首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lambert冰川-Amery冰架系统是南极冰盖最大的冰流系统之一,对南极冰盖物质平衡研究有着重要的作用.数字高程模型(DEM)是进行南极冰盖研究的基础.本文基于CryoSat-2 L1b波形数据,研究建立了Lambert冰川流域高分辨率DEM.测高卫星返回波形在冰盖区域存在变形,需进行波形重跟踪处理.利用交叉点分析方法对重心偏移法(OCOG)、阈值法和β参数法等常用的波形重跟踪方法对不同类型的CryoSat-2波形的适用性进行了研究.最后,利用克里金插值方法建立了500 m分辨率的Lambert冰川流域DEM——LAS DEM (Lambert Glacier-Amery Ice Shelf system DEM).利用ICESat卫星测高数据和GPS地面实测数据对LAS DEM进行精度验证,并与另外两种基于CryoSat-2数据的南极DEM进行了对比.结果表明:LAS DEM的整体精度约为0.295±2.7 m,优于另外两种CryoSat-2 DEM;在冰盖内陆地区,LAS DEM的高程误差在2 m之内;在Amery冰架上,LAS DEM的精度优于1 m.  相似文献   

2.
The belowground part of terrestrial ecosystem is a huge carbon pool. It is believed that of the total 2500Gt carbon stored in global terrestrial ecosystem, soil carbon storage within the 1 m surface layer ac- counts for 2000Gt, which is 4-fold of vegetation car- bon storage[1,2]. Compared with the carbon in the vegetation, carbon in the deep soil layers is much more stable, and it will stay in soil profile permanentlyunless geological vicissitude occurs. Essentially, forest restoration is the…  相似文献   

3.
Ice shelf breakups account for most mass loss from the Antarctic Ice Sheet as the consequence of the propagation of crevasses(or rift)in response to stress.Thus there is a pressing need for detecting crevasses’location and depth,to understand the mechanism of calving processes.This paper presents a method of crevasse detection using the ICESat-1/GLAS data.A case study was taken at the Amery Ice Shelf of Antarctica to verify the accuracy of geo-location and depth of crevasses detected.Moreover,based on the limited crevasse points,we developed a method to detect the peak stress points which can be used to track the location of the crack tips and to identify the possible high-risk area where an ice shelf begins to break up.The spatial and temporal distribution of crevasse depth and the spatial distribution of peak stress points of the Amery Ice Shelf were analyzed through 132 tracks in 16 campaign periods of ICESat-1/GLAS between 2003 and 2008.The results showed that the depth of the detected crevasse points ranged from 2 to 31.7 m,which were above the sea level;the crevasse that advected downstream to the front edge of an ice shelf has little possibility to directly result in breakups because the crevasse depth did not show any increasing trend over time;the local stress concentration is distributed mainly in the suture zones on the ice shelves.  相似文献   

4.
The Gravity Recovery and Climate Experiment (GRACE) satellite data is used to estimate the rate of ice mass variability over Greenland. To do this, monthly GRACE level 2 Release-04 (RL04) data from three different processing centers, Center for Space Research (CSR), German Research Center for Geosciences (GFZ) and Jet Propulsion Laboratories (JPL) were used during the period April 2002 to February 2010. It should be noted that some months are missing for all three data sets. Results of computations provide a mass decrease of −163 ± 20 Gigaton per year (Gt/yr) based on CSR-RL04 data, −161 ± 21 Gt/yr based on GFZ-RL04 data and −84 ± 26 Gt/yr based on JPL RL04.1. The results are derived by the application of a non-isotropic filter whose degree of smoothing corresponds to a Gaussian filter with a radius of 340 km. Striping effects in the GRACE data, C20 effect, and leakage effects are taken into the consideration in the computations. There is some significant spread of the results among different processing centers of GRACE solutions; however, estimates achieved in this study are in agreement with the results obtained from alternative GRACE solutions.  相似文献   

5.
The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2) branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4) phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hy-drocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclu-sions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydro-carbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram. And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion, saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.  相似文献   

