kunlun fault,which are close to the seismogenic fault,show a high gradient on deformation fields after the earthquake.④ In order to compare with the strong earthquake activity in the SichuanYunnan region after the Wenchuan earthquake, the horizontal stress state and the Coulomb failure stress change of the active block boundary are also calculated. From the spatial distribution of the coseismic and postseismic displacement field,the fault activity characteristics reflected by the stress state and the stress loading of the fault layer reflected by the Coulomb failure stress change,there is a certain correlation with the spatial distribution of strong earthquake activity in this region.  相似文献   

12.
Introduction An MS=6.0 earthquake occurred on February 23, 2001 in Yajiang county, Sichuan Province. The earthquake is located on the east of the southeast segment of the Litang-Dewu fault with strike of NW. Before the event, on February 14, an MS=5.0 earthquake took place nearly in the same place. In 1948 an MS=7.3 earthquake occurred on the northwestern segment of the Litang fault. The length of the surface rupture belt caused by the earthquake is 70 km, which extended from Litang to…  相似文献   

13.
Based on the finite element numerical algorithm,the coseismic displacements of the Wenchuan MS8.0 earthquake are calculated with the rupture slip vectors derived by Ji and Hayes as well as Nishimura and Yaji.Except in a narrow strip around the rupture zone,the coseismic displacements are consistent with those from GPS observation and InSAR interpretation.Numerical results show that rupture slip vectors and elastic properties have profound influences on the surface coseismic deformation.Results from models with different elastic parameters indicate that:①in homogeneous elastic medium,the surface displacements are weakly dependent on Poisson's ratio and independent of the elastic modulus;②in horizontally homogeneous medium with a weak zone at its middle,the thickness of the weak zone plays a significant role on calculating the surface displacements;③in horizontally and vertically heterogeneous medium,the surface displacements depend on both Poisson's ratio and elastic modulus.Calculations of coseismic deformation should take account of the spatial variation of the elastic properties.The misfit of the numerical results with that from the GPS observations in the narrow strip around the rupture zone suggests that a much more complicated rupture model of the Wenchuan earthquake needs to be established in future study.  相似文献   

14.
Based on GPS velocity during 1999-2007, GPS baseline time series on large scale during 1999-2008 and cross-fault leveling data during 1985-2008, the paper makes some analysis and discussion to study and summarize the movement, tectonic deformation and strain accumulation evolution characteristics of the Longmenshan fault and the surrounding area before the MS8.0 Wenchuan earthquake, as well as the possible physical mechanism late in the seismic cycle of the Wenchuan earthquake. Multiple results indicate that:GPS velocity profiles show that obvious continuous deformation across the eastern Qinghai-Tibetan Plateau before the earthquake was distributed across a zone at least 500km wide, while there was little deformation in Sichuan Basin and Longmenshan fault zone, which means that the eastern Qinghai-Tibetan Plateau provides energy accumulation for locked Longmenshan fault zone continuously. GPS strain rates show that the east-west compression deformation was larger in the northwest of the mid-northern segment of the Longmenshan fault zone, and deformation amplitude decreased gradually from far field to near fault zone, and there was little deformation in fault zone. The east-west compression deformation was significant surrounding the southwestern segment of the Longmenshan fault zone, and strain accumulation rate was larger than that of mid-northern segment. Fault locking indicates nearly whole Longmenshan fault was locked before the earthquake except the source of the earthquake which was weakly locked, and a 20km width patch in southwestern segment between 12km to 22.5km depth was in creeping state. GPS baseline time series in northeast direction on large scale became compressive generally from 2005 in the North-South Seismic Belt, which reflects that relative compression deformation enhances. The cross-fault leveling data show that annual vertical change rate and deformation trend accumulation rate in the Longmenshan fault zone were little, which indicates that vertical activity near the fault was very weak and the fault was tightly locked. According to analyses of GPS and cross-fault leveling data before the Wenchuan earthquake, we consider that the Longmenshan fault is tightly locked from the surface to the deep, and the horizontal and vertical deformation are weak surrounding the fault in relatively small-scale crustal deformation. The process of weak deformation may be slow, and weak deformation area may be larger when large earthquake is coming. Continuous and slow compression deformation across eastern Qinghai-Tibetan Plateau before the earthquake provides dynamic support for strain accumulation in the Longmenshan fault zone in relative large-scale crustal deformation.  相似文献   

15.
Based on geometric structure,active strength,and maximum seismic rupture length along the fault in the late Quaternary or Holocene,this paper presents the segmentation of main active faults in Sichuan Province and uses the recurrence probability model to predict the recurrence probabilities of strong earthquakes along each segment during next 30 years.The results indicate that earthquakes with M=7.0 or greater may happen along Qiajiao segment,Qianning segment,and Selaha segment of Xianshuihe fault zone,the segment from Xichang to Mianning and Yejidong segment of Anninghe fault zone; earthquakes with M=6.0 or greater may happen along the segment from Maowen to Caopuo of Longmenshan fault zone and Xiaoyanjing segment of Anninghe fault zone.  相似文献   

