首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Mitre Island samples, Pliocene in age, can be classified together with Anuda samples, of unknown age, as island-arc basaltic andesites with tholeiitic tendencies. The presence of morphologically unusual iron—titanium oxides and of probably xenocrystic plagioclase suggest that at least part of the observed minerals crystallized in a magma chamber underlying the island. The samples apparently represent a mixture of magma fluid, cumulate plagioclase, pyroxene, and iron—titanium oxides which were ponded in a crater lava lake where they were reheated by subsequent eruptions. Many of them show symplectic magnetite formed by high-temperature oxidation of olivine. The morphological complexity and compositional homogeneity of the iron—titanium oxides cannot be explained at present.The presence of sulfide droplets inside olivine, magnetite and ilmenite crystals suggests a formation of an immiscible sulfide liquid in the magma chamber. Droplets of this liquid were overgrown by minerals crystallizing at that time and thus protected against oxidation during and after eruption.Mitre Island is a part of a currently inactive Vitiaz island arc associated in the past with a westward subduction of Pacific plate along the Vitiaz trench. Increased difficulty in subducting the large mass of the Pacific Border Plateau under the northern Fiji Plateau apparently produced counterclockwise rotation of the Vitiaz island arc. Oblique subduction was active until a steep angle was reached between the Vitiaz trench and the motion vector of the Pacific plate. Then a strike-slip fault developed in the Vitiaz trench and the subducted plate was sheared off. Recently the strike-slip zone migrated south from the Vitiaz trench across the northern Fiji Plateau and is presently extending from Aoba Island, in the New Hebrides, northeastward toward the Pacific Border Plateau.  相似文献   

2.
Fault patterns at outer trench walls   总被引:1,自引:0,他引:1  
Profiles across subduction-related trenches commonly show normal faulting of the outer trench wall. Such faulting is generally parallel or sub-parallel to the trench and is ascribed to tension in the upper part of the oceanic plate as it is bent into the subduction zone. A number of authors have noted that outer trench wall faulting may involve re-activation of the oceanic spreading fabric of the subducting plate, even when the trend of this fabric is noticeably oblique to the extensional stress direction. However, one previous review of outer trench wall fault patterns questioned the occurrence of a consistent link between fault orientation and such controlling factors. This latter study predated the widespread availability of swath bathymetry and longrange sidescan sonar data over trenches. Based only on profile data, it was unable to analyse fault patterns with the accuracy now possible. This paper therefore re-examines the relationship between outer trench wall faulting and the structure of the subduction zone and subducting plate using GLORIA and Seabeam swath mapping data from several locations around the Pacific and Indian Oceans. The principal conclusions is that the trend of outer trench wall faults is almost always controlled by either the subducting slab strike or by the inherited oceanic spreading fabric in the subducting plate. The latter control operates when the spreading fabric is oblique to the subducting slab strike by less than 25–30°; in all other cases the faults are parallel to slab strike (and parallel or sub-parallel to the trench). Where the angle between spreading fabric and slab strike is close to 30°, two fault trends may coexist; evidence from the Aleutian Trench indicates a gradual change from spreading fabric to slab strike control of fault trend as the angle between the two increases from 25 to 30°. The only observed exception to the above rule of fault control comes from the western Aleutian Trench, where outer trench wall faults are oblique to the slab strike, almost perpendicular to the spreading fabric, and parallel to the convergence direction. Re-orientation of the extensional stress direction due to right-lateral shear at this highly oblique plate boundary is the best explanation of this apparently anomalous observation.  相似文献   

3.
Magnetic data recently collected in the eastern tropical Pacific confirm that the Galapagos rift zone is connected to the Panama fracture zone by a short north-south fracture zone (the Ecuador fracture zone) and a short east-west center of sea floor spreading (the Costa Rica rift zone). These features were found approximately in the locations predicted by Molnar and Sykes from considerations of earthquake studies and plate tectonics. A spreading rate of 3.1 cm/year for the Costa Rica rift zone agrees with the rate found for the Galapagos rift zone but the anomalies associated with the two rifts differ markedly in amplitude.  相似文献   

