首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution spectroscopic observations around the Hα line and BVRI photometry of the eclipsing short-period RS CVn star UV Leo are presented. The simultaneous light-curve solution and radial velocity-curve solution led to the following values of the global parameters of the binary: temperatures   T 1= 6000 ± 100 K  and   T 2= 5970 ± 20 K  ; masses   M 1= 0.976 ± 0.067 M  and   M 2= 0.931 ± 0.052 M  ; separation   a = 3.716 ± 0.048 R  ; orbital inclination     ; radii   R 1= 1.115 ± 0.052 R  and   R 2= 1.078 ± 0.051 R  ; equatorial velocities   V 1= 98.8 ± 2.3 km s−1  and   V 2= 89.6 ± 2.7 km s−1  . These results lead to the conclusion that the two components of UV Leo are slightly oversized for their masses and lie within the main-sequence band on the mass–radius diagram, close to the isochrone 9 × 1010 yr.  相似文献   

2.
High-resolution spectroscopic observations around the Hα line of the binary star QX Cas covering the whole orbital period are presented. Our radial velocity solution, the first ever determined, requires an eccentric orbit with the following orbital parameters: eccentricity,   e = 0.22 ± 0.01  ; longitude of periastron,  ω= 45°± 5°  ; semi-amplitudes of the radial velocity curves of the primary and secondary stars,   K 1 sin  i = 125.8 ± 0.9 km s−1  and   K 2 sin  i = 144.8 ± 1.1 km s−1  ; gamma velocity,   V 0= 65.1 ± 0.5 km s−1  ; and mass ratio,   q = 0.869 ± 0.013  . The corresponding lower limits of the masses of the components and their separation are         , and   a sin  i = 31.34 ± 0.48 R  .  相似文献   

3.
The evolved star HD 179821 continues to be the subject of much debate as to whether it is a nearby     post-asymptotic giant branch (post-AGB) star or a distant     high initial mass     post-red supergiant. We have mapped the OH maser emission around HD 179821 in the 1612- and 1667-MHz lines with the MERLIN interferometer array at a resolution of 0.4 arcsec and 0.35 km s−1. The OH emission lies in a thick shell with inner and outer radii of 1.3 and         and expansion velocity of 30 km s−1. Although we find some evidence for acceleration and for deviations from spherical symmetry, the bulk of the maser emission is consistent with a constant-velocity spherical shell. The extent of the shell agrees with H2O and OH dissociation models and supports a distance estimate of 6 kpc. However, the shell is incomplete and appears to have been disrupted by more recent collimated outflow activity within the last 1500 yr. We suggest that this activity is also responsible for the active envelope chemistry (in particular the presence of HCO+) and for the apparent offset of the star from the centre of the shell. The luminous yellow hypergiant star IRC +10420 also shows signs of recent outflows, and HD 179821 may be at a similar, perhaps slightly earlier, phase of evolution. We suggest that the SiO thermal emission arises from the same detached envelope as the OH maser emission as in IRC +10420. If so then this would strengthen the connection between these two stars and probably rule out a post-AGB status for HD 179821.  相似文献   

4.
We have analysed the kinematical parameters of Cir X-1 to constrain the nature of its companion star, the eccentricity of the binary and the pre-supernova parameter space. We argue that the companion is most likely to be a low-mass (≲2.0 M) unevolved star and that the eccentricity of the orbit is 0.94±0.04. We have evaluated the dynamical effects of the supernova explosion and we find it must have been asymmetric. On average , we find that a kick of ∼740 km s−1 is needed to account for the recently measured radial velocity of +430 km s−1 (Johnston, Fender & Wu) for this extreme system. The corresponding minimum kick velocity is ∼500 km s−1. This is the largest kick needed to explain the motion of any observed binary system. If Cir X-1 is associated with the supernova remnant G321.9-0.3 then we find a limiting minimum age of this remnant of ∼60 000 yr. Furthermore, we predict that the companion star has lost ∼10 per cent of its mass as a result of stripping and ablation from the impact of the supernova shell shortly after the explosion.  相似文献   

