首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On June 24, 2015, Hongyanzi slope located in Wushan County of the Three Gorges Reservoir collapsed, generating 5–6-m-high impulse waves, which overturned 13 boats, killed 2 persons, and injured 4 persons. It is the second incident of landslide-generated impulse waves since the 175-m experimental impoundment in 2008. The emergency investigation shows that Hongyanzi landslide is a bedding soil landslide with a volume of 23?×?104 m3 induced by a series of triggering factors such as rainfall, flooding upstream, and reservoir drawdown. The nonlinear Boussinesq water wave model is used to reproduce the impulse waves generated by the landslide of June 24th. The numerical simulation results suggest that the wave propagation process was influenced by the T-shaped geomorphic conditions of river valley, and the coastal areas in the county seat were the major wave-affected areas, which is opposite to the landslide. The numerical wave process accord well with the observed incident, and the investigation values were in good agreement with the calculated values. Moreover, the worst-case scenario of the 7?×?104 m3 deformation mass beside Hongyanzi landslide is potential to generate impulse waves, which was predicted with the same numerical model. This adjacent deformation mass will probably generate impulse waves with maximum height and run-up of 2.2 and 2.0 m, respectively, and only a very few areas in the water course had waves rising to a height of 1 m or above. The research results provide a technical basis for emergency disposal to Hongyanzi landslide and navigation restriction in Wushan waterway. More importantly, it pushes the risk management of the navigation based on the impulse wave generated by landslide. It is advised that the Three Gorges Reservoir and other reservoirs around the world should put more efforts in performing special surveys and studies on the potential hazards associated with landslide-generated impulse waves.  相似文献   

2.
At 4:40p.m. on November 23, 2008, the Gongjiafang slope collapsed on the north bank of Yangtze River in Wu Gorge of Three Gorges Reservoir. The 380,000-m3 sliding mass consisted mainly of cataclastic rock. A video record of the major sliding incident was analyzed using the general laws of physical motion. The analysis indicated that the maximum speed and maximum acceleration of the sliding mass were 11.65?m/s and 2.23?m/s2, respectively, and that the maximum amplitude and the propagation velocity of the water wave near the landslide were 31.8?m and 18.36?m/s, respectively. Wave run-up investigation indicated that the maximum run-up on shore was 13.1?m, which declined to 1.1?m at Wushan dock 4?km away. The incident causes no casualties, but did result in economic losses of RMB five million. The numerical simulation model GEOWAVE was used to simulate and reproduced the impulse wave generated by the landslide; the results were in good agreement with the observed incident. The numerical simulation data were then applied to analyze the decay and amplification effects of the landslide wave in the river course. The field investigations and witness information provide valuable materials for the studies of landslide kinematics and impulse waves generated by landslides. In addition, the research results provide a useful reference for future similar waves generated by landslides in reservoirs.  相似文献   

3.
We present a preliminary probabilistic tsunami hazard assessment of Canadian coastlines from local and far-field, earthquake, and large submarine landslide sources. Analyses involve published historical, palaeotsunami and palaeoseismic data, modelling, and empirical relations between fault area, earthquake magnitude, and tsunami run-up. The cumulative estimated tsunami hazard for potentially damaging run-up (≥1.5 m) of the outer Pacific coastline is ~40–80 % in 50 years, respectively one and two orders of magnitude greater than the outer Atlantic (~1–15 %) and the Arctic (<1 %). For larger run-up with significant damage potential (≥3 m), Pacific hazard is ~10–30 % in 50 years, again much larger than both the Atlantic (~1–5 %) and Arctic (<1 %). For outer Pacific coastlines, the ≥1.5 m run-up hazard is dominated by far-field subduction zones, but the probability of run-up ≥3 m is highest for local megathrust sources, particularly the Cascadia subduction zone; thrust sources further north are also significant, as illustrated by the 2012 Haida Gwaii event. For Juan de Fuca and Georgia Straits, the Cascadia megathrust dominates the hazard at both levels. Tsunami hazard on the Atlantic coastline is dominated by poorly constrained far-field subduction sources; a lesser hazard is posed by near-field continental slope failures similar to the 1929 Grand Banks event. Tsunami hazard on the Arctic coastline is poorly constrained, but is likely dominated by continental slope failures; a hypothetical earthquake source beneath the Mackenzie delta requires further study. We highlight areas susceptible to locally damaging landslide-generated tsunamis, but do not quantify the hazard.  相似文献   