4.
New data collected between the northernmost tip of the East Pacific rise (18°05'N, 105°35'W) and the Middle America trench provide evidence that the seafloor, which lacks significant sedimentary cover, has a typical spreading-derived abyssal hill topography. The tectonic fabric of this seafloor is concave to the west, as it is today at the tip of the East Pacific rise. Farther to the east, at the outer wall of the trench, the seafloor topography exhibits a north-south trending fabric. We suggest that this fabric originated along the East Pacific rise, as it reached the trench and possibly subducted beneath the North America plate prior to the development of the complex connection of the East Pacific rise with the Rivera transform.  相似文献   

5.
Faults on the outer wall of the northern Peru—Chile trench, seaward of the Lima Basin, Arica Bight, and Iquique Basin, parallel the trend of Nazca plate magnetic anomalies. Where the Nazca Ridge enters the subduction zone, faulting parallels the trench, probably reflecting a lack of spreading fabric on the ridge. Seaward of the Yaquina Basin, faulting does not parallel the trench or the spreading fabric, possibly reflecting stress changes caused by N—S extension across the nearby Mendaña fracture zone. These results generally agree with a previous review of subduction-related faulting, which concluded that faults parallel the spreading fabric where it differs from the strike of the dipping slab by less than 30°.  相似文献   

6.
The Woodlark triple junction region, a topographically and structurally complex triangular area of Quaternary age, lies east of Simbo Ridge and southwest of the New Georgia island group, Solomon Islands, at the junction of the Pacific, Australian and Solomon Sea plates. SeaMARC II side-scan imagery and bathymetry in conjunction with seismic reflection profiles, 3.5 kHz records, and petrologic, magnetic and gravity data show that the active Woodlark spreading centre does not extend into this region.South of the triple junction region, the Woodlark spreading centre reoriented at about 2 Ma into a series of short ESE-trending segments. These segments continued to spread until about 0.5 Ma, when the lithosphere on their northern sides was transferred from the Solomon Sea plate to the Australian plate. Simultaneously the Simbo transform propagated northwards along the western side of the transferred lithosphere, forming a trench-trench-transform triple junction located NNW of Simbo island and a new leaky plate boundary segment that built Simbo Ridge.As the Pacific plate approached, the area east of northern Simbo Ridge was tilted northwards, sheared by dominantly right-lateral faults, elevated, and intruded by arc-related magmas to form Ghizo Ridge. Calc-alkalic magmas sourced beneath the Pacific plate built three large strato-volcanic edifices on the subducting Australian plate: Simbo at the northern end of Simbo Ridge, and Kana Keoki and Coleman seamounts on an extensional fracture adjoining the SE end of Ghizo Ridge.A sediment drape, supplied in part from Simbo and Kana Keoki volcanoes, mantles the east-facing slopes of northern Simbo and Ghizo Ridges and passes distally into sediment ponded in the trench adjoining the Pacific plate. As a consequence of plate convergence, parts of the sediment drape and pond are presently being deformed, and faults are dismembering Kana Keoki and Coleman seamounts.The Woodlark system differs from other modern or Tertiary ridge subduction systems, which show wide variation in character and behaviour. Existing models describing the consequences of ridge subduction are likely to be predictive in only a general way, and deduced rules for the behaviour of oceanic lithosphere in ridge subduction systems may not be generally applicable.  相似文献   

7.
A Seabeam reconnaissance of 1200 km of the deep sediment-starved axis of Tonga Trench delineated the fine-scale relief at the outcrop of a subduction zone generally characterized by tectonic erosion rather than accretion. The commonest axial cross-section has a steep (12°) irregular inner slope intersecting the thinly sedimented surface of Mesozoic ocean crust, which dips under it at 5–6°. There is little or no intervening turbidite fill, but small lenses interpreted as debris deposits occur at the foot of parts of the inner slope that lack basins or benches which elsewhere obstruct downslope sediment transport. The oceanic slope is severely broken by parallel but slightly sinuous fractures induced by bending of the plate, and entry of outer-slope grabens into the subduction zone is confirmed to be a morphologically and tectonically important process. Arrival of oceanic seamounts and volcanic ridges at the trench outer slope and axis affects the fracture pattern of the oceanic plate, the depth of the temporarily plugged axis, and the relief of the lower inner slope. Subduction of the Louisville guyot chain, or of the extensive hotspot swell and thick sediment apron that surrounds it, has important regional effects as well, shoaling 400 km of trench axis and causing development of a small accretionary prism with trench-slope basins. Because the intersection point of the hot-spot chain has moved rapidly south along the trench, structural changes that occur in the wake of guyot-chain subduction can also be inferred: accretion at the inner slope is followed by rapid tectonic erosion, which unroofs a wider strip of downgoing lithosphere and thereby deepens the trench axis. The longitudinal profile of axial depths, made locally irregular by the collision of medium-scale volcanic and tectonic relief on the oceanic plate, also has a step near 18.5° S, where there is a regional depth difference in the oceanic crust entering the trench.  相似文献   