5.
We present spectrophotometry of the eclipsing old nova BT Mon (Nova Mon 1939). By detecting weak absorption features from the secondary star, we find its radial velocity semi-amplitude to be K R = 205 ± 5 km s−1 and its rotational velocity to be v  sin  i  = 138 ± 5 km s−1. We also measure the radial velocity semi-amplitude of the primary star to be K R = 170 ± 10 km s−1. From these parameters we obtain a mass of 1.04 ± 0.06 M⊙ for the white dwarf primary star and a mass of 0.87 ⊙ 0.06 M⊙ for the G8 V secondary star. The inclination of the system is found to be 82°.2 ± 32°.2 and we estimate that the system lies at a distance of 1700 ± 300 pc. The high mass of the white dwarf and our finding that BT Mon was probably a fast nova together constitute a new piece of evidence in favour of the thermonuclear runaway model of classical nova outbursts. The emission lines are single-peaked throughout the orbital cycle, showing absorption around phase 0.5, high-velocity S-wave components and large phase offsets in their radial velocity curves. In each of these respects, BT Mon is similar to the SW Sex stars. We also find quasi-periodic flaring in the trailed spectra, which makes BT Mon a candidate intermediate polar.  相似文献   

6.
We present radio observations of comet 9P/Tempel 1 associated with the Deep Impact spacecraft collision of 2005 July 4. Weak 18-cm OH emission was detected with the Parkes 64-m telescope, in data averaged over July 4–6, at a level of  12 ± 3 mJy km s−1  , corresponding to OH production rate  2.8 × 1028  molecules s−1 (Despois et al. inversion model, or  1.0 × 1028 s−1  for the Schleicher & A'Hearn model). We did not detect the HCN 1–0 line with the Mopra 22-m telescope over the period July 2–6. The 3σ limit of 0.06 K km s−1 for HCN on July 4 after the impact gives the limit to the HCN production rate of  <1.8 × 1025 s−1  . We did not detect the HCN 1–0 line, 6.7 GHz CH3OH line or 3.4-mm continuum with the Australia Telescope Compact Array (ATCA) on July 4, giving further limits on any small-scale structure due to an outburst. The 3σ limit on HCN emission of 2.5 K km s−1 from the ATCA around impact corresponds to limit < 4 × 1029 HCN molecules released by the impact.  相似文献   

7.
We report the detection of a very narrow P Cygni profile on top of the broad emission H α and H β lines of the Type IIn Supernova 1997eg. A similar feature has been detected in SN 1997ab, SN 1998S and SN 1995G . The detection of the narrow P Cygni profile indicates the existence of a dense circumstellar material (CSM), into which the ejecta of the supernova is expanding. From the analysis of the spectra of SN 1997eg we deduce (i) that such CSM is very dense  ( n ≳5×107 cm-3)  , (ii) that it has a low expanding velocity of about 160 km s−1. The origin of such dense CSM can be either a very dense progenitor wind  ( M˙ ∼10-2 M yr-1)  or a circumstellar shell product of the progenitor wind expanding into a high-pressure environment.  相似文献   

8.
We present optical UBVRI photometric and spectroscopic data of the Type Ibn supernova SN 2006jc, until the onset of the dust-forming phase. The optical spectrum shows a blue continuum and is dominated by the presence of moderately narrow (velocity ∼2500 km s−1) He  i emission lines superimposed over a relatively weak supernova spectrum. The helium lines are produced in a pre-existing He-rich circumstellar shell. The observed helium line fluxes indicate the circumstellar shell is dense, with a density of  ∼109–1010 cm−3  . The helium mass in this shell is estimated to be  ≲0.07 M  . The optical light curves show a clear signature of dust formation, indicated by a sharp decrease in the magnitudes around day 50, accompanied by a reddening of the colours. The evolution of the optical light curves during the early phase and that of the uvoir bolometric light curve at all phases is reasonably similar to normal Ib/c supernovae.  相似文献   