4.
黄河三峡库区的涌浪灾害风险不容忽视,经验公式是宜优先考虑的涌浪快捷评价方法.对黄河三峡焦家崖头2012年2月7日的黄土滑坡和涌浪进行调查,分析了黄土滑坡及涌浪的特征.采用9种涌浪经典计算公式,计算了涌浪的初始浪高、对岸爬高等特征参数.与调查结果对比表明,采用美国土木工程师协会推荐法、水科院算法、Huber and Hager模型和潘家铮算法获取的焦家崖头黄土滑坡诱发的涌浪特征参数均接近实际,其确定的校正系数分别为2.14、1.92、0.6和0.66,对比考虑安全性和经济性后推荐采用潘家铮算法预测黄河三峡的涌浪.  相似文献   

5.
6.
Landslide-generated tsunamis are lesser-known yet equally destructive than earthquake tsunamis. Indeed, the highest tsunami wave recorded in recent history was generated by a landslide in Lituya Bay (Alaska, July 9, 1958) and produced run-up in excess of 400 m. In this paper, we review the state of the art of landslide tsunami analytical modelling. Within the framework of a linearised shallow-water theory, we illustrate the dynamics of landslide tsunami generation and propagation along beaches and around islands. Finally, we highlight some intriguing new directions in the analytical modelling of landslide tsunamis to support early warning systems.  相似文献   

7.
Reservoir landslides pose a great threat to shipping safety, human lives and properties, and the operation of the hydropower station. In this paper, the 24 June 2015 Hongyanzi landslide at the Three Gorges Reservoir is considered as an example to study the initiation mechanism and landslide-generated wave process of a reservoir landslide. The finite difference method and limit equilibrium analysis are used to analyze the deformation and failure characteristics of the Hongyanzi slope. Simulation results show that a large deformation (about 358 mm) happens in the shallow deposits under intermittent rainfall condition, and the slope is in a limit state. At the same time, continuous rapid drawdown of the water level (about ?0.55 m/day during 8–24 June 2015) reduced the support and accelerated the drainage of the water for the bank slope. A coupling effect of intermittent rainfall and rapid drawdown of the water level was the triggering factor of the 24 June Hongyanzi landslide. Landslide-generated wave process was simulated using a fluid–solid coupling method by integrating the general moving object collision model. Simulation results show that the landslide-generated wave is dominated by the impulse wave, which is generated by sliding masses entering the river with high speed. The maximum wave height is about 5.90 m, and the wave would decay gradually as it spreads because of friction and energy dissipation. To prevent reservoir landslides, the speed for the rising or drawdown of the water level should be controlled, and most importantly, rapid drawdown should be avoided.  相似文献   

8.
A detailed assessment of the impact of a far-field tsunami on the Australian coastline was carried out in the Steep Point region of Western Australia following the July 17 2006 Java tsunami. Tsunami inundation and run-up were mapped on the basis of eyewitness accounts, debris lines, vegetation damage and the occurrence of recently deposited fish, starfish, corals and sea urchins well above high-tide mark. A topographic survey using kinematic GPS with accuracies of 0.02 m in the horizontal and 0.04 m in the vertical recorded flow depths of between 1 and 2 m, inundation of up to 200 m inland, and a maximum recorded run-up of 7.9 m AHD (Australian Height Datum). The tsunami impacted the sparsely populated Steep Point coastline close to low tide. It caused widespread erosion in the littoral zone, extensive vegetation damage and destroyed several campsites. Eyewitnesses reported three waves in the tsunami wave train, the second being the largest. A sand sheet, up to 14 cm thick and tapering landwards over 200 m, was deposited over coastal dunes. The deposits are predominantly composed of moderately well-sorted, medium-grained carbonate sand with some gravel and organic debris. A basal unconformity defines the boundary between tsunami sediments and underlying aeolian dune sand. Evidence for up to three individual waves is preserved as normally graded sequences mantled by layers of dark grey, organic-rich fine silty sand. Given the strong wind regimes in the area and the similarity of the underlying dune deposits to the tsunami sediments, it is likely that seasonal erosion will remove all traces of these sediment sheets within years to decades.  相似文献   

9.