6.
7.
Based on the stem analysis of 59 individuals of Pinus elliottii in combination with tree biomass models, we calculated annual biomass increment of forest plots at Qianyanzhou Ecological Station, Chinese Academy of Sciences in subtropical China. In addition, canopy layer and community NPP were calculated based on 12 years’ litter fall data. NPP of the 21-year-old forest was estimated by using the BIOME BGC model; and both measured NPP and estimated NPP were compared with flux data. Community biomass was 10574 g · m−2; its distribution patterns in tree layer, shrub layer, herbaceous layer, tree root, herbaceous and shrub roots and fine roots were 7542, 480, 239, 1810, 230, 274 and 239 g · m−2, respectively. From 1999 to 2004, the average annual growth rate and litter fall were 741 g · m−2 · a−1 (381.31 gC · m−2 · a−1) and 849 g · m−2 · a−1 (463 gC · m−2 · a−1), respectively. There was a significant correlation between annual litter fall and annual biomass increment; and the litter fall was 1.19 times the biomass increment of living trees. From 1985 to 2005, average NPP and GPP values based on BGC modeling were 630.88 (343.31–906.42 gC · m−2 · a−1) and 1 800 gC · m−2 · a−1 (1351.62–2318.26 gC · m−2 · a−1). Regression analysis showed a linear relationship (R 2=0.48) between the measured and simulated tree layer NPP values. NPP accounted for 30.2% (25.6%–32.9%) of GPP, while NEP accounted for 57.5% (48.1%–66.5%) of tree-layer NPP and 41.74% (37%–52%) of stand NPP. Soil respiration accounted for 77.0% of measured tree NPP and 55.9% of the measured stand NPP. NEE based on eddy covariance method was 12.97% higher than the observed NEP. Supported by the National Key Basic Research Special Foundation of China (Grant No. 2002CB4125), International Joint Research Project under Ministry of Science and Technology of China (Grant No. 2006DFB91920)  相似文献   

8.
This study combined water- and sediment flux measurements with mass balances of dissolved gas and inorganic matter to determine the importance of pelagic and benthic processes for whole-system metabolism in a eutrophic fluvial lake. Mass balances of dissolved O2, inorganic carbon (DIC), nitrogen (DIN), phosphorous (SRP), particulate N (PN) and P (PP) and Chl a were calculated at a nearly monthly frequency by means of repeated sampling at the lake inlet and outlet. Simultaneously, benthic fluxes of gas and nutrients, including denitrification rates, and the biomass of the dominant pleustophyte (Trapa natans) were measured, and fluxes of O2 and CO2 across the water–atmosphere interface were estimated from diel changes in outlet concentrations. On an annual scale, Middle Lake exhibited CO2 supersaturation, averaging 313% (range 86–562%), but was autotrophic with a net O2 production (6.35 ± 2.05 mol m−2 y−1), DIC consumption (−31.18 ± 18.77 mol m−2 y−1) and net export of Chl a downstream (8.38 ± 0.95 mol C m−2 y−1). Phytoplankton was the main driver of Middle Lake metabolism, with a net primary production estimated at 33.24 mol O2 m−2 y−1, corresponding to a sequestration of 4.18 and 0.26 mol m−2 y−1 of N and P, respectively. At peak biomass, T. natans covered about 18% of Middle Lake’s surface and fixed 2.46, 0.17 and 0.02 mol m−2 of C, N and P, respectively. Surficial sediments were a sink for O2 (−14.47 ± 0.65 mol O2 m−2 y−1) and a source of DIC and NH4 + (18.84 ± 2.80 mol DIC m−2 y−1 and 0.83 ± 0.16 mol NH4 + m−2 y−1), and dissipated nitrate via denitrification (1.44 ± 0.11 mol NO3  m−2 y−1). Overall, nutrient uptake by primary producers and regeneration from sediments were a minor fraction of external loads. This work suggests that the creation of fluvial lakes can produce net autotrophic systems, with elevated rates of phytoplanktonic primary production, largely sustained by allochtonous nutrient inputs. These hypereutrophic aquatic bodies are net C sinks, although they simultaneously release CO2 to the atmosphere.  相似文献   

