首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
<正>This study aims to uses paleomagnetic and anisotropy of magnetic susceptibility(AMS)methods to recognize the initial deposit position and to track the paleoflow at the origin of an iron skarn-related deposit.The Yamansu deposit is located in eastern Tianshan(Charvet,2007).This province has a substantial mining potential for Fe–(Cu)skarn,Cu–Ni and V–Ti orthomagmatic deposits,and orogenic Au lodes(Branquet et al.,2012;Zhang et a.,2005;Mao et al.,2005).Recent publication dates the Yamansu deposit at 323 Ma,and uses this deposit to define a model of Submarine Volcanogenic Iron Oxide(SVIO)deposits(Hou et al.,  相似文献   

2.
The mineral parageneses and succession of their formation are considered for the first time for the Zverevsky, Orekhovy, and Vodonosny ore lodes of the Lebediny gold deposit and the Radostny prospect in the Central Aldan ore district, which are genetically related to the epoch of Mesozoic tectonomagmatic reactivation. The orebodies, represented by two morphological varieties—ribbonlike lodes and steeply dipping veins—are hosted in lower part of the Vendian–Cambrian dolomitic sequence, which is cut through by Mesozoic subalkaline intrusive bodies. The chemistry of fahlore and rare minerals, including native gold and bismuth, altaite, aikinite, tetradymite, and sulfosalts of lillianite series, has been studied. Native gold is related to the late hydrothermal process and occurs in skarn and in quartz–tremolite–sulfide and quartz–carbonate–sulfide veins. The data on stable sulfur (δ34S) isotopes of sulfides, oxygen (δ18O) and carbon (δ13C) isotopes of carbonates, as well as on fluid inclusions in various generations of tremolite and quartz, provide evidence for the heterogeneity of ore-bearing solutions, their relationships to magmatism, the depth of the source feeding each specific lode, and different sources of ore-forming hydrothermal solutions.  相似文献   

3.
The Golden Mile deposit was discovered in 1893 and represents today the largest Archaean orogenic lode gold system in the world (50 M oz produced gold). The Golden Mile deposit comprises three major styles of gold mineralisation: Fimiston, Oroya and Charlotte styles. Fimiston-style lodes formed at 250 to 350 °C and 100 to 200 MPa and are controlled by brittle–ductile fault zones, their subsidiary fault zone and vein networks including breccias and open-cavity-infill textures and hydrothermally altered wall rock. Fimiston lodes were formed late D1, prior to D2 regional upright folding. Hydrothermal alteration haloes comprise a progression toward the lode of diminishing chlorite, an increase in sericite and in Fe content of carbonates. Lodes contain siderite, pyrite, native gold, 17 different telluride minerals (Au–Ag tellurides contain ~25% of total gold), tourmaline, haematite, sericite and V-rich muscovite. Oroya-style lodes formed at similar P–T conditions as the Fimiston lodes and are controlled by brittle–ductile shear zones, associated dilational jogs that are particularly well developed at the contact between Paringa Basalt and black shale interflow sedimentary rocks and altered wall rock. The orebodies are characterised by micro-breccias and zones of intense shear zone foliation, very high gold grades (up to 100,000 g/t Au) and the common association of tellurides and vanadian mica (green leader). Oroya lodes crosscut Fimiston lodes and are interpreted to have formed slightly later than Fimiston lodes as part of one evolving hydrothermal system spanning D1 and D2 deformation (ca. 2,675–2,660 Ma). Charlotte-style lodes, exemplified by the Mt Charlotte deposit, are controlled by a sheeted vein (stockwork) complex of north-dipping quartz veins and hydrothermally altered wall rock. The Mt Charlotte orebody formed at 120 to 440 °C and 150 to 250 MPa during movement along closely spaced D4 (2,625 Ma) and reactivated D2 faults with the quartz granophyre in the Golden Mile Dolerite exerting a strong lithological control on gold mineralisation. Veins consist of quartz–carbonate–minor scheelite, and wall-rock alteration comprises chlorite destruction and growth of ferroan carbonate–sericite–pyrite–native gold. Pyrite–pyrrhotite is zoned on the scale of vein haloes and of the entire mine, giving a vertical temperature gradient of 50–100 °C over 1,000 vertical metres. The structural–hydrothermal model proposed consists of four major stages: (1) D1 thrusting and formation of Fimiston-style lodes, (2) D2 reverse faulting and formation of Oroya-style lodes, (3) D3 faulting and dissecting of Fimiston- and Oroya-style lodes, and (4) D4 faulting and formation of Mt Charlotte-style sheeted quartz vein system. The giant accumulation of gold in the Golden Mile deposit was formed due to protracted gold mineralisation throughout episodes of an Archaean orogeny that spanned about 45 Ma. Fluid conduits formed early in the tectonic history and persisted throughout orogenesis with the plumbing system showing a rare high degree of focussing, efficiency and duration. In addition to the long-lasting fluid plumbing system, the wide variety of transient structural and geochemical traps, multiple fluid sources and precipitation mechanism contributed towards the richest golden mile in the world.Editorial handling: B. Lehmann  相似文献   