9.
We present 13 CO J  = 1 − 0 line observations of the H  ii region complex W51B located in the high-velocity (HV) stream. These observations reveal a filamentary and clumpy structure in the molecular gas. The mean local standard of rest (LSR) velocity ∼ + 65 km s−1 of the molecular gas in this region is greater than the maximum velocities allowed by kinematic Galactic rotation curves. The size and mass of the molecular clouds are ∼ 48 × 17 pc2 and ∼ 2.4 × 105 M⊙ respectively. In a position–velocity diagram, molecular gas in the southern part comprises a redshifted ring structure with v LSR=+ 60 to +73 km s−1. The velocity gradient of this ring is ∼ 0.5 km s−1 pc−1, and the mass is ∼ 6.2 × 104 M⊙. If we assume that the ring is expanding with a uniform velocity, the expansion velocity, radius and kinetic energy are ∼ 7 km s−1, ∼ 13 pc and ∼ 3.0 × 10 49 erg respectively. The kinetic energy and mass spectrum of the ring could be explained by an expanding cylindrical cloud with a centrally condensed mass distribution. The locations of two compact H  ii regions, G49.0−0.3 and G48.9−0.3, coincide with the two molecular clumps in this ring. We discuss star formation, and the mechanism that produced the ring structure.  相似文献   

10.
CK Vul is classified as, amongst others, the slowest known nova, a hibernating nova or a very late thermal pulse object. Following its eruption in ad 1670, the star remained visible for 2 yr. A 15-arcsec nebula was discovered in the 1980s, but the star itself has not been detected since the eruption. We here present radio images which reveal a 0.1-arcsec radio source with a flux of 1.5 mJy at 5 GHz. Deep Hα images show a bipolar nebula with a longest extension of 70 arcsec, with the previously known compact nebula at its waist. The emission-line ratios show that the gas is shock-ionized, at velocities  >100 km s−1  . Dust emission yields an envelope mass of  ∼5 × 10−2 M  . Echelle spectra indicate outflow velocities up to 360 km s−1. From a comparison of images obtained in 1991 and 2004 we find evidence for expansion of the nebula, consistent with an origin in the 1670 explosion; the measured expansion is centred on the radio source. No optical or infrared counterpart is found at the position of the radio source. The radio emission is interpreted as thermal free–free emission from gas with   T e∼ 104 K  . The radio source may be due to a remnant circumbinary disc, similar to those seen in some binary post-AGB stars. We discuss possible classifications of this unique outburst, including that of a sub-Chandrasekhar mass supernova, a nova eruption on a cool, low-mass white dwarf or a thermal pulse induced by accretion from a circumbinary disc.  相似文献   

11.
We present intermediate-resolution HST /STIS spectra of a high-velocity interstellar cloud ( v LSR=+80 km s−1) towards DI 1388, a young star in the Magellanic Bridge located between the Small and Large Magellanic Clouds. The STIS data have a signal-to-noise ratio (S/N) of 20–45 and a spectral resolution of about 6.5 km s−1 (FWHM). The high-velocity cloud absorption is observed in the lines of C  ii , O  i , Si  ii , Si  iii , Si  iv and S  iii . Limits can be placed on the amount of S  ii and Fe  ii absorption that is present. An analysis of the relative abundances derived from the observed species, particularly C  ii and O  i , suggests that this high-velocity gas is warm ( T k∼103–104 K) and predominantly ionized. This hypothesis is supported by the presence of absorption produced by highly ionized species, such as Si  iv . This sightline also intercepts two other high-velocity clouds that produce weak absorption features at v LSR=+113 and +130 km s−1 in the STIS spectra.  相似文献   

12.
Observations of δ Ori A made with the UHRF in its highest resolution mode ( R ≈900 000) have revealed the presence of a cool ( T k350 K) variable absorption component at a heliocentric velocity of +21.3 km s−1. The component is detected in Na  i D1, where clear hyperfine splitting is seen, and Ca  ii K. Comparison of our data with existing spectra suggests that the component has consistently increased in strength from 1966 to 1994, and subsequently reduced in intensity by 1999. Following a discussion of the possible origins of this component it is concluded that an interstellar, rather than circumstellar, origin is most likely. This is one of very few detections of variable interstellar absorption reported in the literature, and we suggest an origin within filamentary material associated with the expanding H  i shell surrounding the Orion–Eridanus superbubble.  相似文献   