9.
Liquid conductivity (EC) measurement was conducted for the samples collected from several snow pits and ice cores over the Qinghai-Xizang (Tibet) Plateau, with their time range covering seasonal, decadal and centennial scales. Unlike the previous attention mostly focused on the acidity (H+) responding to the solid conductance (ECM) of glacial ice, we introduce the alkalinity (OH) of snow and ice to show how it responds to EC. Strong linear relationship was established between EC and OH for these snow pits and ice cores. Positive correlation is also established between EC and major cations (Ca2+, Mg2+, Na+ and K+). Since the cations are known as the proxies for the intensity of mineral dust influx onto glaciers of the northern Qinghai-Xizang Plateau, we believe that EC could be used as an indicator for the history of dust input in deep ice core study. In fact, records in Guliya ice core since the Little Ice Age (LIA) indicate that dust load in glacier may depend on the combination of temperature and humidity. “Cold-dry” combination favors the dust arising, and results in higher EC and OH values, while “warm-wet” combination prevents dust form and EC and OH values are lower. In the past century, with the atmospheric warming and precipitation increasing over the northern plateau, which means an atmospheric condition of dust decreasing, both EC and OH displayed rapid decline.  相似文献   

10.
Ocean/ice interaction at the base of deep-drafted Antarctic ice shelves modifies the physical properties of inflowing shelf waters to become Ice Shelf Water (ISW). In contrast to the conditions at the atmosphere/ocean interface, the increased hydrostatic pressure at the glacial base causes gases embedded in the ice to dissolve completely after being released by melting. Helium and neon, with an extremely low solubility, are saturated in glacial meltwater by more than 1000%. At the continental slope in front of the large Antarctic caverns, ISW mixes with ambient waters to form different precursors of Antarctic Bottom Water. A regional ocean circulation model, which uses an explicit formulation of the ocean/ice shelf interaction to describe for the first time the input of noble gases to the Southern Ocean, is presented. The results reveal a long-term variability of the basal mass loss solely controlled by the interaction between waters of the continental shelf and the ice shelf cavern. Modeled helium and neon supersaturations from the Filchner–Ronne Ice Shelf front show a “low-pass” filtering of the inflowing signal due to cavern processes. On circumpolar scales, the simulated helium and neon distributions allow us to quantify the ISW contribution to bottom water, which spreads with the coastal current connecting the major formation sites in Ross and Weddell Seas.
Christian B. RodehackeEmail:
  相似文献   

11.
High-resolution sampling, measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12×104 kg C hm−2 to 30.75×104 kg C hm−2 in the alpine meadow ecosystems, with an average of 26.86×104 kg C hm−2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m−2 a−1 to 254.93 gC m−2 a−1, with an average of 191.23 g C m−2 a−1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m−2 a−1 to 181 g C m−2 a−1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%281.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research. Supported by the National Natural Science Foundation of China (Grant Nos. 40231015, 40471120 and 40473002) and the Guangdong Provincial Natural Science Foundation of China (Grant No. 06300102)  相似文献   

12.
Sediment cores from central Lake Constance were dated with210Pb and137Cs. A sedimentation rate of (0.11±0.02) g·cm−2·y−1 was determined with the210Pb method.137Cs measurements revealed sedimentation rates of (0.11±0.01) g·cm−2·y−1 and (0.08±0.01) g·cm−2·y−1 respectively for two different cores sampled at the same location. The lower Cs-dated value indicates incomplete core recovery and demonstrates the sensitivity of this simple dating method to small losses of material at the water/sediment interface. An unambiguous application of the137Cs method is, therefore, only possible if complete core recovery is ensured. Sedimentation rates based on particulate matter, collected in sediment traps at various water depths, agree with the results of the radioisotope methods. Estimates of 30–125 days residence times for suspended particulate matter were calculated from7Be measurements.  相似文献   

