首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The oxidation and reduction that occur during early diagenesis of sediments has been studied in the interstitial waters of a rapidly accumulating sedimentary sequence from the Mediterranean margin of Spain. A series of reactions that are mediated by progressively lower free energy derived from oxidation of organic matter is evident in the sedimentary sequence. Iron and manganese are rapidly reduced. Phosphate and alkalinity maxima at a subbottom depth of 15?m indicate maximal organic matter degradation. Methane first appears at ~20?m subbottom after sulfate is depleted, and its concentrations quickly climb.  相似文献   

2.
A synthesis of high-resolution (Chirp, 2–7 kHz) subbottom profiles in the Ulleung Basin reveals patchy distribution of shallow (<90 m subbottom depth) gassy sediments in the eastern basin plain below 1,800-m water depth. The shallow gases in the sediments are associated with acoustic turbidities, columnar acoustic blankings, enhanced reflectors, dome structures, and pockmarks. Analyses of gas samples collected from a piston core in an earlier study suggest that the shallow gases are thermogenic in origin. Also, published data showing high amounts of organic matter in thick sections of marine shale (middle Miocene to lower Pliocene sequence) and high heat flow in the basin plain sediments are consistent with the formation of deep, thermogenic gas. In multi-channel deep seismic profiles, numerous acoustic chimneys and faults reflect that the deep, thermogenic gas would have migrated upwards from the deeper subsurface to the near-seafloor. The upward-migrating gases may have accumulated in porous debrites and turbidites (upper Pliocene sequence) overlain by impermeable hemipelagites (Quaternary sequence), resulting in the patchy distribution of shallow gases on the eastern basin plain.  相似文献   

3.
High-resolution seismic studies of gas hydrates west of Svalbard   总被引:2,自引:0,他引:2  
 A strong bottom-simulating reflection (BSR) with high-amplitude variations is detectable in high- resolution reflection seismic profiles west of Svalbard. Above the BSR, anomalously high velocities up to 1840 m/s, calculated from high-frequency ocean-bottom hydrophone (HF-OBH) data, indicate the existence of gas-hydrated sediments. Below the BSR, a low-velocity layer, interpreted as gas-bearing sediments, shows thickness variations from 12 to 25 m. In addition, two other low-velocity layers clearly containing free gas are detected within the classic hydrate stability zone (HSZ) where, a theoretical viewpoint, free gas cannot exist. Received: 6 August 1997 / Revision received: 26 January 1998  相似文献   

4.
The need for quantifying and understanding the distribution of shallow gas is both of academic interest and of relevance to offshore facilities. The combination of seafloor mapping, subbottom profiling, and multi-channel seismic data can provide information on regions of possible shallow gas, where the gas impacts the acoustic properties of the host material and the seafloor. In this paper, we present two case studies – one academic and one industry – that evaluate the distribution of shallow gas in two field areas in the Mediterranean. In the first case study, geophysical data from Iskenderun Bay, southeastern Turkey, indicate the presence and distribution of shallow gas. Pockmarks on the seafloor are associated with acoustic wipeout in the shallow subbottom data. Although deeper seismic data do not show bright spots or other indicators of possible gas, instantaneous frequency analysis clearly shows laterally restricted anomalies indicating gas-rich zones. The interpretation of possible shallow gas resulted in moving a proposed drilling location to a nearby area characterized by fewer (but still present) shallow gas signatures. In the second case study, cores acquired in the Po Delta, Adriatic Sea, provide quantitative ground-truthing of shallow gas – as suggested by geophysical data – and provide minimum estimates of the percentage of gas in the subsurface. Cores targeted on anomalous subbottom data yielded up to 41,000 ppm methane; cores with anomalous gas content are associated with thick recent flood deposits which may effectively isolate reactive terrigenous organic matter from biologic and physical re-working.  相似文献   

5.
Jinhae Bay, a semi-enclosed, tide-dominated coastal embayment on the southeastern coast of Korea, receives large amounts of sediment derived from the Nakdong River. The irregular surface of the acoustic basement is overlain by a modern sedimentary sequence up to 25 m thick, characterized by an acoustically semitransparent subbottom. Sediments, consisting mainly of terrigenous and bioturbated mud, accumulate at a rate of 2–5 mm/yr. About 21% of the suspended sediments discharged from the Nakdong River, that is approximately 1.0 × 106 tons per year, accumulate in Jinhae Bay. Modern sedimentation began probably at about 5000 yr BP, when sea level approached its present level.  相似文献   