13.
We present new optical and infrared (IR) observations of Cir X-1 taken near apastron. Both sets of spectra show asymmetric emission lines. Archival optical observations show that an asymmetric H α emission line has been in evidence for the past 20 years, although the shape of the line has changed significantly. We present an eccentric ( e ∼0.7–0.9) low-mass binary model, where the system consists of a neutron star orbiting around a (sub)giant companion star of 3–5 M. We suggest that the broad components of the emission lines arise in a high-velocity, optically thick flow near the neutron star, while the narrow components of the optical and the IR lines arise near the companion star and a heated ejecta shell surrounding the binary respectively. In this model, the velocity of the narrow component reflects the space velocity of the binary; the implied radial velocity (+430 km s−1 after correcting for Galactic rotation) is the highest velocity known for an X-ray binary.  相似文献   

14.
Intermediate-resolution (0.5–1 Å) optical spectroscopy of the cataclysmic variable (CV) SY Cnc reveals the spectrum of the donor star. Our data enable us to resolve the orbital motion of the donor and provide a new orbital solution, binary mass ratio and spectral classification. We find that the donor star has spectral-type G8 ± 2 V and orbits the white dwarf with   P = 0.382 3753 ± 0.000 0003  d,   K 2= 88.0 ± 2.9  km s−1 and   V sin  i = 75.5 ± 6.5  km s−1. Our values are significantly different from previous works and lead to   q = M 2/ M 1= 1.18 ± 0.14  . This is one of the highest mass ratios known in a CV and is very robust, because it is based on resolving the rotational broadening over a large number of metallic absorption lines. The donor could be a slightly evolved main sequence or descendant from a massive star which underwent an episode of thermal time-scale mass transfer.  相似文献   

15.
We present high-resolution spectroscopy of a sample of 24 solar-type stars in the young (15–40 Myr), open cluster NGC 2547. We use our spectra to confirm cluster membership in 23 of these stars, to determine projected equatorial velocities and chromospheric activity, and to search for the presence of accretion discs. We find examples of both fast ( v e sin  i >50 km s−1) and slow ( v e sin  i <10 km s−1) rotators, but no evidence for active accretion in any of the sample. The distribution of projected rotation velocities is indistinguishable from the slightly older IC 2391 and IC 2602 clusters, implying similar initial angular momentum distributions and circumstellar disc lifetimes. The presence of very slow rotators indicates either that long (10–40 Myr) disc lifetimes or internal differential rotation are needed, or that NGC 2547 (and IC 2391/2602) were born with more slowly rotating stars than are presently seen in even younger clusters and associations. The solar-type stars in NGC 2547 follow a similar rotation–activity relationship to that seen in older clusters. X-ray activity increases until a saturation level is reached for v e sin  i >15–20 km s−1. We are unable to explain why this saturation level, of log( L x L bol)≃−3.3, is a factor of 2 lower than in other clusters, but rule out anomalously slow rotation rates or uncertainties in X-ray flux calculations.  相似文献   

16.
We report the discovery of a 7.3 M J exoplanet WASP-14b, one of the most massive transiting exoplanets observed to date. The planet orbits the 10th-magnitude F5V star USNO-B1 11118−0262485 with a period of 2.243 752 d and orbital eccentricity   e = 0.09  . A simultaneous fit of the transit light curve and radial velocity measurements yields a planetary mass of 7.3 ± 0.5 M J and a radius of 1.28 ± 0.08 R J. This leads to a mean density of about 4.6 g cm−3 making it the densest transiting exoplanets yet found at an orbital period less than 3 d. We estimate this system to be at a distance of  160 ± 20  pc. Spectral analysis of the host star reveals a temperature of  6475 ± 100 K, log  g = 4.07  cm s−2 and   v sin  i = 4.9 ± 1.0  km s−1, and also a high lithium abundance,  log  N (Li) = 2.84 ± 0.05  . The stellar density, effective temperature and rotation rate suggest an age for the system of about 0.5–1.0 Gyr.  相似文献   

17.
The bipolar morphology of the planetary nebula (PN) K 3 − 35 observed in radio-continuum images was modelled with 3D hydrodynamic simulations with the adaptive grid code yguazú-a . We find that the observed morphology of this PN can be reproduced considering a precessing jet evolving in a dense AGB circumstellar medium, given by a mass-loss rate     and a terminal velocity   v w= 10 km s−1  . Synthetic thermal radio-continuum maps were generated from numerical results for several frequencies. Comparing the maps and the total fluxes obtained from the simulations with the observational results, we find that a model of precessing dense jets, where each jet injects material into the surrounding CSM at a rate     (equivalent to a density of 8 × 104 cm−3), a velocity of 1500 km s−1, a precession period of 100 yr and a semi-aperture precession angle of 20° agrees well with the observations.  相似文献   