13.
We present an uncertainty analysis of ecological process parameters and CO2 flux components (R eco, NEE and gross ecosystem exchange (GEE)) derived from 3 years’ continuous eddy covariance measurements of CO2 fluxes at subtropical evergreen coniferous plantation, Qianyanzhou of ChinaFlux. Daily-differencing approach was used to analyze the random error of CO2 fluxes measurements and bootstrapping method was used to quantify the uncertainties of three CO2 flux components. In addition, we evaluated different models and optimization methods in influencing estimation of key parameters and CO2 flux components. The results show that: (1) Random flux error more closely follows a double-exponential (Laplace), rather than a normal (Gaussian) distribution. (2) Different optimization methods result in different estimates of model parameters. Uncertainties of parameters estimated by the maximum likelihood estimation (MLE) are lower than those derived from ordinary least square method (OLS). (3) The differences between simulated Reco, NEE and GEE derived from MLE and those derived from OLS are 12.18% (176 g C·m−2·a−1), 34.33% (79 g C·m−2·a−1) and 5.4% (92 g C·m−2·a−1). However, for a given parameter optimization method, a temperature-dependent model (T_model) and the models derived from a temperature and water-dependent model (TW_model) are 1.31% (17.8 g C·m−2·a−1), 2.1% (5.7 g C·m−2·a−1), and 0.26% (4.3 g C·m−2·a−1), respectively, which suggested that the optimization methods are more important than the ecological models in influencing uncertainty in estimated carbon fluxes. (4) The relative uncertainty of CO2 flux derived from OLS is higher than that from MLE, and the uncertainty is related to timescale, that is, the larger the timescale, the smaller the uncertainty. The relative uncertainties of Reco, NEE and GEE are 4%−8%, 7%−22% and 2%−4% respectively at annual timescale. Supported by the National Natural Science Foundation of China (Grant No. 30570347), Innovative Research International Partnership Project of the Chinese Academy of Sciences (Grant No. CXTD-Z2005-1) and National Basic Research Program of China (Grant No. 2002CB412502)  相似文献   

14.
Glacier mass balance and secular changes in mountain glaciers and ice caps are evaluated from the annual net balance of 137 glaciers from 17 glacierized regions of the world. Further, the winter and summer balances for 35 glaciers in 11 glacierized regions are analyzed. The global means are calculated by weighting glacier and regional surface areas. The area-weighted global mean net balance for the period 1960?C2000 is ?270 ± 34 mm a?1 w.e. (water equivalent, in mm per year) or (?149 ± 19 km3 a?1 w.e.), with a winter balance of 890 ± 24 mm a?1 w.e. (490 ± 13 km3 a?1 w.e.) and a summer balance of ?1,175 ± 24 mm a?1 w.e. (?647 ± 13 km3 a?1 w.e.). The linear-fitted global net balance is accelerating at a rate of ?9 ± 2.1 mm a?2. The main driving force behind this change is the summer balance with an acceleration of ?10 ± 2.0 mm a?2. The decadal balance, however, shows significant fluctuations: summer melt reached its peak around 1945, followed by a decrease. The negative trend in the annual net balance is interrupted by a period of stagnation from 1960s to 1980s. Some regions experienced a period of positive net balance during this time, for example, Europe. The balance has become strongly negative since the early 1990s. These decadal fluctuations correspond to periods of global dimming (for smaller melt) and global brightening (for larger melt). The total radiation at the surface changed as a result of an imbalance between steadily increasing greenhouse gases and fluctuating aerosol emissions. The mass balance of the Greenland ice sheet and the surrounding small glaciers, averaged for the period of 1950?C2000, is negative at ?74 ± 10 mm a?1 w.e. (?128 ± 18 km3 a?1 w.e.) with an accumulation of 297 ± 33 mm a?1 w.e. (519 ± 58 km3 a?1 w.e.), melt ablation ?169 ± 18 mm a?1 w.e. (?296 ± 31 km3 a?1 w.e.), calving ablation ?181 ± 19 mm a?1 w.e. (?316 ± 33 km3 a?1 w.e.) and the bottom melt-21 ± 2 mm a?1 w.e. (?35 ± 4 km3 a?1 w.e.). Almost half (?60 ± 3 km3 a?1) of the net mass loss comes from mountain glaciers and ice caps around the ice sheet. At present, it is difficult to detect any statistically significant trends for these components. The total mass balance of the Antarctic ice sheet is considered to be too premature to evaluate. The estimated sea-level contributions in the twentieth Century are 5.7 ± 0.5 cm by mountain glaciers and ice caps outside Antarctica, 1.9 ± 0.5 cm by the Greenland ice sheet, and 2 cm by ocean thermal expansion. The difference of 7 cm between these components and the estimated value with tide-gage networks (17 cm) must result from other sources such as the mass balance of glaciers of Antarctica, especially small glaciers separated from the ice sheet.  相似文献   