4.
野马泉大型矿床是近年来在东昆仑祁漫塔格地区发现的与侵入岩有关的矽卡岩型铁铜多金属矿。利用锆石LA-ICP-MS U-Pb法测得野马泉花岗闪长岩的形成年龄为(392.4±2.2) Ma,属于华力西期。前人利用辉钼矿Re-Os法,获得矽卡岩型铜钼多金属矿石和矽卡岩型钼矿石的等时线年龄分别为(225.0±4.0) Ma(n=7,MSWD=0.24)和(230.1±4.7) Ma(n=5,MSWD=0.12)、在多期热液叠加、多期成矿作用中,早期成矿的热液很可能是野马泉花岗闪长岩(392.4±2.2 Ma)提供的。由于该区有较多的中酸性岩体存在,它们可能为铁铜多金属矿的主要来源,因此确定这些侵入体的形成年龄,对于在该区寻找矽卡岩型铁铜多金属矿具有重要的理论和实践意义。  相似文献   

5.
王方成 《地质与勘探》2010,46(5):836-843
掉石沟铅锌矿是敦煌地块南缘代表性的叠加改造层控夕卡岩型矿床。矿床赋存于敦煌岩群第二岩组第二岩段的大理岩、石榴石透辉石夕卡岩及石墨斜长变粒岩、蚀变碎裂岩中,矿石类型主要有夕卡岩型、蚀变碎裂岩型、石英脉型、石墨斜长变粒岩型,有用组分主要为Pb、Zn。铁锰帽及石墨斜长变粒岩是矿床的直接找矿标志,铅族重砂异常及化探异常是间接的找矿标志。准确把握矿床的找矿标志是寻找该类矿床有效途径,目前已在掉石沟外围发现多处铅锌矿点,说明在掉石沟铅锌矿区及外围地区具有良好的找矿前景,进而提出了进一步找矿的新思路。  相似文献   

6.
石榴子石是矽卡岩型矿床中最常见的蚀变矿物之一,因此,对石榴子石进行年代学研究能够准确限定矽卡岩型矿床的成矿时代.青藏高原冈底斯成矿带中部发育众多矽卡岩型多金属矿床,由于缺乏精确的成矿年代学数据,制约着对这些矿床成因和动力学背景的深入认识.因此,文章以该成矿带具有代表性的洛巴堆矽卡岩型铁多金属矿床为研究对象,通过对赋矿矽...  相似文献   

7.
银矿床类型和矿床地质特征研究表明,晋东北地区银矿王要成因类型为与火山作用有关的中低温热液银矿床(包括石英脉型银矿、火山岩型银矿、(隐)爆破角砾岩型银矿),其次为接触交代矽卡岩型银矿、层控银锰矿床(包括氧化淋滤型锰银矿和铁锰帽型银锰矿).银的主要成矿期为燕山期.在沉积作用、火山一次火山热液作用和地表氧化淋滤作用条件下形成...  相似文献   