6.
 Much of the modern upper (proximal) Monterey fan is a channel–levee complex, the Upper Turbidite Sequence (UTS), that was deeply eroded after the channel breached a volcanic ridge to reach a deeper base level. Ages of sediment samples collected with the ALVIN submersible from the deepest outcrop within the channel–levee system, 390 m below the adjacent western levee crest, indicate that the UTS deposits accumulated at ≥1 m ka-1 during the last 500 ka. Neogene and Early Pleistocene sediment accumulation on the fan prior to the UTS was much slower (<0.03 m ka-1), and underlying turbidite systems(?) had substantially different morphologic expression(s). Received: 10 February 1998 / Revision received: 6 July 1998  相似文献   

7.
To understand the origin and biogeochemistry of the organic matter in surface sediments of Lake Shihwa and Lake Hwaong, organic nitrogen, inorganic nitrogen, labile organic carbon, and residual organic carbon contents as well as stable isotope ratios for carbon and nitrogen were determined by KOBr-KOH treatment. Ratios of organic carbon to organic nitrogen (Corg/Norg) (mean = 24) were much higher than ratios of organic carbon to total nitrogen (Corg/Ntot) (mean=12), indicating the presence of significant amounts of inorganic nitrogen in the surface sediments of both lakes. Stable isotope ratios for organic nitrogen were, on average, 5.2‰ heavier than ratios of inorganic nitrogen in Lake Shihwa, but those same ratios were comparable in Lake Hwaong. This might be due to differences in the origin or the degree of degradation of sedimentary organic matter between the two lakes. In addition, stable isotope ratios for labile organic carbon were, on average, 1.4‰ heavier than those for residual organic carbon, reflecting the preferential oxidation of13C-enriched organic matter. The present study demonstrates that KOBr-KOH treatment of sedimentary organic matter can provide valuable information for understanding the origin and degradation state of organic matter in marine and brackish sediments. This also suggests that the ratio of Corg/Norg and stable isotope ratios for organic nitrogen can be used as indexes of the degree of degradation of organic matter.  相似文献   

8.
We used time-series sediment trap data for four major components, organic matter and ballast minerals (CaCO3, opal, and lithogenic matter) from 150, 540, and 1000 m in the western subarctic Pacific (WSAP), where opal is the predominant mineral in sinking particles, to develop four simple models for settling particles, including the “ballast model”. The ballast model is based on the concept that most of the organic matter “rain” in the deep sea is carried by the minerals. These four models are designed to simultaneously reproduce the flux of each major component of settling particles at 540 and 1000 m by using the data for each component at 150 m as initial values. Among the four models, the ballast model, which considers the sinking velocity increase with depth, was identified as the best using the Akaike information criterion as a measure of the model fit to data. This model successfully reproduced the flux of organic matter at 540 and 1000 m, indicating that the ballast model concept works well in the shallow zone of the WSAP on a seasonal timescale. This also suggests that ballast minerals not only physically protect the organic matter from degradation during the settling process but also enhance the sinking velocity and reduce the degree of decomposition.  相似文献   

9.
The upper Indus Fan is characterized by an average 1∶500 gradient, chanels with 100 m high levees, several continuous subbottom reflectors on 3.5-kHz records, and generally fine-grained sediments. Multichannel seismics show the levee complexes typified by overlapping wedge-shaped reflection sets and channel axis by high-amplitude discontinuous reflections. The middle fan has 1∶500–1∶1000 gradients and channels with ≈20 m high levees. The lower fan has gradients less than 1∶1000, channels with 8–20 m high levees, few or no subbottom reflectors on 3.5-kHz records, and high sand content. Besides the dominant unchannelized turbidity currents, channelized and overbank flows also played a significant role in the sedimentation of the lower fan. Margin setting represents fan and/or source area  相似文献   

