首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A low-cost and simple monitoring method for early warning of landslides is proposed. To detect abnormal deformation of a slope, this method employs a tilt sensor in place of an extensometer on the slope surface. In order to examine the relevance of measuring rotation angle on a slope surface by tilt sensor, model tests were conducted, and rotation on the slope surface was observed together with slide displacement along the surface. The rotation data responded 30 min before failure in a model test, which could be useful as a signal for early warning. However, the behavior of rotation before failure varies from case to case, and thus, criteria to issue warning should be defined more carefully. For a model slope made of uniform loose sand, measurement of slide displacement along the slope surface is sensitive to failure at the toe, while the measurement of rotation on the slope surface is useful to detect the development of progressive failure upward along the slope. Wireless sensor units with microelectromechanical systems (MEMS) tilt sensor and volumetric water content sensor were also examined on a real slope in Kobe City, and a long-term monitoring was attempted. A simple but possible way to define the criteria of judgment to issue warning can be proposed based on combination of data obtained by the tilt sensors and volumetric water content sensors.  相似文献   

2.
Wang  Lin  Seko  Ichiro  Fukuhara  Makoto  Towhata  Ikuo  Uchimura  Taro  Tao  Shangning 《Natural Hazards》2022,114(1):127-156

Slope monitoring and early warning systems are a promising approach toward mitigating landslide-induced disasters. Many large-scale sediment disasters result in the destruction of infrastructure and loss of human life. The mitigation of vulnerability to slope and landslide hazards will benefit significantly from early warning alerts. The authors have been developing monitoring technology that uses a micro-electro-mechanical systems tilt sensor array that detects the precursory movement of vulnerable slopes and informs the issuance of emergency caution and warning alerts. In this regard, the determination of alarm thresholds is very important. Although previous studies have investigated the recording of threshold values by an extensometer which installation of an extensometer at appropriate sites is also difficult. The authors prefer tilt sensors and have proposed a novel threshold for the tilt angle, which was validated in this study. This threshold has an interesting similarity to previously reported viscous models. Additionally, multi-point monitoring has recently emerged and allows for many sensors to be deployed at vulnerable slopes without disregarding the slope’s precursory local behavior. With this new technology, the detailed spatial and temporal variation of the behavior of vulnerable slopes can be determined as the displacement proceeds toward failure.

  相似文献   

3.
A full-scale landslide experiment was conducted to clarify the failure process of a landslide triggered by rainfall, using a loose sandy soil. The experiment used a 23-m long and about 8-m high flume, consisting of three parts: an upper 30° slope section, a lower 10° slope section, and a horizontal section at the foot of the slope. The flume was sprinkled at a constant intensity of 100 mm/h. The landslide occurred first in the upper slope about 154 min after the sprinkling started, following a creep movement within 41 min. The sliding mass slid to a stop in about 5 s, compressing soils in the lower gentle slope and horizontal sections. The dynamic process related to slide movement and the fluctuation of subsurface water pressures during failure were measured and analyzed. Sequential visual observations provided a clear record of the slip surface during failure. The rapid increase of subsurface water pressure in the slope and horizontal soil layers was also recorded during failure. It was inferred that the increased water pressures in the upper slope resulted from collapse of loose soil structure during shearing in the translational slide, whereas those in the lower portion of the slope and horizontal sections resulted from a mix of soil compression and shearing by the sliding mass.  相似文献   

4.
随着现代信息技术快速发展,人们获取滑坡现场各类监测信息的能力越来越强,积累的现场监测数据也愈来愈多,如何充分、精细化地利用监测数据已成为滑坡监测预警工作中重点关注的问题。为此,本文以土质滑坡为研究对象,采用强度折减有限元方法开展地表倾斜变形时空演化特征理论研究,发现地表倾斜变形在滑动面扩展至贯通期间出现"速率排序跃迁"现象,在滑动面贯通后出现"速率突变"现象。采用地表倾斜变形与内部滑动面之间的这种定量化关联特性,可以为土质滑坡中短期预测预报方法研究提供新的视角和方向。利用理论研究成果,本文进一步开展地表倾斜变形监测关键技术研究,讨论基于MEMS加速度计的倾角传感器的测量原理与测量精度,分析环境温差波动对倾角测量误差的影响,最后介绍基于竖直倾角测量方式研制的普适型滑坡地表倾斜变形监测设备——坡体浅层倾斜变形测量仪。  相似文献   