8.
方向  宋扬  唐菊兴  王嘉星  李海峰 《地质学报》2020,94(11):3376-3390
造山型金矿在世界范围内具有重要的经济价值和找矿潜力,也是西藏班公湖 怒江铜多金属资源基地的主攻矿床类型之一。班公湖 怒江成矿带是近十年来识别和建立的我国最重要的斑岩 浅成低温热液 矽卡岩型铜金成矿带。商旭金矿位于班公湖 怒江缝合带中段,是该成矿带上首例造山型金矿床。矿体产于中 下侏罗统木嘎岗日群沉积岩,由石英脉、碳酸盐+石英脉和蚀变岩构成,呈透镜状、块状、条带状、鞍状、浸染状、角砾状等产出,受北西西向的区域断裂构造控制。热液蚀变发育碳酸盐化、白云母化、绿泥石化和硫化物蚀变等。矿物学研究和含矿脉体特征表明,早期热液活动发育于挤压应力环境,后期挤压应力逐渐消失,对应了变形晚期的构造环境。含金石英流体包裹体的Rb- Sr同位素测试获取的等时线年龄为135. 6±2. 7Ma,87Sr/86 Sr平均初始比值为0. 713,预示成矿作用发生于早白垩世,成矿物质主要来自地壳。综合研究认为,商旭金矿形成于早白垩世初班公湖 怒江缝合带中段的闭合期,地块间挤压应力致使木嘎岗日群发生构造变形,在挤压变形晚期构造环境发生转换的过程,围岩中应力释放促成了区域的金矿化。对比研究显示,商旭金矿化与世界大型、超大型造山型金矿在矿床地质、热液蚀变特征、成矿流体性质、成矿构造环境、动力学背景等方面具有相似性,进一步表明班 怒带具备寻找造山型金矿的潜力。  相似文献   

9.
The Nuri Cu–W–Mo deposit is a large newly explored deposit located at the southern margin of the Gangdese metallogenic belt. There are skarn and porphyry mineralizations in the deposit, but the formation age of the skarn and the relationship between the skarn and porphyry mineralizations are controversial. Constraints on the precise chronology are of fundamental importance for understanding the ore genesis of the Nuri deposit. To determine the formation age of the skarn, we chose garnets and whole rock skarn samples for Sm–Nd dating. We also selected biotite associated with potassic alteration for Ar–Ar dating to confirm the ore formation age of the porphyry mineralizations. The Sm–Nd ages of the skarn are 25.73 ± 0.92 – 25.2 ± 3.9 Ma, and the age of the potassic alteration is 24.37 ± 0.32 Ma. The results indicate that the skarn and porphyry mineralization are coeval and belong to a unified magmatic hydrothermal system. Combined with a previous molybdenite Re–Os age, we think that the hydrothermal activity of the Nuri deposit lasted for 1.2 – 2.1 Myr, which indicates that the mineralization formed rapidly. The chronologic results indicate that the Nuri deposit formed in the period of transformation from compression to extension in the late collisional stage of the collision between the Indian and Eurasian continents.  相似文献   

10.
错那洞穹窿位于北喜马拉雅片麻岩穹窿带(NHGD)的东段,是近年来新发现的穹窿构造。穹窿由内向外依次由核部、滑脱系和盖层三部分组成,错那洞铍钨锡稀有金属矿化主要赋存在穹窿滑脱系的矽卡岩和矽卡岩化大理岩中,矿体产在含石榴子石十字石云母片岩中,与强烈变形的淡色花岗岩或伟晶岩密切相关,部分矽卡岩矿物呈定向排列,具强烈的剪切特征;淡色花岗岩与矽卡岩的接触关系部分呈渐变接触,部分呈突变关系,表明矽卡岩与该期岩浆关系密切,矽卡岩与淡色花岗岩属于同构造的产物。本次研究获得错那洞穹窿滑脱系含石榴子石十字石云母片岩中黑云母Ar-Ar坪年龄为(16.6±0.3)Ma,反等时线年龄为(16.7±0.3)Ma,该年龄代表第二期由南向北伸展构造变形时间,即藏南拆离系(STDS)在错那洞穹窿的活动时间;含白云母的矽卡岩化大理岩中白云母Ar-Ar坪年龄为(16.9±0.2)Ma,与含石榴子石十字石云母片岩中黑云母Ar-Ar年龄一致,代表同构造矽卡岩的形成时间,也是错那洞铍钨锡稀有金属矿床的成矿时间。错那洞铍钨锡稀有金属矿床形成于由藏南拆离系强烈活动引起的伸展减薄构造背景,减压熔融形成的岩浆沿着构造通道上涌侵位,并与围岩交代反应形成同构造矽卡岩及其中的富铍钨锡矽卡岩型矿体。  相似文献   