8.
西太平洋中部地区是西太平洋板块边缘沟-弧-盆体系构造演化的关键区域,其地质特征与构造演化一直是地学家关注的焦点问题之一。开展岩石圈有效弹性厚度的研究对于认识该区域的形成演化具有重要的科学意义。本文采用滑动窗口导纳技术,并在挠曲模型中考虑了表面荷载和内部荷载同时存在的情况,计算得到该区域的岩石圈有效弹性厚度(Te)。计算结果显示,研究区的Te值整体上为0~50 km,其变化基本上与构造单元相吻合,且与主要的构造边界密切相关。除海底火山具有相对较小的Te值(15~20 km)外,太平洋板块整体上具有较强的岩石圈强度(25~30 km)。马里亚纳海沟和菲律宾海沟的岩石圈强度从外隆起到海沟方向表现为明显的减弱,表明岩石圈由外隆起向海沟发生了弱化。帕里西维拉海盆西部相较于东部具有较弱的岩石圈强度,这可能与海盆的非对称扩张有关。卡罗琳板块的岩石圈整体上表现为相对均一的低Te值特征(<15 km)。欧里皮克海隆、卡罗琳海岭和索罗尔海槽的Te值为3 km,这可能是强烈的火山作用所导致的结果。  相似文献   

9.
Data from three bathymetric surveys by R/V Kairei using a 12-kHz multibeam echosounder and differential GPS were used to create an improved topographic model of the Challenger Deep in the southwestern part of the Mariana Trench, which is known as the deepest seafloor in the world. The strike of most of the elongated structures related to plate bending accompanied by subduction of the Pacific plate is N70°E and is not parallel to the trench axis. The bending-related structures were formed by reactivation of seafloor spreading fabric. Challenger Deep consists of three en echelon depressions along the trench axis, each of which is 6–10 km long, about 2 km wide, and deeper than 10,850 m. The eastern depression is the deepest, with a depth of 10,920 ± 5 m.  相似文献   

10.
We conducted a detailed analysis of along-trench variations in the flexural bending of the subducting Pacific Plate at the Tonga-Kermadec Trench. Inversions were conducted to obtain best-fitting solutions of trench-axis loadings and variations in the effective elastic plate thickness for the analyzed flexural bending profiles. Results of the analyses revealed significant along-trench variations in plate flexural bending: the trench relief(W_0) of 1.9 to 5.1 km;trench-axis vertical loading(V_0) of –0.5×(10)~(12) to 2.2×(10)~(12) N/m; axial bending moment(M_0) of 0.1×(10)~(17) to 2.2×(10)~(17) N;effective elastic plate thickness seaward of the outer-rise region(T_e~M) of 20 to 65 km, trench-ward of the outer-rise(T_e~m) of 11 to 33 km, and the transition distance(X_r) of 20 to 95 km. The Horizon Deep, the second greatest trench depth in the world, has the greatest trench relief(W_0 of 5.1 km) and trench-axis loading(V_0 of 2.2×(10)~(12) N/m); these values are only slightly smaller than that of the Challenger Deep(W_0 of 5.7 km and V_0 of 2.9×(10)~(12) N/m) and similar to that of the Sirena Deep(W_0 of 5.2 km and V_0 of 2.0×(10)~(12) N/m) of the Mariana Trench,suggesting that these deeps are linked to great flexural bending of the subducting plates. Analyses using three independent methods, i.e., the T_e~M/T_e~m inversion, the flexural curvature/yield strength envelope analysis, and the elasto-plastic bending model with normal faults, all yielded similar average Te reduction of 28%–36% and average Te reduction area S¢Te of 1 195–1 402 km~2 near the trench axis. The calculated brittle yield zone depth from the flexural curvature/yield strength envelope analysis is also consistent with the distribution of the observed normal faulting earthquakes. Comparisons of the Manila, Philippine, Tonga-Kermadec, Japan, and Mariana Trenches revealed that the average values of T_e~M and T_e~m both in general increase with the subducting plate age.  相似文献   

