首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of El Ni?o-Southern Oscillation (ENSO) variability can be characterized by various ocean–atmosphere feedbacks, for example, the influence of ENSO related sea surface temperature (SST) variability on the low-level wind and surface heat fluxes in the equatorial tropical Pacific, which in turn affects the evolution of the SST. An analysis of these feedbacks requires physically consistent observational data sets. Availability of various reanalysis data sets produced during the last 15?years provides such an opportunity. A consolidated estimate of ocean surface fluxes based on multiple reanalyses also helps understand biases in ENSO predictions and simulations from climate models. In this paper, the intensity and the spatial structure of ocean–atmosphere feedback terms (precipitation, surface wind stress, and ocean surface heat flux) associated with ENSO are evaluated for six different reanalysis products. The analysis provides an estimate for the feedback terms that could be used for model validation studies. The analysis includes the robustness of the estimate across different reanalyses. Results show that one of the “coupled” reanalysis among the six investigated is closer to the ensemble mean of the results, suggesting that the coupled data assimilation may have the potential to better capture the overall atmosphere–ocean feedback processes associated with ENSO than the uncoupled ones.  相似文献   

2.
3.
In this analysis, the weather research and forecasting model coupled with a single-layer urban canopy model is used to simulate the climatic impacts of urbanization in the Beijing–Tianjin–Hebei metropolitan area, which has experienced significant expansion in its urban areas. Two cases examining current landscapes and the sensitivity test of urban areas replaced by cropland have been carried out to explore the changes in the surface air and atmospheric boundary structure. The impact of urbanization on annual mean surface air temperature has been found to be more than 1 °C in urban areas, and the maximum difference is almost 2 °C. The change in near-surface level temperature is most pronounced in winter, but the area influenced by urbanization is slightly larger in summer. The annual mean water vapor mixing ratio and wind speed are both reduced in the urban area. The effect of urbanization can only heat the temperature inside the urban boundary layer, below 850 hPa. The modeling results also indicate that the underlying surface thermal forces induced by the “urban heat island” effect enhance vertical air movement and engenders a convergence zone over urban areas. The convergence at low level together with the moisture increases in the layer between 850 and 700 hPa triggered the increase of convective precipitation.  相似文献   

4.
The intermediate water upwelling zone is discovered in November and December in the Peter the Great Bay (the Sea of Japan) on the basis of the data of the repeated hydrological section along 132° E. Taking account of the two-layer density field structure obtained from the observational data and applying the corresponding upwelling model [20], its main characteristics are computed. The upwelling zone width amounts to 6.2 km, the stratification destruction time is 69 h, and the vertical speed component is 4.3 × 10−2 cm/s. The upwelling zone is clearly pronounced both at the temperature and salinity fields and at the biogenic element field.  相似文献   

5.
Pan  Yongjie  Lyu  Shihua  Li  Suosuo  Gao  Yanhong  Meng  Xianhong  Ao  Yinhuan  Wang  Shujin 《Theoretical and Applied Climatology》2017,127(3-4):1011-1022

Soils containing gravel (particle size ≥2 mm) are widely distributed over the Qinghai–Tibet Plateau (QTP). Soil mixed with gravel has different thermal and hydrological properties compared with fine soil (particle size <2 mm) and thus has marked impacts on soil water and heat transfer. However, the most commonly used land models do not consider the effects of gravel. This paper reports the development of a new scheme that simulates the thermal and hydrological processes in soil containing gravel and its application in the QTP. The new scheme was implemented in version 4 of the Community Land Model, and experiments were conducted for two typical sites in the QTP. The results showed that (1) soil with gravel tends to reduce the water holding capacity and enhance the hydraulic conductivity and drainage; (2) the thermal conductivity increases with soil gravel content, and the response of the temperature of soil mixed with gravel to air temperature change is rapid; (3) the new scheme performs well in simulating the soil temperature and moisture—the mean biases of soil moisture between the simulation and observation reduced by 25–48 %, and the mean biases of soil temperature reduced by 9–25 %. Therefore, this scheme can successfully simulate the thermal and hydrological processes in soil with different levels of gravel content and is potentially applicable in land surface models.