10.
Abstract

The possibility of seafloor failure under external loadings on a gently sloping continental shelf is controlled, to a large extent, by the geotechnical characters of subbottom sediments (e.g., shear strength, compressibility, and liquefaction potential) and structural factors (e.g., sedimentary stratification). By means of undis‐turbing coring, in‐situ acoustic measurement, and subbottom profiling, the authors conducted an investigation into the seafloor instabilities and possibilities of sediment slope failure within the continental shelf off the Pearl River mouth, which is one of the most important areas for offshore development in the northern South China Sea. Based on in‐situ and laboratory measurements and tests for sediment physical properties, static and dynamic behavior, and acoustic characteristics, the analyses indicate: (1) subbottom sediments that originated from terrigenous clay during the Pleistocene are compact and overconsolidated, and the mean sound velocity in such sediments is relatively high; (2) the maximum vertical bearing capacity of subbottom sediments is efficiently conservative on the safe side for dead loads of light structures, and the trench walls are stable enough while trenching to a depth of about 2 m below the seafloor under still water; and (3) it is quite improbable that the subbottom sediments liquefy under earthquake (M ≤ 6) or storm wave loading.  相似文献   

11.
Organic matter in a tropical mangrove ecosystem was characterized by stable carbon and nitrogen isotopic analyze, conducted on various organic samples, including land and mangrove plants, soils, particulate organic matter (POM), and sea and river sediments along the southwestern coast of Thailand. The δ13C values of land plants and POM in river water can be explained in terms of a greater influence of C3 plants than C4 plants in this area. The POM and sediments from the Trang River and Ko Talibong area showed systematically higher δ15N values than those from Ko Muk and other coastal areas. Organic matter in the Trang River might be influenced by nitrogen released from agricultural or human waste, which could affect the isotopic composition of POM and sediments in the Trang River estuary and along the coast near the river mouth. We used a stochastic method to estimate the contributions of four organic end-members, identifiable by their δ13C and δ15N values. The results implied that seagrasses were a major source of sedimentary organic matter, contributing 42 ± 5% in the Ko Muk area and 36 ± 5% in the Ko Talibong area. The contribution of coastal POM to sediments was estimated to be only 13% in Ko Muk and 19% in Ko Talibong. Mangrove plants contributed approximately 23% in both areas. It was concluded that seagrasses are an important source of sedimentary organic matter in this coastal region of southwestern Thailand. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
The variations in CaCO3 and organic carbon and their inter-relationship in a core from the southeastern Arabian Sea (water depth 2,212 m) have been used to demarcate the Holocene/Pleistocene boundary; an increased terrigenous deposition during Late Pleistocene has been inferred. The higher contents of organic carbon and sulfide sulfur and their negative relationship clearly establish the existence of a reducing environment below 65 cm subbottom depth. The occurrence of pyrite framboids and crystals, present only on the surface of fecal pellets (80–85 cm), has been discussed in terms of significance of reducing microenvironment.  相似文献   

13.
We studied specific lipid biomarkers of archaea and bacteria, that are associated with the anaerobic oxidation of methane (AOM) in a cold seep environment as well as the origin of sedimentary organic matter on the continental slope off NE Sakhalin in the Sea of Okhotsk. The organic geochemical parameters demonstrated that most of the sedimentary organic matter containing hydrate layers could be derived from marine phytoplankton and bacteria, except for a station (LV39-29H) which was remarkably affected by terrestrial vascular plant. Specific methanotrophic archaea biomarkers was vertically detected in hydrate-bearing cores (LV39-40H), coinciding with the negative excursion of the δ13Corg at core depths of 90–100 cm below the seafloor. These results suggest that methane provided from gas hydrates are already available substrates for microbes thriving in this sediment depth. In addition, the stable isotope mass balance method revealed that approximately 2.77–3.41% of the total organic carbon (or 0.036–0.044% dry weight sediment) was generated by the activity of the AOM consortium in the corresponding depth of core LV39-40H. On the other hand, the heavier δ13C values of archaeol in the gas hydrate stability zone may allow ongoing methanogenesis in deeper sediment depth.  相似文献   

14.
Mechanisms of mud extrusion on the Mediterranean Ridge Accretionary Complex   总被引:1,自引:0,他引:1  
 Drilling two mud domes on the Mediterranean Ridge during ODP Leg 160 has demonstrated that the eruption of mud breccia began at least 1.5 Ma ago. An evolution through extrusive building of a cone, followed by successive eruptions of clast-bearing mud debris flows and subsequent subsidence can be deduced for both domes. Results from permeability and shear strength tests, grain size analyses, sedimentary textures, and clast provenance provide clues concerning the mechanism of mud volcanism. The collision of Africa with Eurasia resulted in backthrusting of the evaporite-dominated accretionary wedge against a rigid backstop. This allowed egress of overpressured fluid-rich mud of presumed Messinian age from the décollement, although many of the clasts may have originated from the overlying accretionary wedge.  相似文献   