Given the recent historical disastrous tsunamis and the knowledge that the Arabian Gulf (AG) is tectonically active, this study aimed to evaluate tsunami hazards in Kuwait from both submarine earthquakes and subaerial landslides. Despite the low or unknown tsunami risks that impose potential threats to the coastal area’s infrastructures and population of Kuwait, such an investigation is important to sustain the economy and safety of life. This study focused on tsunamis generated by submarine earthquakes with earthquake magnitudes (M w ) of 8.3–9.0 along the Makran Subduction Zone (MSZ) and subaerial landslides with volumes of 0.75–2.0 km3 from six sources along the Iranian coast inside the AG and one source at the Gulf entrance in Oman. The level of tsunami hazards associated with these tsunamigenic sources was evaluated using numerical modeling. Tsunami model was applied to conduct a numerical tsunami simulation and predict tsunami propagation. For landslide sources, a two-layer model was proposed to solve nonlinear longwave equations within two interfacing layers with appropriate kinematic and dynamic boundary conditions. Threat level maps along the coasts of the AG and Kuwait were developed to illustrate the impacts of potential tsunamis triggered by submarine earthquakes of different scales and subaerial landslides at different sources. GEBCO 30 arc-second grid data and others were used as bathymetry and topography data for numerical modeling. Earthquakes of M w 8.3 and M w 8.6 along the MSZ had low and considerable impacts, respectively, at the Gulf entrance, but negligible impacts on Kuwait. An earthquake of M w 9.0 had a remarkable impact for the entire Gulf region and generated a maximum tsunami amplitude of up to 0.5 m along the Kuwaiti coastline 12 h after the earthquake. In the case of landslides inside the AG, the majority impact occurred locally near the sources. The landslide source opposite to Kuwait Bay generated the maximum tsunami amplitudes reaching 0.3 m inside Kuwait Bay and 1.8 m along the southern coasts of Kuwait.

  相似文献   

10.
Among the coastal districts of mega city Istanbul, Bakirkoy is one of the most critical one with the importance of air and marine transportation and presence of many other coastal facilities and structures that are prone to suffer from marine hazards. In the history, the Sea of Marmara has experienced numerous earthquake and landslide events and associated tsunamis. Therefore, tsunami risk assessment is essential for all coastal districts of Istanbul, including Bakirkoy district. In this study, a further developed methodology for tsunami human vulnerability and risk assessment Metropolitan Tsunami Human Vulnerability Assessment (MeTHuVA) is applied for Bakirkoy district of Istanbul, considering earthquake generated tsunamis. High-resolution tsunami hazard analysis is performed with the integration of coastal inundation computation with tsunami numerical tool NAMI DANCE and tsunami human vulnerability assessment with GIS-based multi-criteria decision analysis methods (MCDA). Using analytical hierarchy process method of MCDA, a hierarchical structure is established, composed of two main elements of tsunami human vulnerability: Vulnerability at Location and Evacuation Resilience. Tsunami risk assessment for Bakirkoy district is calculated by integrating result of hazard and vulnerability assessments with a risk relation that includes a parameter (n), which represents the preparedness and awareness level of the community. Tsunami simulations revealed that the maximum inundation distance is over 350 m on land and water penetrates almost 1700 m along Ayamama stream. Inundation is observed in eleven neighborhoods of Bakirkoy district. In the inundation zone, maximum flow depth is found to be over 5.7 m. The inundated area forms 4.2% of whole Bakirkoy district, and 62 buildings are located in the inundation zone. Hazard, vulnerability and risk assessment results for different neighborhoods of Bakirkoy district are presented and discussed.  相似文献   