  相似文献   

6.
A field campaign was conducted to collect high quality vertical wind speed and temperature profiles with simultaneous turbulent momentum and sensible heat fluxes over the flat Gobi surface located at 39°09′N, 100°06′E at an elevation of 1,458 m during the Pilot Intensive Observation Period in 1990. Careful evaluation of the observations in near-neutral conditions supports a value of the von Karman constant close to 0.39, which is in good agreement with the results obtained from many other field experiments conducted in low elevation regions. In near-neutral stratification the turbulent Prandtl number is found to be 1 but with lower confidence due to scarcity and scatter of the data points. For an expanded stability range, exponents of −1/4 and −1/2 are respectively best fitted to the functional relations for the non-dimensional wind and temperature profile functions in unstable stratification but linear relations still hold for stable stratification in this high elevation region.  相似文献   

7.
Abstract

A numerical model, the Parallel Ocean Program (POP) was used to run a 46-year simulation of the North Pacific Ocean beginning in January 1960. The model had a horizontal resolution of 0.25°, 28 vertical levels, and employed spectral nudging that, unlike standard nudging, nudges only specific frequency and wavenumber bands. This simulation was nudged to the mean and monthly Levitus climatology of potential temperature and absolute salinity (SA). The model was forced with the mean monthly winds, sea level pressure, net heat flux, and precipitation from the National Centers for Environmental Prediction (NCEP).

The simulation was used to examine the anomalous intrusions, previously observed from 2001 to 2002, of cooler and fresher (less spicy) water flowing southward along the coast of western North America. The simulated anomaly began in 1999 in the North Pacific, progressed southeastward towards the coast and then southward, at least as far south as southern California. The southward velocity signal, modulated by a strong annual cycle, reached Point Conception in 2000 while the temperature and SA anomalies arrived later, in 2002–03. The simulated velocity anomalies were eastward at about 3?cm s?1 in the northeast Pacific near 47°N in agreement with observations. Simulated coastal southward flow speeds reached 10–20?cm s?1 during the summer from 2000 to 2002.

This intrusion was by far the largest to occur over the entire length of the simulation. It was also the only time during the simulation when the Victoria mode was positive (associated with enhanced flow to the east via the North Pacific Gyre Oscillation (NPGO)) and the Multivariate El Niño-Southern Oscillation (ENSO) Index (MEI) was negative (La Niña conditions), tending to cause a southward flow anomaly along the coast.  相似文献   

8.
The Madden–Julian Oscillation(MJO) has a significant impact on global weather and climate and can be used as a predictability resource in extended-term forecasting. We evaluate the ability of the Chinese Academy of Meteorological Sciences Climate System Model(CAMS-CSM) to represent the MJO by using the diagnostic method proposed by the US Climate Variability and Predictability Program(CLIVAR) MJO Working Group(MJOWG). In general,the model simulates some major characteristics of MJO well, such as the seasonality characteristics and geographical dependence, the intensity of intraseasonal variability(ISV), dominant periodicity, propagation characteristics, coherence between outgoing longwave radiation(OLR) and wind, and life cycle of MJO signals. However, there are a few biases in the model when compared with observational/reanalyzed data. These include an overestimate of precipitation in the convergence zone of the North and South Pacific, a slightly weaker eastward propagation, and a shift in the dominant periodicity toward lower frequencies with slower speeds of eastward propagation. The model gives a poor simulation of the northward propagation of MJO in summer and shows less coherence between the MJO convection and wind. The role of moistening in the planetary boundary layer(PBL) in the eastward/northward propagation of MJO was also explored. An accurate representation of the vertical titling structure of moisture anomalies in CAMS-CSM leads to moistening of the PBL ahead of convection, which accounts for the eastward/northward propagation of MJO. Poor simulation of the vertical structure of the wind and moisture anomalies in the western Pacific leads to a poor simulation of the northward propagation of MJO in this area. Budget analysis of the PBL integral moisture anomalies shows that the model gives a good simulation of the moisture charging process ahead of MJO convection and that the zonal advection of moisture convergence term has a primary role in the detour of MJO over the Maritime Continent.  相似文献   

9.
Annual and seasonal series of temperature values are analyzed using the data of Akhty, Teberda, and Terskol weather stations (the height above the sea level is >1000 m) for 1961-2013 as well as from 1976 to 2013 in order to reveal changes in the mountain climate in the period of contemporary global warming. Mean values, standard deviations, norms, and anomalies of annual and seasonal values of temperature as well as the rate of their variation in the mentioned periods are obtained. It is found that the temperature rise is observed in all seasons and for the year as a whole at the mountain weather stations except Terskol station. According to the results of studying temperature variability, Akhty and Teberda weather stations were united into the group “mountain weather stations” with the subsequent averaging of climatic variables. Terskol weather station was singled out as an independent high-mountain weather station.  相似文献   