15.
The Magdalena Fan can be divided into: upper fan—1:60–1:110 gradients, channels with well-developed levees, generally several subbottom reflectors on 3.5-kHz records, and fine-grained sediments; middle fan—1:110–1:200 gradients, channels with very subdued levees, several to few subbottom reflectors on 3.5-kHz records, and chaotic and discontinuous reflections on multichannel seismic (MCS) records; lower fan—<1:250 gradients, small channels and relatively smooth seafloor, generally coarsegrained sediments, few or no subbottom reflectors on 3.5-kHz records, and flat continuous reflections on MCS records. In addition to the turbidity currents, slumping along the continental slope and elsewhere also influenced sedimentation in the fan. Margin setting represents fan and/or source area  相似文献   

16.
Quantitative information on the abundance and biomass of metazoan meiofauna was obtained from samples collected at 15 deep-sea stations in the Eastern Mediterranean Sea (533–2400m). Meiofaunal abundance was compared to bacterial biomass and other environmental factors such as the total sedimentary organic matter content, the concentrations of the main biochemical classes of organic compounds (i.e. proteins, carbohydrates and lipids) and to ATP. To estimate the sedimentation potential of primary organic matter, sediment bound chloroplastic pigment equivalents (CPE) were assayed. Meiofaunal density was very low ranging from 4 ind.10cm−2 (Station A4, 1658m depth) to 290 ind.10cm−2 (Station A12, 636m depth). Nematodes were the numerically dominant taxon (68% of total meiofauna) and were usually confined to the top 6cm of the sediments. Total meiofaunal biomass ranged from 2.78μgC 10cm−2 (Station A4) to 598.34μgC 10cm−2 (Station 15A). There was a significant decrease in the density of metazoan meiofauna with water depth. Bacterial biomass largely dominated the total biomass (as the sum of bacterial and meiofaunal biomass) with an average of 73.2% and accounted for 35.8% of the living biomass (as ATP carbon) whereas meiofaunal biomass accounted only for 6.56%. Bacterial biomass was significantly related to the DNA concentrations of the sediment. A significant correlation between ATP concentration and CPE content was also found. No correlations were found between meiofauna, ATP and CPE, or between meiofauna and bacterial parameters. The significant relationship between meiofaunal density and the ratio of labile organic matter/total organic matter indicates that deep-sea meiofauna inhabiting an extremely oligotrophic environment (such as the Eastern Mediterranean) may be more nutritionally dependent upon the quality than on the quantity of sedimentary organic matter.  相似文献   

17.
The aim of this paper is the assessment of the hydrocarbon potential and maturity of Silurian intervals from the Călăraşi-Bordei Verde-Biruinţa perimeter – East Moesian Platform. All the information gathered from the wells drilled in the mentioned perimeter is used for the evaluation of the “shale gas” potential, too. This major sedimentary basin has all geological conditions for hydrocarbons generation, migration and accumulation. The main conclusions of the all geo-analyses are the following: the XRD analyses show that the samples consist of clay minerals with organic material, the organic matter contained in the samples of the wells shows widely distributed type of organoclasts. In absence of true vitrinite originating from higher plants in these Lower Paleozoic series, the various encountered organic remains consist of Tasmanites, microporous or homogeneous fragments, structured fragments of graptolites, oxidized or naturally rich in oxygen organoclasts inherited from the continent (phytoclasts, fungal remains). The maturity of the Silurian at Ţăndărei borehole is established taking into account the fluorescence of the Tasmanites and the reflectance of graptolites; the maturity increases with depth between 0.70 and 1% eq. VRo. The organic matter of Biruinţa and Călăraşi boreholes is overmature with maturity of around 1.40–1.55% at 400 m in Biruinţa and a maturity increase with depth between 1.85 and 2.05% eq. VRo in Călăraşi borehole. Those values are mainly deduced from vitrinite/graptolite correlation. According to the maturity trend deduced of Călăraşi and Ţăndărei boreholes, the high maturity of Biruinţa for such a low burial (around 400 m) indicates a possible erosion around 3400 m due to uplift. The Silurian studied samples consist of carbonated claystones with an organic matter of type II with relatively low residual TOC content: less than 1.2% weight for the overmature boreholes (Biruinţa and Călăraşi) and less than 1.6% weight in Ţăndărei borehole.  相似文献   