11.
Catastrophic tsunami events like those occurred in Papua New Guinea in 1998, Sumatra in 2004 and Japan in 2011, attracted the attention of the scientific community and promoted the development of different tools for assessing tsunami hazard. A preliminary step towards this goal is the knowledge of the events which might affect a specific coastal zone. In this context, we propose a method to identify the tsunami events possibly occurring in areas characterized by scarce data and a non-conservative environment. Accordingly, we propose different indices to summarize the knowledge on tsunami triggering mechanisms (earthquakes, landslides, volcanic eruptions), the characteristics of those mechanisms (magnitude of earthquakes, volume of landslide, Volcanic Explosivity Index) and tsunami features (water height, run-up, wave amplitude, propagation time). This knowledge, considered over a wider area than that of interest, allows for a paramount vision of possible hazardous events that could affect a particular coastal zone. Moreover, the tsunami simulation data and the analysis of potentially tsunamigenic slides which occurred on the Campania continental margins were also considered in the analysis. We focused our attention on Napoli megacity, because the high population density (about 1 million of people live on a territory of 117 km2), together with the presence of active volcanic areas (Ischia, Somma-Vesuvio and Campi Flegrei), make this city potentially exposed to tsunami risk. The main outcome of such an approach shows that in the near field a tsunami amplitude varying from a few centimetres (30–40 cm) to some metres (1–4 m) might be expected at the coastline if the tsunami event was triggered by volcanic activity, whereas no relevant tsunami event should be expected given the peculiar seismicity of the Neapolitan volcanic areas, with earthquakes rarely exceeding 4 Mw, if any possible cascade effects are overlooked. A morphometric analysis of high-resolution bathymetry collected between Ventotene Island and the Gulf of Salerno has shown that the submarine southern sectors of the Ischia Island and the Sorrento Peninsula are characterized by a high density of landslide scars, being thus a potential source area of landslide-generated tsunamis. However, despite the susceptibility of these areas to recurrent slope failures, only four submarine landslide scars were found to be potentially tsunamigenic with estimated tsunami amplitude of few metres at the coastline as predicted by coupling slide morphometry with tsunami amplitude equations. Concerning the tsunamis generated by earthquakes in the Western Mediterranean, only those triggered by high magnitude events (value ≥ 6–7 Mw) might affect the city of Napoli with an amplitude not exceeding 0.5 m, in about 30′.  相似文献   

12.
The Storegga tsunami, dated in Norway to 8150±30 cal. years BP, hit many countries bordering the North Sea. Run-ups of >30 m occurred and 1000s of kilometres of coast were impacted. Whilst recent modelling successfully generated a tsunami wave train, the wave heights and velocities, it under-estimated wave run-ups. Work presented here used luminescence to directly date the Storegga tsunami deposits at the type site of Maryton, Aberdeenshire in Scotland. It also undertook sedimentological characterization to establish provenance, and number and relative power of the tsunami waves. Tsunami model refinement used this to better understand coastal inundation. Luminescence ages successfully date Scottish Storegga tsunami deposits to 8100±250 years. Sedimentology showed that at Montrose, three tsunami waves came from the northeast or east, over-ran pre-existing marine sands and weathered igneous bedrock on the coastal plain. Incorporation of an inundation model predicts well a tsunami impacting on the Montrose Basin in terms of replicate direction and sediment size. However, under-estimation of run-up persisted requiring further consideration of palaeotopography and palaeo-near-shore bathymetry for it to agree with sedimentary evidence. Future model evolution incorporating this will be better able to inform on the hazard risk and potential impacts for future high-magnitude submarine generated tsunami events.  相似文献   

13.
Analysis of high-resolution multibeam bathymetry and seismic profiles in the Noggin Passage region, north-eastern Australia, has identified a small area (Noggin block) in the upper-slope offshore Cairns that may potentially collapse and generate a tsunami wave. The Noggin block extends from 340 to 470 m depth covering a roughly circular (2.4 km long and 3.7 km wide) area of about 5.3 km2. The well-defined margins of the block correspond to different bounding seabed features. These features include steep headscarps, small landslides and a group of aligned circular pockforms up to 500 m wide and 20 m deep. Slope stability simulations indicate that the Noggin block is stable under normal present-day gravitational conditions on the upper slope. However, block failure may result under external loads, such as those produced by earthquakes. Failure modelling shows that critical peak horizontal accelerations of 0.2–0.4 g could lead to the collapse of the Noggin block. In north-eastern Australia, these acceleration values would involve earthquakes generated at short hypocentral distances and short periods. The collapse of the potential sediment slide mass of about 0.86 km3 (162 m average thickness) may lead to the formation of a landslide-generated tsunami wave. Semi-empirical equations indicate the collapse of this mass would yield a 7–11-m high three-dimensional tsunami wave. These waves could reach an estimated run-up height at the coast of 5–7 m. Our first-order approach highlights the potential consequences for nearby coastal communities, the need for better sediment characterisation in the study area, and the systematic identification of other areas prone to slope failures along the Great Barrier Reef margin.  相似文献   