10.
The variations in several climatological characteristics are studied on the basis of hourly (half-hourly) meteorological terminal observations at 51 aerodromes of the Russian Federation in 2001–2015. For every aerodrome extreme temperature, wind speed and gusts, and QNH are analyzed for the above period. Using data for three consecutive 5-year periods, variations in the number of days with temperature above 30°C or below -30°C, with wind speed of ≥10 m/s and gusts of ≥15 m/s are considered. The occurrence frequency of significant weather events affecting the takeoff and landing (fog, blizzard, freezing precipitation, thunderstorm) is investigated. The results for aerodromes with positive or negative trends in the occurrence frequency of weather phenomena in 2001–2015 are presented.  相似文献   

11.
12.
The daily parameters characterizing the field of surface air pressure from 1960 to 2014 are used for assessing the current trends in atmospheric circulation over the Azov–Black Sea region. It was revealed that the decrease in mean air pressure and the weakening of northeastern air trans port which was typical of the atmospheric circulation in this region in the previous period (1960–1990), occurred from 1991–1993 to 2005–2007. In recent 7–8 years, the ongoing air pressure drop is accom panied by the intensification of northeastern air transport.  相似文献   

13.
The aim of this study was to understand the cause of Madden–Julian oscillation (MJO) bias in the High Resolution Atmospheric Model (HiRAM) driven by observed SST through process-oriented diagnosis. Wavenumber-frequency power spectrum and composite analyses indicate that HiRAM underestimates the spectral amplitude over the MJO band and mainly produces non-propagating rather than eastward-propagating intraseasonal rainfall anomalies, as observed. Column-integrated moist static energy (MSE) budget analysis is conducted to understand the MJO propagation bias in the simulation. It is found that the bias is due to the lack of a zonally asymmetric distribution of the MSE tendency anomaly in respect to the MJO convective center, which is mainly attributable to the bias in vertical MSE advection and surface turbulent flux. Further analysis suggests that it is the unrealistic simulation of MJO vertical circulation anomalies in the upper troposphere as well as overestimation of the Rossby wave response that results in the bias.摘要本研究评估了高分辨率大气环流模式HiRAM模拟的MJO. 结果表明, HiRAM模拟的MJO东传很弱. 我们通过计算整层积分的湿静力能 (MSE) 收支来诊断MJO东传模拟偏差的原因. 结果发现, MSE倾向相对于MJO对流中心的纬向非对称分布很弱是导致东传模拟偏弱的原因, 这主要是由MSE垂直平流和地表湍流通量的模拟偏差造成的. 进一步研究表明, 对流层上层MJO垂直环流结构的模拟偏差和MJO对流西侧的Rossby波环流偏强共同导致了模式的偏差. 本研究中指出的MJO传播模拟偏差的原因与之前基于多模式结果的结论不同, 这意味着要想了解特定模式的模拟偏差, 有必要对该模式进行具体分析.  相似文献   

14.
Considerable variations in intermediate water characteristics were found in the upper Oyashio based on the oceanographic data from 1953 to 2007. The long-term temperature trend at the 26.75σ? isopycnal is 0.03°C/year. This temperature trend is considerably higher than that determined earlier for the Sea of Okhotsk intermediate water and much higher than the World Ocean temperature trend. The westward transport of warm and salty water of the Alaskan Stream is most likely to cause the changes in the Kamchatka Current and upper Oyashio. It is established that Aleutian mesoscale eddies move westward from the location of their formation south of the Blizhniy Strait and transport warm water (3.8–4.2°C) in their core (100–600 m, ~26.75σ?)). As the trajectory of eddies is quite stable, the westward flow of warm and salty intermediate waters considerably influences the upper Oyashio characteristics.  相似文献   

15.
Presented are the characteristics of waves in the southeastern part of the Baltic Sea obtained from the results of continuous instrumental observations in 2008–2009 on the offshore oil-and-gas platform. Discussed are the conditions and prerequisites for the formation of extreme waves.  相似文献   