5.
The landslide can destroy all kinds of constructions, and seriously hinder people's production and life as well as the development of national economy. Bolt is one of the main methods for slope treatment, but it is difficult to monitor its construction quality and anchoring effect directly. With the rise and development of MEMS (Micro-electro mechanical system) technology, MEMS sensors, with the advantages of small size, low cost and high precision, quickly come out from the conventional monitoring methods and provide new possibilities for the monitoring field in geological engineering. In this paper, based on MEMS sensors, a model test was designed to explore the stability of the slope after treatment by bolts. Natural river sands were used to prepare slopes with angle of 45° through the air-plluviation method. In addition, the tests were divided into two groups (with or without bolts). MEMS sensors were set up in the slope to wirelessly and continually capture the acceleration, angular velocity and angle of slope sliding triggered by simulated rainfall in real-time. It was found that: with no treatment, the acceleration and angle in the interior and the bottom of the slope gradually changed during rainfall, while those parameters in the rear and the surface of the slope had no significant change, which indicated that the slope creep mainly occurred in the interior and the bottom of the slope before failure. When landslides occurred, the movement monitoring indexes in the interior and the bottom of the slope suddenly changed, followed by those in the rear and the surface of the slope, which means that when the sandy slope slides, the interior and the bottom of the slope slides first, and then the rear and the surface of the slope surface fail. This is a typical retrogressive landslide. After the slope was treated by bolts, only creep could be observed during long-term rainfall, and the acceleration and angle in the bottom, interior and surface of the slope gradually changed, while almost no change was found in the rear of the slope, which shows that under rainfall conditions, overall creep occurs for the slope after reinforcement, the slope angle decreases, and there is no landside. The experimental results prove that MEMS sensors can realize low-cost, high-precision, continuous real-time monitoring of slope, and can capture gradual changes of movements before failure and the sudden change when landslide occurs. It should play a certain role in the study of landslide mechanism and landslide warning, and has a broad application in the field of geological engineering monitoring.  相似文献   

6.
滑坡破坏各种建筑工程,严重影响了人民生产生活以及国民经济的发展。锚杆作为边坡治理的主要手段之一,其施工质量与锚固效果难以直接监测。随着微机电系统(MEMS)技术的兴起与不断发展,MEMS传感器具有体积小、造价低和精度高等优点,使其从常规监测手段中脱颖而出,为地质工程监测提供了新的可能。通过设计模型试验,基于MEMS传感器探讨锚杆对边坡的加固作用。试验采用天然河砂,通过撒砂法堆坡,边坡坡角为45°,分有锚杆加固和无锚杆加固2组。以降雨触发滑坡,将MEMS传感器布设在边坡内部,实现对边坡内部各点的加速度、角度和角速度的实时连续监测。研究表明:当未加固边坡蠕滑开始时,边坡内部和坡脚处的加速度与角度发生渐变,边坡后缘与表面处的加速度和角度变化不明显,表明边坡蠕滑主要发生在边坡内部与坡脚处;滑坡发生时,边坡内部与坡脚处的加速度和角度率先发生突变,边坡后缘与表面的参数随后发生突变,表明砂土坡破坏的瞬间,其内部与坡脚处先发生滑动,边坡后缘与坡面随后滑动,为典型的牵引式滑坡。采用锚杆加固后,边坡只发生蠕滑,边坡内部、坡脚处与坡面的加速度和角度有明显渐变,边坡后缘的各指标几乎无变化,表明降雨条件下,加固后的边坡发生整体蠕滑,边坡坡角降低,不发生破坏。MEMS传感器能够实现低成本、高精度的连续实时监测边坡蠕滑的渐变规律,捕捉到滑坡发生时运动的明显突变,对研究边坡的滑动机制及滑坡预警有一定的应用价值,在地质工程监测领域具有广阔的应用前景。  相似文献   

7.
基于原状土柱土壤水分传感器率定方法的研究   总被引:3,自引:1,他引:2       下载免费PDF全文
土壤水分传感器在现场安装后,需要针对现场土壤状况对其进行率定,以便校准率定关系。在工程实践中,土壤水分传感器现场率定是一项步骤繁杂、操作要求高、现场取土难度大、耗时较长的一项工作,严重困扰工程项目的实施。开展基于原状土柱率定土壤水分传感器研究,通过现场采集原状土柱,在实验室浸泡至饱和后取出,让土壤水分自然散失,用称重法定期称量原状土柱重量,同时记录土壤水分传感器原始测量值,以此来研究土壤水分传感器的工程率定问题,探讨提高现场安装的土壤水分传感器率定效率的方法,具有现实意义。  相似文献   