16.
It is indicated by historical records and the exploratory trench on the Weihe fault that the Yaodian-Zhangjiawan segment of the Weihe fault zone has experienced a historical earthquake and 3 paleoearthquake events in the past 9110a. The historical earthquake, namely, event Ⅳ, occurred between 1487 and 1568 AD. The date of paleoseismic event Ⅰ is (9110 + 90) a, and the ages of events Ⅱ and Ⅲ are unknown. The coseismic vertical displacement of events Ⅰ, Ⅱ and Ⅲ is 0.5m, 0.5m and 0.2m, respectively. The exploratory trench also indicates that the Yaodian-Zhangjiawan segment of the Weihe fault was active in the Holocene.  相似文献   

17.
With co-seismic surface rupture slip displacements provided by the field observation for the 2001 MS8.1 West Kunlun Mountain Pass earthquake, this paper estimates the rupture speed on the main faulting segment with a long straight fault trace on the surface based on a simple slip-weakening rupture model, in which the frictional overshoot or undershoot are involved in consideration of energy partition during the earthquake faulting. In contrast to the study of Bouchon and Vallée, in which the rupture propaga...  相似文献   

18.
The November 14, 2001 Ms8.1 Kunlun Mountains earthquake in northern Tibet is the largest earthquake occurring on the Chinese mainland since 1950. We apply a three-dimensional (3-D) finite element numerical procedure to model the coseismic displacement and stress fields of the earthquake based on field investigations. We then further investigate the stress interaction between the Ms8.1 earthquake and the intensive aftershocks. Our primary calculation shows that the coseismic displacement field is centralized around the east Kunlun fault zone. And the attenuation of coseismic displacements on the south side of Kunlun fault zone is larger than that on the north side. The calculated coseismic stress field also indicates that the calculated maximal shear stress field is centralized around the east Kunlun fault zone; the directions of the coseismic major principal stress are opposite to that of the background crustal stress field of the Qinghai-Xizang (Tibet) Plateau. It indicates that the earthquake relaxes the crustal stress state in the Qinghai-Xizang (Tibet) Plateau. Finally, we study the stress interaction between Ms8.1 earthquake and its intensive aftershocks. The calculated Coulomb stress changes of the Ms8.1 great earthquake are in favor of triggering 4 aftershocks.  相似文献   

19.
The Tancheng-Lujiang fault zone has great influence in eastern China. Studies have shown obvious signs of neotectonic activities on the Xinyi-Wuhe segment of the Tancheng-Lujiang fault zone. In this study, on the basis of the previous work, many seismological surveys are made along the Tancheng-Lujiang fault zone and trenches are excavated in key sites. Combined with the analysis of the seismic activities along the fault, the fault movement features and future seismic risk are discussed. Much first-hand information obtained in the paper can provide an important reference value for the study of large earthquake recurrence rules and the mid and long-term earthquake prediction on the Xinyi-Wuhe segment of the Tancheng-Lujiang fault zone.  相似文献   

20.
Large-scale detailed mapping plays a key role in revealing the rupture characteristics and mechanisms of strong earthquakes.Relatively few studies have been performed on the surface ruptures of large earthquakes in central and western Tibet due to its remote nature and high elevation.Based on high-resolution unmanned aerial vehicle(UAV)photography,we mapped the coseismic surface rupture of the 2014 Yutian M_s7.3 earthquake.Along the western Altyn Tagh fault system,the earthquake produced~37 km of surface rupture along the South Xor Kol fault(southern section S1),Xor Kol fault(central section S2)and Ashikule fault(northern section S3).Section S1 has a 16-km-long surface rupture with an average sinistral offset of 52±25 cm and a maximum offset of~90 cm,while section S3 has a 14.2-km-long surface rupture with an average sinistral offset of 36±21 cm and a maximum offset of~84 cm.A compilation of 5308 cracks yields an average crack width along the southern section of 85±71 cm and a maximum width of~700 cm;the average width along the central section is 39±21 cm,and the maximum width is 243 cm;and the average width along the northern section is 61±44 cm with a maximum of~340 cm.In addition,the average cumulative opening across rupture zone is 3.4±2.9 m along the southern section,with a maximum of~17 m;4.3±3.6 m along the central section,with a maximum of~13 m;and 1.7±1.6 m along the northern section,with a maximum of~6 m.Evidently,the average crack width and cumulative opening decrease towards bends and steps along the fault.A global synthesis of surface rupture distributions corresponding to strike-slip earthquakes indicates that the rupture zone is wider near the complex parts of fault geometries(such as bends,steps and fault bifurcations)than along straight sections,suggesting that the fault geometry has an obvious control on the surface rupture width.The widespread cracks at the intersection between the Xor Kol and South Xor Kol faults may indicate that an extensional regime is more likely to produce distributed offfault deformation,which provides an observational constraint for the numerical simulation of dynamic rupture on a fault.In addition to coseismic surface rupture,the Yutian earthquake also produced a large number of gravity-driven slides on alluvial fans with gentle slopes.The friction efficiency of the water-bearing salt layer beneath fans could decrease the sliding threshold and trigger instability under surface shaking.These distributed deformations and gravity-driven slides reflect the coupling between the rupture propagation and fault geometry and indicate that the rupture may have propagated in two directions along the Ashikule fault after passing through a step.Therefore,the investigation of coseismic surface rupture provides important observational constraints on the dynamic rupture process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号