16.
We investigate the momentum and energy exchange across the wave boundary layer (WBL). Directly at the air–sea interface, we test three wave-growth parametrizations by comparing estimates of the wave-induced momentum flux derived from wave spectra with direct covariance estimates of the momentum flux. An exponential decay is used to describe the vertical structure of the wave-induced momentum in the atmospheric WBL through use of a decay rate, a function of the dimensionless decay rate and wavenumber (A?=?α k). The decay rate is varied to minimize the difference between the energy extracted from the WBL and the energy flux computed from wave spectra using our preferred wave-growth parametrization. For wave ages (i.e. the peak phase speed to atmospheric friction velocity ratio) in the range \( 15 < c_{p}/u_{*} < 35 \) we are able to balance these two estimates to within 10%. The decay rate is used to approximate the WBL height as the height to which the wave-induced flux is 0.1 of its surface value and the WBL height determined this way is found to be between 1–3 m. Finally, we define an effective phase speed with which to parametrize the energy flux for comparison with earlier work, which we ultimately attempt to parametrize as a function of wind forcing.  相似文献   

17.
Data collected during the SHEBA and CASES-99 field programs are employed to examine the flux–gradient relationship for wind speed and temperature in the stably stratified boundary layer. The gradient-based and flux-based similarity functions are assessed in terms of the Richardson number Ri and the stability parameter z*, z being height and Λ* the local Obukhov length. The resulting functions are expressed in an analytical form, which is essentially unaffected by self-correlation, when thermal stratification is strong. Turbulence within the stably stratified boundary layer is classified into four regimes: “nearly-neutral” (0 < z* < 0.02), “weakly-stable” (0.02 < z* < 0.6), “very-stable” (0.6 < z* < 50), and “extremely-stable” (z* > 50). The flux-based similarity functions for gradients are constant in “nearly-neutral” conditions. In the “very-stable” regime, the dimensionless gradients are exponential, and proportional to (z*)3/5. The existence of scaling laws in “extremely-stable” conditions is doubtful. The Prandtl number Pr decreases from 0.9 in nearly-neutral conditions and to about 0.7 in the very-stable regime. The necessary condition for the presence of steady-state turbulence is Ri < 0.7.  相似文献   

18.
The linkage between the sea ice concentration(SIC) over the Barents–Kara Seas in November–December(SIC_BKS_ND) and the stratospheric polar vortex(SPV) in subsequent January(SPV_Jan) is investigated. It is found that SIC_BKS_ND is positively(negatively) correlated with SPV_Jan for the period 1979–1995(1996–2009).Further analyses reveal that, during 1979–1995(1996–2009), SIC_BKS_ND is relatively higher(lower), accompanied by smaller(larger) interannual variability with its center shifting northwes...  相似文献   

19.
A method for enhancing the calculation of turbulent kinetic energy in the Mellor–Yamada–Janjić planetary boundary-layer parametrization in the Weather Research and Forecasting numerical model is presented. This requires some unconventional selections for the closure constants and an additional stability dependent surface length scale. Single column model and three-dimensional model simulations are presented showing a similar performance with the existing boundary-layer parametrization, but with a more realistic magnitude of turbulence intensity closer to the surface with respect to observations. The intended application is an enhanced calculation of turbulence intensity for the purposes of a more accurate wind-energy forecast.  相似文献   

20.
Atmospheric circulation patterns in southern Chile (42° 30′ S) were studied in order to determine and analyse the most characteristic synoptic types and their recent trends, as well as to gain an understanding of how they are associated with low-frequency variability patterns. According to the Jenkinson and Collison (J&C) classification method, a 16-point grid of sea-level pressure data was employed. The findings reveal that some synoptic types show statistically significant trends with a 95% confidence level, positively for anticyclonic westerly hybrids (AW) and advective types for third and fourth quadrant wind flows (W, NW, and N) and negatively for SW and cyclonic hybrids (CS and CSW). A model has been constructed of the linear regression of some weather types with teleconnections that most affect Chile: the undetermined types (U), AW were associated with El Niño or the warm phase of the Pacific Decadal Oscillation (PDO), whereas the cyclonic northerly and cyclonic northeasterly types (CN and CNE) were associated with La Niña or cool phase of the PDO. The weather types associated with Antarctic Oscillation (AAO) in its positive phase are anticyclonic northerly and northeasterly and northerly advection types, while in its negative phase are cyclonic southwesterly and advection types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号