11.
Abstract: The Beni Bou Ifrour deposit of northeastern Morocco is a skarn type magnetite deposit. K-Ar age determination suggests that the mineralization occurred at 7.040.47 Ma. The spatial relationship between skarn and dikes of microgran-odiorite derived from the batholith of Wiksane Granodiorite, and the similarity of age (8.020.22 Ma), confirms that the Wiksane Granodiorite is the igneous rock most probably related to mineralization. The skarn is distributed asymmetrically in the limestone, and magnetite ore was developed just below the calc-silicate skarn as two parallel beds separated by 100 m of barren limestone and schist.
The mineralization can be divided into three stages. The early stage is characterized by the formation of calc-silicate minerals, mainly clinopyroxene (80–70 % diopside) and garnet (early almost pure andradite to the late 60 % andradite). The main stage is characterized by the formation of a large amount of magnetite. Epidote and quartz formed simultaneously with magnetite. Fluid temperatures exceeded 500 C during the early to main stages. Fluid with very high salinity (50–75 wt% NaCl equiv.) was responsible for the formation of the magnetite ore. The oxygen isotope composition, together with the fluid inclusion data, suggests that magmatic fluid was significant for the formation of calc-silicate skarn minerals and magnetite. Low temperature (-230C) and low salinity (-10 % NaCl equiv.) hydrothermal fluids dominated by meteoric water were responsible for the late stage quartz and calcite formation.  相似文献   

12.
As indicated by mineralogical, geochemical, and structural-textural data, the base-metal skarn ore at the Partizansky deposit was formed during two stages (base-metal skarn and silver-sulfosalt), which were separated by intrusion of basaltic dikes. The bulk of the base-metal ore was deposited at the first stage, which comprises four sequential mineral assemblages: skarn-silicate, quartz-arsenopyrite, productive galena-sphalerite, and pyrrhotite-pyrite-chalcopyrite. The mineralization of the second stage was mainly confined to the upper margins of orebodies and pertains to the sulfosalt-galena-chalcopyrite assemblage, which was super-imposed on minerals of the first stage. The vertical mineralogical-geochemical zoning of the deposit is telescopic (related to the formation of the late silver-sulfosalt mineralization) and facies (typical of the early skarn and base-metal assemblages). The zoning of the skarn-silicate assemblage is expressed in the metasomatic replacement of skarn by quartz and calcite in the uppermost zone of skarn bodies and is emphasized by variation of the mineral composition throughout the skarn column, for instance, by the distinct updip enrichment of hedenbergite in manganese. The vertical zoning of the productive assemblage is emphasized by variations in the ratio of sphalerite to galena (the Pb/Zn ratio in the ore increases upward from 0.1 to 1), changes in mineral assemblages, and compositional variation of major ore-forming and minor minerals. In particular, galena from the deep levels is extremely enriched in Bi and Ag, while that from the upper levels is almost completely devoid of isomorphic admixtures. Fahlore displays updip enrichment in Sb, Ag, and Fe and corresponding depletion in Cu and Zn. The vertical chemical variations in fahlore are caused by the specific geological setting of ore deposition, the composition of the ore-forming solutions, and the physicochemical conditions of their transportation and ore deposition.  相似文献   

13.
<正>The eastern Tianshan has great economic potential with Fe-(Cu)skarn,Cu-Ni-and V-Ti othomagmatic deposits and orogenic Au lodes.In this province the timing relation between Fe-(Cu)skarn-related deposits and the deformation is poorly constrained.This study aims to give argument for the chronology between Fe-(Cu)skarn stage and  相似文献   