11.
南海地热异常明显与主要构造断裂带和水热/岩浆活动有关。东部平行于马尼拉海沟的一条SN向低热流异常带起因于南海洋壳对吕宋岛的俯冲。南沙海槽及其南部陆缘的地温场比较复杂。南部的曾母盆地是一个显著的高地热异常区,它起因于年轻的构造拉张,其地幔热流高达中央海盆洋壳的地幔热流值。西南次海盆也是一个高地热异常区,虽然该次海盆形成较早,但与年轻的构造拉张有关。热流资料的分析结果表明,南海中央海盆西缘断裂带、西南次海盆和曾母盆地构成的NE向高热流异常带可能是一个大型的现代构造拉张带。  相似文献   

12.
 The Queen Charlotte fault zone along the western margin of Canada, a right-lateral transform, is part of the boundary between the Pacific and North America plates. Combining reflection and refraction surveys and flexural modeling, we place limits on the amount of underthrusting of the Pacific plate beneath the North America plate. Results from our two-dimensional elastic modeling suggest 10–15 km of underthrusting along the northern Queen Charlotte Islands, in agreement with the amount of underthrusting inferred from plate motion models. Received: 12 June 1995/Revision received: 9 December 1995  相似文献   

13.
New bathymetric and geophysical data were collected in the region east of the island of Malaita during the SOPACMAPS II cruise of the French research vessel L'ATALANTE. This region, part of the Malaita Anticlinorium was interpreted as a piece of oceanic crust from the Ontong Java Plateau obducted over the old Solomon Islands arc during collision between the Pacific and Australian plates. It has been generally accepted that convergent motion between the Australia and Pacific plates since the Late Miocene was absorbed exclusively along the San Cristobal trench, southwest of the Solomon Islands Arc.Bathymetry, imagery, and geophysical data (magnetism, gravity, seismic) acquired during the SOPACMAPS II survey allow us to classify the successive parallel ridges mapped within the region as being recent volcanic, oceanic crust, or deformed sedimentary ridges.Seismic profiling provides evidence of successive compressive events along the Malaita margin caused by the relative motion between the Solomon Islands and the Pacific plate. The main phase of convergence probably occurred during Oligocene-early Miocene time, but some relative motion between the two domains are still being absorbed along the East Malaita boundary. The existence of active faulting in the sedimentary cover throughout the region and the present-day deformation of the outer sedimentary ridge is a good illustration of this phenomenon.  相似文献   

14.
A 1987 survey of the offshore Peru forearc using the SeaMARC II seafloor mapping system reveals that subduction of the Nazca Ridge has resulted in uplift of the lowermost forearc by as much as 1500 m. This uplift is seen in the varied depths of two forearc terraces opposite the subducting ridge. Uplift of the forearc has caused fracturing, minor surficial slumping, and increased erosion through small canyons and gullies. Oblique trending linear features on the forearc may be faults with a strike-slip component of motion caused by the oblique subduction of the Nazca Ridge. The trench in the zone of ridge subduction is nearly linear, with no re-entrant in the forearc due to subduction of the Nazca Ridge. Compressional deformation of the forearc due to subduction of the ridge is relatively minor, suggesting that the gently sloping Nazca Ridge is able to slide beneath the forearc without significantly deforming it. The structure of the forearc is similar to that revealed by other SeaMARC II surveys to the north, consisting of: 1) a narrow zone (10 to 15 km across) of accreted material making up the lower forearc; 2) a chaotic middle forearc; 3) outcropping consolidated material and draping sediment on the upper forearc; and 4) the smooth, sedimented forearc shelf.The subducting Nazca plate and the Nazca Ridge are fractured by subduction-induced faults with offsets of up to 500 m. Normal faulting is dominant and begins about 50 km from the trench axis, increasing in frequency and offset toward the trench. These faults are predominantly trench-parallel. Reverse faults become more common in the deepest portion of the trench and often form at slight angles to the trench axis.Intrusive and extrusive volcanic areas on the Nazca plate appear to have formed well after the seafloor was created at the ridge crest. Many of the areas show evidence of current scour and are cut by faulting, however, indicating that they formed before the seafloor entered the zone of subduction-induced faulting.  相似文献   