8.
Lantau Island, the largest outlying island of the territory of Hong Kong, experienced a severe rainstorm on 4–5 November 1993, which induced >800 slope failures on natural terrain there. Detailed field investigations were carried out to study the failure modes, in relation with various influencing factors. It was found that the occurrence of slide-debris flows has a close relationship with bedrock geology, slope gradient, vegetation cover and micro landform. The failure modes of slide-debris flows may be classified into translational slides and rotational slides, and the former are predominant. Analysis of the hydrological response of colluvial slopes during the rainstorm indicated that the majority of the failures were caused by the development of a perched water table in the thin surface layer of colluvium of volcanic origin due to infiltration during the heavy rain. Undisturbed soil samples from south Lantau have been subjected to anisotropically consolidated undrained compression tests at comparatively low stress levels. Constant deviatoric stress path tests (CQD) simulating the stress path in the field at in situ stress levels have been performed to investigate soil behavior. The CQD test results indicate that the material of slopes at undisturbed state is brought to dilation because of the increase in pore water pressure caused by infiltration of rain water. For a translational slide, the displacement, resulting from dilation, may destroy cohesion along the failure surface and locally within the interior of the slide. The surplus water during the intense rainstorm was able to equilibrate the reduction in pore pressure caused by dilation, and the dilation and displacement may be further increased. The strain-softening after significant strains triggered debris flow mobilization. However, for a rotational slide, the increase in pore water pressure caused by surplus water infiltration during the intense rainstorm could not equilibrate the reduction in pore pressure caused by dilation, much or even all of the sliding block could not mobilize into a debris flow.  相似文献   

9.
中国西北地区存在大量的新近纪硬土软岩滑坡灾害,为研究该类滑坡的变形特征,开展两组离心机模型试验模拟滑带劣化引起滑坡变形破坏的全过程,获取模型坡体土压及位移的实时变化曲线。研究表明,当软弱带强度降低时,硬土软岩滑坡的上部滑体呈块体状滑动,在快速运动滑动过程中,滑体呈现块状平移,不会彻底解体、液化;硬土软岩滑坡中前部出现水平应力集中,导致下伏滑带塑性流动变形,诱发其中前部上覆滑体的水平运动,并向滑坡后缘扩展,最终形成多级水平滑动。  相似文献   

10.
李高  谭建民  王世梅  林旭  陈勇  王力  郭飞 《地学前缘》2021,28(6):283-294
降雨量和位移是当前降雨型滑坡监测预警最常用的指标。然而,降雨量和位移监测结果只能反映降雨作用下滑坡的变形情况,不能揭示滑坡内在物理力学性状对降雨的响应。因此,除降雨量和位移监测之外,建立包括体积含水率、基质吸力等反映滑坡动态演化过程的关键指标监测体系必将成为今后更真实地把握滑坡内在演化趋势、更准确地建立滑坡综合预警判据的最有效手段。笔者对赣南地区典型降雨型滑坡进行了多指标监测及综合预警示范研究。结果表明:(1)在降雨条件下滑坡土体内部体积含水率、基质吸力和温度等多指标均产生有规律的动态响应;(2)随着降雨的持续,滑体体积含水率与基质吸力的变化均具有显著的滞后现象;(3)体积含水率和基质吸力变化速率与滑体位移具有显著的正相关性;(4)滑体温度分布变化规律受大气温度和体积含水率的共同影响。以实测数据的滑坡稳定性分析为基准,在考虑实际降雨入渗深度与滑坡稳定性的关联度上,建立了包括日降雨量、体积含水率增加速率、基质吸力减小速率以及位移速度多元指标预警方法体系,提出了基于关键指标综合预警体系及确定方法,旨在为降雨滑坡准确预警提供新模式。  相似文献   

11.
Debris-flow monitoring in instrumented areas is an invaluable way to gather field data that may improve the understanding of these hazardous phenomena. A new experimental site has been equipped in the Autonomous Province of Bozen-Bolzano (Eastern Alps, Italy) for both monitoring purposes and testing early warning systems. The study site (Gadria basin) is a 6.3 km2 catchment subjected to frequent debris flows. The monitoring system in the Gadria basin consists of rain gauges, radar sensors, geophones, video cameras, piezometers and soil moisture probes. Transmission of data and alerts from the instruments exploits in part radio technology. The paper presents the data gathered during the first three years of activity, with two debris-flow events recorded at the station varying in magnitude and characteristics, and discusses the perspectives of debris-flow monitoring and related research.  相似文献   