14.
Recent tsunamis affecting the West Coast of the USA have resulted in significant damage to ports and harbors, as well as to recreational and commercial vessels attempting to escape the tsunami. With the completion of tsunami inundation simulations for a distant tsunami originating from the Aleutian Islands and a locally generated tsunami on the Cascadia subduction zone (CSZ), the State of Oregon is now able to provide guidance on the magnitudes and directions of the simulated currents for the Oregon coast and shelf region. Our analyses indicate that first wave arrivals for an Aleutian Island event would take place on the north coast,?~?3 h 40 min after the start of the earthquake,?~?20 min later on the southern Oregon coast. The simulations demonstrated significant along-coast variability in both the tsunamis water levels and currents, caused by localized bathymetric effects (e.g., submarine banks and reefs). A locally generated CSZ event would reach the open coast within 7–13 min; maximum inundation occurs at?~?30–40 min. As the tsunami current velocities increase, the potential for damage in ports and harbors correspondingly increases, while also affecting a vessels ability to maintain control out on the ocean. Scientific consensus suggests that tsunami currents?<?1.54 m/s are unlikely to impact maritime safety in ports and harbors. No such guidance is available for boats operating on the ocean, though studies undertaken in Japan suggest that velocities in the region of 1–2 m/s may be damaging to boats. In addition to the effects of currents, there is the added potential for wave amplification of locally generated wind waves interacting with opposing tsunami currents in the offshore. Our analyses explore potential wave amplification effects for a range of generic sea states, ultimately producing a nomogram of wave amplification for a range of wave and opposing current conditions. These data will be useful for US Coast Guard and Port authorities as they evaluate maritime tsunami evacuation options for the Oregon coast. Finally, we identify three regions of hazard (high, moderate, and low) across the Oregon shelf, which can be used to help guide final designation of tsunami maritime evacuation zones for the coast.  相似文献   

15.
Coastal ecosystems such as mangroves fringing tropical coastlines have been recognized as natural protectors of the coastal areas against destructive attack of a tsunami. In this paper, the authors aim to investigate the interaction of a tsunami wave on a typical mangrove forest and to determine its performance in reducing the run-up. A laboratory experiment using a hydraulic flume with a mangrove forest model was carried out in which tests were conducted by varying the vegetation widths of 0, 1, 2 and 3?m and average densities of 8, 6 and 4 trees per 100?cm2 using a scale ratio of 1:100. Two conditions of water levels were considered in the experiments at several tsunami wave heights between 2.4 and 14?cm. The dam break method used in the experiments produced two types of waves. At low water condition, a bore was developed and subsequently, a solitary wave was produced during high water. The results of the experiments showed that in general, vegetation widths and densities demonstrate a dampening effect on tsunami run-up. A larger vegetation width was found to be more effective in dissipating the wave energy. The first 1?m width of mangrove forest could reduce 23?C32?% during high water and 31?C36?% during low water. Increasing the mangrove forest width to 2 and 3?m could further increase the average percentage of run-up reduction by 39?C50?% during high water and 34?C41?% during low water condition. It was also observed that densities of the mangrove forest do not influence the run-up reduction as significantly as the forest widths. For mangrove forest densities to be significantly enough to reduce more tsunami run-up, an additional density of 4 trees/100?m2 needs to be provided. The experiments also showed that mangrove roots are more effective in reducing the run-up compared to the trunks and canopies. The experiments managed to compare and present the usefulness of mangrove forests in dissipating wave energy and results produced are beneficial for initiating design guidelines in determining setback limits or buffer zones for development projects in mangrove areas.  相似文献   