15.
The Andaman arc is associated with a major Free-air anomaly pair of mean amplitude 180 mgal. Two-dimensional gravity interpretation suggests significant mass anomalies below the arc that presumably have resulted due to subduction of the Indian plate below the Burma plate. It is inferred that the Andaman trench is of asymmetric V-shape containing about 7 km sediments. An outer bathymetric rise seaward of the trench possibly corresponds to a lithospheric flexure by 500 m. The Cretaceous-Tertiary sediments constituting the Andaman sedimentary arc attain their maximum thickness of about 13 km under the Nicobar. Deep at the subduction zone. At this location a mafic mass is emplaced within the sedimentary section. The underlying oceanic crust apparently experiences phase transition at about 27 km depth in a Benioff zone environment. The Andaman volcanic arc underlies a low density zone that is at least 60 km wide. Along the east margin of the Andaman Sea, cuustal transition presumably occurs below the Mergui Terrace at the Malayan coast.  相似文献   

16.
日本九州俯冲带是菲律宾海板块与欧亚板块汇聚边界上一个独具特色的区域, 也是研究俯冲带内板块构造作用的理想场所。为了解该俯冲带内的板间应力状态和相互作用, 本研究利用震源深度大于20km的97251个地震事件, 通过b值计算详细刻画了该俯冲板片上表面以及垂直海沟走向的剖面特征。结果发现, b值表现出明显的空间变化, 整体上沿南海海槽和琉球海沟从东北往西南方向逐渐增大, 同时在俯冲的九州-帕劳海脊上存在显著的低值区。从b值与应力的负相关性推断, 进入俯冲带的海脊以及海脊东北侧的四国海盆洋壳与俯冲带上覆板片耦合作用较强; 而在海脊西南侧, 俯冲带内汇聚板片的耦合作用相对较弱。究其原因, 本文认为九州-帕劳海脊两侧俯冲洋壳在形成时代和汇聚速率上的差异起着重要作用。对于九州-帕劳海脊来说, 俯冲带浅部的低b值区主要是由于隆起的海脊增强了与上覆板块的耦合作用。随着俯冲深度的增加和俯冲板片倾角的急剧变陡, 沿海脊可能发生了板片撕裂, 从而释放了海脊与上覆板片间的挤压-剪切应力, 使耦合程度大大减弱。  相似文献   

17.
The Wilkes fracture zone offsets the East Pacific Rise about 200 km right-laterally near 9°S. The bathymetric expression of the fracture zone ranges from a simple slope or step along its inactive extension to a 100 km wide zone of oblique structural features in the active portion. A low ridge 200 to 300 m high, 5 to 15 km wide and 185 km long is the dominant oblique structure; it trends 23° north of the main transform trend. A high-amplitude magnetic anomaly trends 097° along the southern part of the active portion and apparently marks the main transform direction. The structurally simple, inactive portions of the Wilkes fracture zone trend 105°. Plots of epicenter locations reveal two groupings of earthquakes, one along an 082° trend in the central part of the fracture zone, and a cluster near the southwestern fracture zone — spreading center intersection.Taken together the data suggest that some event, other than a shift in the Nazca-Pacific pole of rotation, occurred 0.9 m.y. ago to change the Wilkes fracture zone from a simple fault to a complex zone of shearing. Since that time the long oblique ridge, probably the surface expression of a Riedel shear, was formed. At present the entire 200 km long, 100 km wide region between the offset axes is seismically active, but transform motion may be largely confined to the southern margin of the active zone, coincident with the high-amplitude magnetic anomaly there.  相似文献   