14.
《International Geology Review》2012,54(11):1020-1039
The Shizhuyuan deposit is the largest among the economically important polymetallic tungsten deposits in China. The deposit occurs within the thermal aureole of Yanshanian felsic intrusions that were emplaced into Devonian carbonates and marls. The mineralization can be divided into three phases that are genetically associated with three episodes of granitic emplacement-pseudoporphyritic biotite granite, equigranular biotite granite, and granite porphyry. During the emplacement of pseudoporphyritic biotite granite, thermal metamorphism and subsequent skarnization developed around the stock. The pure limestone was transformed to marble, whereas marls and argillite interlayers were changed to a series of metamorphic rocks such as grossular-diopside hornfels, wollastonite hornfels, diopside hornfels, wollastonite-vesuvianite hornfels, muscovite-K-feldspar-anorthite hornfels, and prehnitevermiculite hornfels. Because of the subsequent strong skarn development, most hornfelses later were transformed into skarns. The skarns distributed around the granite stock are mainly calcic. They are massive in structure, and are composed mainly of garnet, pyroxene, vesuvianite, and wollastonite, with interstitial fluorite, scheelite, and bismuthinite. Although there is no cassiterite in the early skarns, their tin contents average 0.1%. The distribution and compositional and mineralogical relationships of skarn minerals suggest that they formed as a result of progressive reactions of a hydrothermal solution with a limestone of generally constant composition, and that the dominant process was progressive removal of Ca and addition of other constituents to the rocks.

Following the primary skarn formation, some of the assemblages were retrograded to new assemblages such as fluorite-magnetite-salite rock, magnetite-fluorite-amphibole rock, and magnetite-fluorite-chlorite rock. The retrograde alteration of the skarns is characterized by a progressive addition of fluorine, alkali components, silica, tin, tungsten, and bismuth. A zonation from garnet-pyroxene skarn or garnet skarn, through fluorite-magnetite-salite rock, to magnetite-fluorite-chlorite rock frequently can be recognized in the deposit. All retrograde-altered rocks contain scheelite, cassiterite, molybdenite, and bismuthinite.

During the emplacement of equigranular biotite granite, skarn veins several tens of centimeters wide were developed; they contain large crystals of garnet and vesuvianite, and interstitial scheelite, wolframite, cassiterite, and molybdenite. This second stage of mineralization occurs predominantly as coarse and fine stockwork greisens, which were superimposed on the massive skarns and surrounding marble. Such W-Sn-Mo-Bi-bearing greisens can be divided into topaz greisen, protolithionite greisen, muscovite greisen, and margarite greisen. Besides calcic skarn veins and greisens, manganese skarn veinlets also were developed; they consist of rhodonite, spessartine-almandine solid solution, spessartine, and helvite. The distribution of greisens is responsible for a metal zonation—i.e., W-Sn-Mo-Bi and Sn-Be-Cu-F zones from the contact boundary between the granite stock and skarns outward in the deposit. A third stage of mineralization is represented by lead-zinc veins, which also are accompanied by manganese skarns consisting of spessartine, rhodonite, manganese-rich pyroxene, helvite, tephroite, fluorite, tourmaline, and manganese-rich phlogopite.  相似文献   

15.
内蒙古阿右旗卡休他他铁金矿床属于夕卡岩-热液叠加型矿床。特定岩性、岩浆岩、构造是形成该种类型矿床的基本条件:辉长岩和石英闪长岩与围岩的接触带控制矿床的产出部位,岩体接触带的夕卡岩控制着铁、金矿体的分布范围,层间破碎带和构造裂隙带则控制着铁、金矿体的形态。铁矿化产于中基性岩体和围岩接触的夕卡岩带中,金矿体产在富铁矿体及其附近的夕卡岩中,金矿和铁矿是同一地质作用过程中不同阶段的产物,矿床可能形成于海西中期。  相似文献   

16.
西藏甲玛铜多金属矿床为冈底斯成矿带的超大型矿床之一,其矽卡岩型主矿体受林布宗组砂板岩、角岩(硅铝质岩石)和多底沟组大理岩(钙质岩石)的岩性界面所控制。基于岩、矿心地质编录,开展矽卡岩岩石、矿物分带及矽卡岩地球化学、矿物化学研究,探讨硅钙岩性界面对矽卡岩及多金属矿体形成的影响。从顶板至底板由石榴子石矽卡岩、硅灰石石榴子石矽卡岩至硅灰石矽卡岩表现出Si O2、Ca O逐渐增加和Al2O3、Fe2O3+Fe O逐渐减少的趋势,石榴子石矽卡岩、硅灰石矽卡岩的稀土元素和微量元素特征对顶板、底板岩石表现出明显的继承性。靠近顶板的矽卡岩中石榴子石属于钙铝-钙铁过渡系列,由石榴石核部向外环带具有Al含量减少、Fe含量增加的特点;靠近底板矽卡岩相对于靠近顶板具有钙铁榴石比例增加、钙铝榴石比例减少特征,由核部向外围未见明显的环带成分演变特征。矽卡岩是流体与硅铝质、钙质岩石水岩反应的产物,沿硅钙界面流体减压沸腾、地下水混合作用和界面内垂向的流体地球化学障是主要的致矿机制。硅、铝质岩石化学性质、物理性质差异是界面控矿的主要因素,硅钙面复合张性构造带、岩浆热事件增加界面渗透率差异有利于矿体规模的增加和品位提高。  相似文献   