16.
17.
This paper presents a study of the effects of a potential landslide in La Yesca Reservoir, Jalisco-Nayarit, Mexico. The main purpose of the paper is to predict the maximum wave amplitude, wave run-up, and dam overtopping. The landslide is formed by an unstable slope of more than 24 Mm3 that is partially submerged for the range of the reservoir operation levels. The dynamics of the sliding mass were obtained in detail considering that it moves over a pair of failure surfaces with the potential rupture of a third surface. The paper presents results of a physical model of the reservoir based on Froude similitude (scale 1:200). Impulse waves are produced with a solid wedge shape slide as it moves on rails. The movement was calibrated to reproduce the dynamics of the landslide. Also, numerical modelling of the event was performed with a 2D implicit model that solves the two-dimensional shallow water equations. In this case, the impulse waves were generated at each time increment with the variation of the ground elevation (obtained from the dynamics of the landslide) for the mesh points where the landslide passes. The results of both studies are similar.  相似文献   

18.
Since the impoundment of the Three Gorges Reservoir in June 2003, numerous preexisting landslides have been reactivated. This paper seeks to find the factors influencing landslide deformation and the relationship between displacement and fluctuation of the reservoir water level, while the displacement and the intensity of rainfall based on monitoring data; 6 years of monitoring were carried out on the Shiliushubao landslide, a old landslide, consisting of a deep-seated main block and two shallow blocks, with a volume of 1,180 × 104 m3 and located on the left bank of the Yangtze River, 66 km upstream of the Three Gorges dam. This landslide was reactivated by the impoundment and since then the landslide body has been experiencing persistent deformation with an observed maximum cumulative displacement of 8,598.5 mm up to December 2009. Based on the monitoring data, we analyzed the relationship between the fluctuation of the reservoir water level and displacement, rainfall and displacement, and found that the rainfall is the major factor influencing deformation for two shallow blocks and the displacement has a positive correlation with the variation of rainfall intensity. The fluctuation of the reservoir water level is the primary factor for main block, and the deformation rate has a negative correlation with the variation of reservoir water level, declined with the rise of the water level and increased with the drawdown of the water level.  相似文献   

19.
Submarine landslides can generate local tsunamis with high run-ups, posing a hazard to human lives and coastal facilities. Both ancient (giant Storegga slide off Norwegian coast, 8200 B. P.) and recent (Papua New Guinea, 1998) events show high potential danger of tsunamigenic landslides and the importance of mitigation efforts. This contribution presents newly discovered landslides 70 km off Padang (Western Sumatra, Indonesia) based on recent bathymetry measurements. This highly populated city with over 750,000 inhabitants exhibits high tsunami vulnerability due to its very low elevation. We model tsunamis that might have been induced by the detected landslide events. Estimations of run-up heights extrapolated from offshore tsunami amplitudes for Padang and other locations in the northern Mentawai fore-arc basin yield maximum values of about 3 m. We also provide a systematic parametric study of landslide-induced tsunamis, which allows us to distinguish potentially dangerous scenarios for Padang. Inside the fore-arc basin, scenarios involving volumes of 0.5–25 km³ could endanger Padang. Apart from slide volume, the hazard distribution mainly depends on three landslide parameters: distance to Padang, water depth in the generation region, and slide direction.  相似文献   

20.
We investigate the hitherto unexplained wave which inundated the village of Dwarskersbos, South Africa, in the early hours of August 27, 1969, in the absence of any seismic disturbance or major meteorological storm. A field survey, based on the interview of nine elderly witnesses still residing in the community, documented maximum run-up of 2.9 m, concentrated on an extremely short segment of coastline, less than 2 km in length. These characteristics are incompatible with generation by a seismic source (which, at any rate, should have been felt by the population). A landslide source, located at the only canyon featuring a steep enough ocean floor, is also ruled out since a numerical simulation fails to reproduce the concentration of the wave at Dwarskersbos. By contrast, the wave can be explained as a “meteo-tsunami” resulting from resonance between a meteorological squall propagating at 18 m/s in the azimuth \(\hbox {N101}^{\circ }\hbox {E}\) and a gravity wave propagating in the shallow waters off the eastern shore of St. Helena Bay. This is confirmed by numerical simulation under the formalism of Proudman (Dynamical oceanography. Methuen, London, 1953), which provides a satisfactory model of the distribution of run-up along the beach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号