12.
倾斜基岩上的边坡破坏模式和稳定性分析   总被引:6,自引:0,他引:6  
应用离心模型试验对工程中被颇为关注的带有与边坡走向一致的倾斜基岩面,且在该基岩面存在软弱夹层的边坡的稳定性和破坏模式进行了比较详细地研究,并用极限平衡分析方法对试验结果进行了计算分析。模型试验结果表明,该类边坡失稳时,紧贴岩面的软弱夹层就成为滑动破坏面,因而边坡整体沿基岩面向下滑动,且侧向水平位移各处基本一致,表现出典型的平移滑动破坏模式。将稳定安全系数的实测结果与按平移滑动破坏模式的极限平衡分析方法的计算结果相比较后发现,两者相当地吻合,证实了按平移滑动破坏模式所作的极限平衡分析,能良好地预测边坡平移滑动破坏情形下的稳定安全系数。  相似文献   

13.
海底土体失稳过程分类及其声学特征   总被引:2,自引:0,他引:2  
海底斜坡土体失稳是海底比较常见的重力侵蚀过程。由于人们无法直接接触海底,对其研究绝大多数是事后借助于声学和地质学调查手段进行。文章根据一般饱水土体运动机理及变形程度和运动状态对海底斜坡土体不稳定性进行分类:蠕动、滑动和流动,并探讨它们形成过程的力学基础以及声学识别特征。蠕动是指海底土颗粒之间发生相对位移,但整体上未发生明显的位移。其相应的声学识别特征是:连续不规则波状反射结构。滑动是指失稳土体在海底斜坡上做块体运动。其声学探测记录表现为:张性裂隙、内部结构完整的滑体以及伴有负载形成的地形等。流动是指失稳土体完全崩解形成流体在海底斜坡上运动。沉积物流在流动中出现线形纹理和平行层理非常清楚的中断为标志,而且被没有内部结构或层理的声学透明物质充填等声学识别特征。  相似文献   

14.
由于滑坡岩土体结构的复杂性和破坏机制的多样性,滑坡预警一直以来都是全球性难题,极具挑战性。本文论述了贵州省兴义滑坡特征及其成功预警,并分析了滑坡成功预警的关键因素。在对滑坡现场进行地质调查的基础上,综合应用卫星遥感、无人机航拍、LiDAR、地表位移监测等技术手段,初步分析结果认为,兴义滑坡属于典型的含软弱夹层的顺层岩质滑坡,滑源区坡体为2014年首次滑动后形成的不稳定斜坡,在不利的坡体结构加之与软弱夹层组合的地质条件下,受到长期重力及地下水作用,最终演变成滑坡地质灾害。兴义滑坡至2014年第一次滑动后,后缘山体对前缘公路和居民就产生了威胁,2019年2月17日凌晨5时53分,贵州省兴义市马岭镇龙井村兴-马大道旁约96×104 m3的山体再次发生顺层滑动。在滑坡发生前,研究人员就在滑坡体上安装了全球导航卫星系统(GNSS)和自适应性裂缝计两种位移监测传感器,对滑坡变形进行持续监控。现场监测数据实时传输到研究人员自主研发的“地质灾害监测预警系统”中,系统通过多种阈值综合预警模型自动计算监测数据并发布预警结果,在滑坡进入临滑阶段后,系统提前53 min发出了红色预警,完全避免了人员和经济损失。该滑坡的成功预警体现了自主研发的地质灾害监测预警系统、预警模型、监测仪器三者的适用性,可为今后类似滑坡的监测预警研究及应用提供借鉴。  相似文献   

15.
Intense rainfall is the most important landslide trigger. In many mountainous environments of the world, heavy rainfall has caused many landslides and slope failures in a matter of seconds without warning. Therefore, an early warning system can be an effective measure to reduce the damage caused by landslides and slope failures by facilitating the timely evacuation of people from landslide-prone areas. In this study, we propose an idea to correlate soil moisture changes and deformations in slope surface by means of elastic wave propagation in soil. Constant shear stress drained triaxial tests where water was infiltrated from the bottom of specimen until failure, and slope model tests under artificial rainfall were performed to investigate the response of elastic wave velocities during pre-failure phases of rainwater infiltration and deformation. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation, and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Possible mechanisms were interpreted based on the test results. It is proposed that a warning be issued at switch of wave velocity decrease rate. This approach can thus serve as the basis of an early warning system for landslides and slope failure considering both moisture content and deformation.  相似文献   