17.
雅满苏铁矿床位于东天山中段,矿体赋存于下石炭统雅满苏组安山质火山碎屑岩中,受近EW向断裂及环形断裂构造控制。矿体主要呈层状、似层状、透镜状,近矿围岩蚀变强烈,形成石榴石矽卡岩及复杂矽卡岩。电子探针分析结果表明,石榴石为钙铁榴石-钙铝榴石系列,其化学组成可表示为And45.68~100Gro0.67~57.95(A1m+Sps)11~29.03,与典型的矽卡岩型铁矿中石榴石端员组分相似。在磁铁矿Ca+Al+Mn-Ti+V图解中,大部分样品落入矽卡岩型铁矿区;TiO2-Al2O3-MgO图解中,大多数的样品落入沉积变质接触交代磁铁矿趋势区,部分早期磁铁矿落在岩浆趋势区内。结合矿床地质特征和矿物学研究,认为大多数样品经过了一个热液交代作用过程,表明雅满苏铁矿的形成与岩浆热液交代作用有关。  相似文献   

18.
DISCOVERY AND THE IMPLICATION OF A HYDROTHERMAL-METASOMATIC SKARN DEPOSIT IN GANGDISE TECTONIC ZONE,TIBET  相似文献   

19.
Drill cores of metasomatic rocks and ores from the Lermontovo skarn scheelite-sulfide deposit (Lermontovo ore field, Primorsky krai) have been studied. Feldspar-apatite-scheelite-sulfide metasomatic rocks containing more than 10% WO3 have been identified and characterized. The relationships of these altered rocks to skarn, greisen, and sulfide ore are shown and the implications of these rocks for the formation of ore are determined. In addition, some genetic problems of the deposit are discussed.  相似文献   

20.
Abstract: A genetical relationship between skarn formation and mineralization is investigated for the Kamioka skarn deposits which are the largest Zn-Pb producer in Japan. In the Mozumi deposit, one of main deposits in the Kamioka mining area as well as Tochibora and Maruyama, clinopyroxene skarn was generally subjected to later replacement by garnet or magnetite–calcite–quartz during the Zn-Pb mineralization. The replacement of hedenbergitic clinopyroxene by andraditic garnet resulted in the formation of diopsidic clinopyroxene relicts. With the progress of replacement, the S/So value (So: an estimated area occupied by an original clinopyroxene grain in a thin section, S: a total area of relict clinopyroxene fragments) which is an index of the degree of replacement decreases from 0. 7 to 0. 1, and the hedenbergite mole percent of relict clinopyroxene decreases drastically from about 65 to less than 40. A close association of andraditic garnet and sphalerite suggests that heden-bergitic clinopyroxene skarn played an important role to reduce the relatively oxic ore-forming fluid enriched in Zn2+ and SO42– and to precipitate sphalerite from the fluid. Ferrous iron in the hedenbergitic clinopyroxene skarn was oxidized to form andraditic garnet. Besides this garnet formation, the mineral assemblage of magnetite–calcite–quartz replaced the clinopyroxene skarn at the time of mineralization. In both cases, the reduction of relatively oxic ore-forming fluid by hedenbergitic clinopy-roxene skarn at the later stage brought about the precipitation of sulfide minerals. In contrast, these types of later replacement are not found in the Tochibora deposit. Instead, graphite-bearing crystalline limestone and relatively fresh clinopyroxene skarn are common. Mineralized clinopyroxene skarn has high graphite carbon contents relative to barren one, suggesting that the amount of graphite in the skarn was an important controlling factor for mineralization. It is very likely that the graphite played a role of reducing agent during the mineralization in the Tochibora deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号