18.
Surface sediment from the coastal bays of Gwangyang and Masan in South Korea were analyzed for their contents and isotopic values of organic carbon and total nitrogen. The sources and diagenetic alteration of organic matter were also assessed. Total organic carbon varied from 0.22% to 3.48% (average = 1.40%, n = 75), and C/N ratios varied from 2.4 to 15.2 (average = 8.79, n = 75). δ13Corg ranged from −19.92‰ to −25.86‰ (average = −21.21‰, n = 75), and δ15NTN ranged from 8.57‰ to 3.93‰ (average = 6.49‰, n = 75). Total organic carbon in both areas was associated with grain-size, with higher contents in finer grained sediment. The high carbon content observed in Masan Bay sediment correlated with its higher C/N ratio. δ13Corg and δ15NTN varied widely, attributable to various influences such as the input of terrestrial organic matter and diagenetic alteration. The depleted δ13Corg and higher δ15NTN observed in the sediment of Gwangyang Bay reflected terrestrial supply, implying that biogeochemical processes, i.e. bacterial degradation, were more active in Masan Bay sediment, which showed less depleted δ13Corg and higher δ15NTN than Gwangyang Bay sediment. δ15NTN was the more useful indicator of biogeochemical processes in the highly anoxic sediment. These results indicate that the δ13Corg and δ15NTN of sedimentary organic matter in coastal bays can indicate the source and degree of diagenetic alteration of sedimentary organic matter.  相似文献   

19.
《Marine and Petroleum Geology》2012,29(10):1884-1898
We studied specific lipid biomarkers of archaea and bacteria, that are associated with the anaerobic oxidation of methane (AOM) in a cold seep environment as well as the origin of sedimentary organic matter on the continental slope off NE Sakhalin in the Sea of Okhotsk. The organic geochemical parameters demonstrated that most of the sedimentary organic matter containing hydrate layers could be derived from marine phytoplankton and bacteria, except for a station (LV39-29H) which was remarkably affected by terrestrial vascular plant. Specific methanotrophic archaea biomarkers was vertically detected in hydrate-bearing cores (LV39-40H), coinciding with the negative excursion of the δ13Corg at core depths of 90–100 cm below the seafloor. These results suggest that methane provided from gas hydrates are already available substrates for microbes thriving in this sediment depth. In addition, the stable isotope mass balance method revealed that approximately 2.77–3.41% of the total organic carbon (or 0.036–0.044% dry weight sediment) was generated by the activity of the AOM consortium in the corresponding depth of core LV39-40H. On the other hand, the heavier δ13C values of archaeol in the gas hydrate stability zone may allow ongoing methanogenesis in deeper sediment depth.  相似文献   

20.
Bacterial abundance, biomass and cell size were studied in the oligotrophic sediments of the Cretan Sea (Eastern Mediterranean), in order to investigate their response to the seasonal varying organic matter (OM) inputs. Sediment samples were collected on a seasonal basis along a transect of seven stations (ranging from 40 to 1570 m depth) using a multiple-corer. Bacterial parameters were related to changes in chloroplastic pigment equivalents (CPE), the biochemical composition (proteins, lipids, carbohydrates) of the sedimentary organic matter and the OM flux measured at a fixed station over the deep basin (1570 m depth). The sediments of the Cretan Sea represent a nutrient depleted ecosystem characterised by a poor quality organic matter. All sedimentary organic compounds were found to vary seasonally, and changes were more evident on the continental shelf than in deeper sediments. Bacterial abundance and biomass in the sediments of the Cretan Sea (ranging from 1.02 to 4.59 × 108 cells g−1 equivalent to 8.7 and 38.7 μgC g−1) were quite high and their distribution appeared to be closely related to the input of fresh organic material. Bacterial abundance and biomass were sensitive to changes in nutrient availability, which also controls the average cell size and the frequency of dividing cells. Bacterial abundance increased up to 3-fold between August '94 and February '95 in response to the increased amount of sedimentary proteins and CPE, indicating that benthic bacteria were constrained more by changes in quality rather than the quantity of the sedimentary organic material. Bacterial responses to the food inputs were clearly detectable down to 10 cm depth. The distribution of labile organic compounds in the sediments appeared to influence the vertical patterns of bacterial abundance and biomass. Cell size decreased significantly with water depth. Bacterial abundance and biomass were characterised by clear seasonal changes in response to seasonal OM pulses. The strong coupling between protein flux and bacterial biomass together with the strong bacterial dominance over the total biomass suggest that the major part of the carbon flow was channelled through the bacteria and the benthic microbial loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号