18.
We have discovered that the spectrum of the well-known dwarf nova EM Cyg is contaminated by light from a K25V star (in addition to the K-type mass donor star). The K25V star contributes approximately 16 per cent of the light from the system and if not taken into account has a considerable effect upon radial velocity measurements of the mass donor star. We obtain a new radial velocity amplitude for the mass donor star of K 2=202±3 km s1, compared with the value of K 2=135±3 km s1 obtained in Stover, Robinson & Nather's classic study of EM Cyg. The revised value of the amplitude, combined with a measurement of rotational broadening of the mass donor, v  sin  i =140±6 km s1, leads to a new mass ratio of q M 2 M 1=0.88±0.05. This solves a long-standing problem with EM Cyg, because Stover et al.'s measurements indicated a mass ratio q >1, a value that should have led to dynamically unstable mass transfer for the secondary mass deduced by Stover et al. The revised value of the mass ratio, combined with the orbital inclination i =67±2°, leads to masses of 0.99±0.12 M and 1.12±0.08 M for the mass donor and white dwarf respectively. The mass donor is evolved, because it has a later spectral type (K3) than its mass would imply.
We discuss whether the K star could be physically associated with EM Cyg or not, and present the results of the spectroscopic study.  相似文献   

19.
We have studied the kinematics and spatial distribution of the interstellar gas in the sky region  110°≤ l ≤ 135°, 10°≤ b ≤ 20°  , using the extensive Leiden–Dwingeloo Survey of H  i emission and the Columbia Survey of CO emission. The spectra show two main velocity components, namely feature A that has a mean local standard of rest (LSR) velocity of  ∼0  km s−1  and is due to the Lindblad ring of the Gould belt, and feature C that has a mean LSR velocity of  ∼−11  km s−1  and is associated to the local arm or Orion arm. The H  i and CO distributions of feature A in the region trace a large complex of gas and dust known as the Cepheus Flare, which lies at a distance of 300 pc. The spectral line profiles of feature A, which are rather broad and often double-peaked, reveal that the Cepheus Flare forms part of a big expanding shell of interstellar matter that encloses an old supernova remnant associated with a void inside the Cepheus Flare. On the other hand, by analysing the distribution and velocity structure of feature C, we have detected a second large expanding shell in the region, located at a distance of 800 pc in the local arm. This shell surrounds the stellar association Cepheus OB4 and was probably generated by stellar winds and supernovae of Cepheus OB4. The radii, expansion velocities and H  i masses of the two shells are approximately 50 pc, 4  km s−1 and  1.3 × 104 M  for the Cepheus Flare shell and 100 pc, 4 km s−1 and  9.9 × 104 M  for the Cepheus OB4 shell. Both shells have similar ages of the order of a few 106 yr.  相似文献   

20.
We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variable V347 Pup (=LB 1800). There is evidence of irradiation on the inner hemisphere of the secondary star, which we correct for using a model to give a secondary-star radial velocity of   K R= 198 ± 5 km s−1  . The rotational velocity of the secondary star in V347 Pup is found to be   v sin  i = 131 ± 5 km s−1  and the system inclination is   i = 840 ± 23  . From these parameters we obtain masses of   M 1= 0.63 ± 0.04 M  for the white dwarf primary and   M 2= 0.52 ± 0.06 M  for the M0.5V secondary star, giving a mass ratio of   q = 0.83 ± 0.05  . On the basis of the component masses, and the spectral type and radius of the secondary star in V347 Pup, we find tentative evidence for an evolved companion. V347 Pup shows many of the characteristics of the SW Sex stars, exhibiting single-peaked emission lines, high-velocity S-wave components and phase-offsets in the radial velocity curve. We find spiral arms in the accretion disc of V347 Pup and measure the disc radius to be close to the maximum allowed in a pressureless disc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号