15.
本文研究了新的全球冰川均衡调整(GIA)模型对南极冰盖质量平衡监测的影响,考虑现有冰川负荷模型和地幔黏滞度模型的差异,完整评估了结果的不确定性,最后结合GRACE和卫星测高的结果进行了对比分析.结果表明,GIA对GRACE监测的等效水柱变化有重大影响,较大的GIA影响出现在西南极,沿罗斯冰架-卡姆布冰流-罗尼冰架-南极...  相似文献   

16.
According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of reservoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the profile had the highest average 137Cs content of 12.65 Bq kg-1, which indicated the 1963s' deposits, then 137Cs content decreased both downward and upward in the profile. The second top and bottom couplets had average 137Cs contents of 2.15 Bq kg-1 and 0.92 Bq kg-1, respectively. By integrated analysis of reservoir construction and management history, variations of 137Cs contents over the profile, sediment yields of flood couplets and rainfall data during the period of 1958-1970, individual storms related to the flood couplets were identified. 44 floods with a total sediment yield of 2.36×104 m3 occurred and flood events in a year varied between 1 and 10 times during the period of 1960-1970. 7-10 flood events occurred during the wet period of 1961-1964 with very wet autumn, while only 1-2 events during the dry period of 1965-1969. Average annual specific sediment yield was 1.29×104 t km-2 a-1 for the Yuntaishan Gully during the period of 1960-1970, which was slightly higher than 1.11 ×104 t km-2 a-1 for the Upper Yanhe River Basin above the Ganguyi Hydrological Station and slightly lower than 1.40 ×104 t km-2 a-1 for the nearby Zhifang Gully during the same period. Annual specific sediment yields for the Yuntaishan Gully were correlated to the wet season's rainfalls well.  相似文献   

17.
Main channel habitats of the Ohio, Missouri, and Upper Mississippi Rivers were surveyed during the summers of 2004, 2005 and 2006 using a probability-based sampling design to characterize inter-annual and inter-river variation in suspended chlorophyll a (CHLa) and related variables. Large (fivefold) differences in CHLa were observed with highest concentrations in the Upper Mississippi (32.3 ± 1.8 μg L−1), intermediate values in the Missouri (19.7 ± 1.1 μg L−1) and lowest concentrations in the Ohio (6.8 ± 0.5 μg L−1). Inter-annual variation was small in comparison to inter-river differences suggesting that basin-specific factors exert greater control over river-wide CHLa than regional-scale processes influencing climate and discharge. The rivers were characterized by variable but generally low light conditions as indicated by depth-averaged underwater irradiance <4 E m−2 day−1 and high ratios of channel depth to euphotic depth (>3). Despite poor light conditions, regression analyses revealed that TP was the best single predictor of CHLa (R 2 = 0.40), though models incorporating both light and TP performed better (R 2 = 0.60). Light and nutrient conditions varied widely within rivers and were inversely related, suggesting that riverine phytoplankton may experience shifts in resource limitation during transport. Inferred grazing and sedimentation losses were large yet CHLa concentrations did not decline downriver indicating that growth and loss processes were closely coupled. The contribution by algae to suspended particulate organic matter in these rivers (mean = 41%) was similar to that of lakes (39%) but lower relative to reservoirs (61%).  相似文献   