18.
The Kane Fracture Zone probably is better covered by geophysical survey data, acquired both by design and incidentally, than any other fracture zone in the North Atlantic Ocean. We have used this data to map the basement morphology of the fracture zone and the adjacent crust for nearly 5700 km, from near Cape Hatteras to the middle of the Mesozoic magnetic anomalies west of Cap Blanc, northwest Africa. We use the trends of the Kane transform valley and its inactive fracture valley to determine the record of plate-motion changes, and we interpret the basement structural data to examine how the Kane transform evolved in response to changes in plate motion. Prior to about 133 Ma the Kane was a small-offset transform and its fracture valley is structurally expressed only as a shallow ( < 0.5 km) trough. In younger crust, the offset may have increased to as much as 190 km (present offset 150 km) and the fracture valley typically is up to 1.2 km deep. This part of the fracture valley records significant changes in direction of relative plate motion (5°–30°) near 102 Ma, 92 Ma, 59 Ma, 22 Ma, and 17 Ma. Each change corresponds to a major reorganization of plate boundaries in areas around the Atlantic, and the fracture-zone orientation appears to be a sensitive recorder of these events. The Kane transform has exhibited characteristic responses to changes in relative plate motion. Counterclockwise plate-motion changes put the left-lateral transform offset into extension, and the response was for ridge tips at the ridge-transform intersections to propagate across the transform valley and against the truncating lithosphere. Heating of this lithosphere appears to have produced uplift and formation of a well developed transverse ridge that bounds the inactive fracture valley on its older side. The propagating ridge tips also rotated toward the transform fault in response to the local stress field, forming prominent hooked ridges that now extend into or across the inactive fracture valley. Clockwise (compressional) changes in relative plate motion produced none of these features, and the resulting fracture valleys typically have a wide-V shape. The Kane transform experienced severe adaptions to the changes in relative plate motion at about 102 Ma (compressional shift) and 92 Ma (extensional shift), and new transform faults were formed in crust outside the contemporary transform valley. Subsequently, the transform offset has been smaller and the rates of change in plate motion have been more gradual, so transform-fault adjustment has been contained within the transform valley. The fracture-valley structure formed during extensional and compressional changes in relative plate motion can be decidedly asymmetrical in conjugate limbs of the fracture zone. This asymmetry appears to be related to the ‘absolute’ motion of the plate boundary with respect to the asthenosphere.  相似文献   

19.
A submersible study has been conducted in February–March 1978 at the axis of the East Pacific Rise near 21°N. The expedition CYAMEX, the first submersible program to be conducted on the East Pacific Rise, is part of the French-American-Mexican project RITA (Rivera-Tamayo), a 3-year study devoted to detailed geological and geophysical investigations of the East Pacific Rise Crest. On the basis of the 15 dives made by CYANA in the axial area of the Rise, a morphological and tectonic zonation can be established for this moderately-fast spreading center. A narrow, 0.6 to 1.2 km wide zone of extrusion (zone 1), dominated by young lava flows, is flanked by a highly fissured and faulted zone of extension (zone 2) with a width of 1 to 2 km. Further out, zone 3 is dominated by outward tilted blocks bounded by inward-facing fault scarps. Active or recent faults extend up to 12 km from the axis of extrusion of the East Pacific Rise. This represents the first determination from direct field evidence of the width of active tectonism associated with an accreting plate boundary. Massive sulfide deposits, made principally of zinc, copper and iron, were found close to the axis of the Rise. Other signs of the intense hydrothermal activity included the discovery of benthic fauna of gian size similar to that found at the axis of the Galapagos Rift. We emphasize the cyclic character of the volcanicity. The main characteristics of the geology of this segment of the East Pacific Rise can be explained by the thermal structure at depth below this moderately-fast spreading center. The geological observations are compatible with the existence of a shallow magma reservoir centered at the axis of the Rise with a half-width of the order of 10 km.  相似文献   

20.
无震脊或海山链俯冲对超俯冲带处的地质效应   总被引:3,自引:1,他引:2  
鄢全树  石学法 《海洋学报》2014,36(5):107-123
全球海底分布着众多的无震脊或海山链,且在太平洋、印度洋及大西洋均存在靠近俯冲带的海岭。除小安德列斯弧外的巴拉克达脊和蒂勃朗脊起源自转换断层外,一般认为它们由与板块构造动力学迥异的地幔柱动力学所形成的。在板块汇聚边缘处,与扩张脊处所形成的正常洋壳一起,无震脊或海山链俯冲于陆缘弧或洋内弧之下,其对弧及弧后地区的地质效应(构造、地貌、地震以及岩浆作用等)有别于正常洋壳俯冲。无震脊或海山链的俯冲通常造成俯冲带地区的上驮板块的局部异常抬升、俯冲剥蚀作用效应的加强、海沟的向陆迁移以及地震强度的增加。同时,无震脊或海山链俯冲时,其携带的具富集地球化学特征的物质不仅影响着地幔地球化学,也对弧及弧后火山熔岩化学产生明显影响,并对超俯冲地区的热液矿床的形成产生重要影响。最后,本文指出了我国有关无震脊或海山链俯冲的可能的研究方向包括黄岩海山链俯冲对吕宋岛弧的可能影响、印度洋无震脊俯冲对青藏高原局部地区的影响,有我国学者参与的IODP344航次的研究对象——科科斯脊俯冲对哥斯达黎加地震成因的效应以及位于西太平洋地区靠近俯冲带的一些无震脊等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号