16.
17.
Landslides are recurring phenomena causing damages to private property, public facilities, and human lives. The need for an affordable instrumentation that can be used to provide an early warning of slope instability to enable the evacuation of vulnerable people, and timely repair and maintenance of critical infrastructure is self-evident. A new emerging technique that correlates soil moisture changes and deformations in slope surface by means of elastic wave propagation in soil was developed. This approach quantifies elastic wave propagation as wave velocity. To verify its applicability, a series of fixed and varied slope model tests, as well as a large scale model test, were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation, and there was a distinct surge in the decrease rate of wave velocity with failure initiation, soil deformation was thus envisaged to have more significant effect on elastic wave velocity than water content. It is proposed that a warning be issued at switch of wave velocity decrease rate. Based on these observations, expected operation of the elastic wave velocity monitoring system for landslide prediction in the field application is presented. Consequently, we conclude that the elastic wave velocity monitoring technique has the potential to contribute to landslide prediction.  相似文献   

18.
滑坡位移预测模型是滑坡预警系统建立的核心,而模型可靠性与精确性关键在于主控因子的选取与基础理论模型的构建。学者们通过大量滑坡实例研究,已取得了诸多成果,但是由于滑坡位移变化具有强烈的个性特征及趋势发展的不确定性问题,在多因子联合作用下的位移预测模型尚有不足之处。本文以西南地区普遍存在的平推式滑坡——垮梁子滑坡为研究对象,结合前人已有的研究成果,综合考虑坡体内外各项影响因子,利用灰色关联度与相关性分析对坡体变形主控因子进行优化筛选。以此为基础,提出一种基于GM(1,1)灰色模型与改进型自适应遗传算法(IAGA)进行优化的小波神经网络(WNN)联合预测模型构建方案。通过对垮梁子滑坡历时5年的监测数据挖掘分析,得知滑坡变形受累计降雨、渗压、地下水位及土体含水率影响显著,预测结果与实际监测比较吻合。相较于传统BP神经网络模型、小波神经网络模型和未优化遗传算法-小波神经网络联合模型,该联合模型具有更好的稳定性与精度优势,在滑坡预警预报研究中具有良好的应用前景。  相似文献   

19.
Shallow landslide failures are distributed worldwide and cause economic losses and fatalities. A proper evaluation of the possible occurrence of shallow landslides requires reliable characterization of water content. Volumetric water content (θ) is commonly estimated using dielectric sensors, which use manufacturers’ calibration curves developed for specific soil types. In this study, we present the experimental results achieved during a laboratory calibration of a capacitance probe (PR2/6 probe), tested on two sandy soils widely outcropping in Central Italy. The proposed equations demonstrate a more reliable estimation of θ with respect to the generalized soil equation provided by the manufacturer, which overestimates θ by up to 10 percentage points. Such overestimation could affect the evaluation of suction stress in partially saturated shallow soils affecting the slope stability analysis. Although the use of θ from correct calibration equations provides less precautionary factor of safety values, a reliable evaluation of the soil moisture condition is fundamental when mapping and predicting the spatial and temporal occurrence of shallow landslides. The use of the PR2/6 probe with the appropriate soil calibration equations in early warning monitoring systems will provide a more reliable forecast, minimizing the number of false alarms.  相似文献   

20.
Debris slide hazards in the Adirondack Province of New York state   总被引:1,自引:0,他引:1  
More than 400 debris slide scars have been identified in the Adirondack Province through aerial photographic interpretation. Debris slides are concentrated in the high relief, east-central portion of the province, although some isolated scars occur in the north and southwest. Intense rainfall, relief, slope angle, slope form, and slope exposure are recognized as factors in Adirondack slide formation and distribution. Vegetational, pedological, and geological characteristics also influence slope stability conditions, but complexities in after-the-fact analyses obscure their exact function in slide activity. On the basis of slope angle and slope form, more than 600 major valley systems which exhibit slide potential were identified in the Adirondacks. Approximately 25 percent of these sites of potential slides are on private land. The prospect for higher land-use in these areas warrants serious consideration of the hazards of debris slides. Debris slides cannot be prevented, or even accurately predicted, but certain measures may possibly be taken to avert extensive economic damage or loss of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号