18.
Tonalites from the island arc rock assemblage in the Zêtang segment of the Yarlung Zangbo suture zone were analyzed for major, trace elements (including REE) and Sr-Nd isotope. The experimental datademonstrate that the tonalites have the adakite-like characteristics, including high SiO2 (58%-63%),Al2O3 (18.4%-22.4%), Sr (810×10-6-940×10-6), Sr/Y (77-106), low HREE (Y=9×10-6-11×10-6, Yb=1×10-6-1.3×10-6), with LREE enrichment and faint Eu positive anomaly. Isr (0.70421-0.70487) is relatively low whereas 143Nd/144Nd (0.512896-0.512929) and εNd(t) values ( 6.7- 7.3) are high. These feainvolvement of a small amount of oceanic sediments. The identification of Z(e)tang adakites, derived from slab melting, presents new evidence for the intra-Tethyan subduction and the previous suggestion about the existence of intra-oceanic island arc within Tethys.  相似文献   

19.
We utilise a global finite-element sea ice–ocean model (FESOM), focused on the Antarctic marginal seas, to analyse projections of ice shelf basal melting in a warmer climate. Ice shelf–ocean interaction is described using a three-equation system with a diagnostic computation of temperature and salinity at the ice–ocean interface. A tetrahedral mesh with a minimumhorizontal resolution of 4 km and hybrid vertical coordinates is used. Ice shelf draft, cavity geometry, and global ocean bathymetry have been derived from the RTopo-1 data set. The model is forced with the atmospheric output from two climate models: (1) the Hadley Centre Climate Model (HadCM3) and (2) Max Planck Institute’s ECHAM5/MPI-OM coupled climate model. Results from experiments forced with their twentieth century output are used to evaluate the modelled present-day ocean state. Sea ice coverage is largely realistic in both simulations; modelled ice shelf basal melt rates compare well with observations in both cases, but are consistently smaller for ECHAM5/MPI-OM. Projections for future ice shelf basal melting are computed using atmospheric output for the Intergovernmental Panel on Climate Change (IPCC) scenarios E1 and A1B. In simulations forced with ECHAM5 data, trends in ice shelf basal melting are small. In contrast, decreasing convection along the Antarctic coast in HadCM3 scenarios leads to a decreasing salinity on the continental shelf and to intrusions of warm deep water of open ocean origin. In the case of the Filchner–Ronne Ice Shelf (FRIS), this water reaches deep into the cavity, so that basal melting increases by a factor of 4 to 6 compared to the present value of about 90 Gt/year. By the middle of the twenty-second century, FRIS becomes the dominant contributor to total ice shelf basal mass loss in these simulations. Our results indicate that the surface freshwater fluxes on the continental shelves may be crucial for the future of especially the large cold water ice shelves in the Southern Ocean.  相似文献   

20.
Ice reserve estimates is a fundamental prerequisite for water resources management. We selected the UIB (upper Indus river basin) as study area because it contains the most abundant mid-latitude glaciers outside the polar region, however, the ice reserve estimates remain unclear due to the harsh topography. In this study, we validated the parameters of the GlabTop2 model (Glacier Bed Topography version 2) using the ice thickness measured by GPR (ground-penetrating radar) and compared the “GPR-measured ice thickness and ice bed elevation” versus “the estimated results obtained from GlabTop2.” Integrated with IDW (inverse distance weighted) interpolated results of glaciers of various sizes, a reasonable parametric scheme (τ = 120 kPa and f = 0.8) of GlabTop2 was applied on vast amounts of glaciers in the UIB region. The GlabTop2 estimates indicated that the ice thickness of the UIB varied from 0 to 736.0 ± 110.0 m, with an average value of 74.5 ± 11.2 m. A significant spatial heterogeneity exists in the sub-basins. The Shyok, Shigar and Hunza that contain the most abundant ice reserve. Lesser quantities are stored in the Western Himalaya and Hindu Kush ranges, which account for 11.3 % and 6.7 % of the total ice reserve in the UIB, respectively. A total volume of 1162.4 ± 175.1 km3 of glacier can be converted to 1046.2 ± 157.6 Gt ice reserve; this is 13.6 times the annual average discharge obtained from the outlet of the Besham hydrological station. We aim to present estimates that can provide the baseline information for glaciology study of the Indus river.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号