共查询到20条相似文献,搜索用时 0 毫秒
1.
Scattering of wavefields in a 3-D medium that includes passive and/or active structures, is numerically solved by using the boundary integral equation method (BIEM). The passive structures are velocity anomalies that generate scattered waves upon incidence, and the active structures contain endogenous fracture sources, which are dynamically triggered by the dynamic load due to the incident waves. Simple models are adopted to represent these structures: passive cracks act as scatterers and active cracks as fracture sources. We form cracks using circular boundaries, which consist of many boundary elements. Scattering of elastic waves by the boundaries of passive cracks is treated as an exterior problem in BIEM. In the case of active cracks, both the exterior and interior problems need to be solved, because elastic waves are generated by fracturing with stress drop, and the growing crack boundaries scatter the incident waves from the outside of the cracks. The passive cracks and/or active cracks are randomly distributed in an infinite homogeneous elastic medium. Calculations of the complete waveform considering a single scatter show that the active crack has weak influence on the attenuation of first arrivals but strong influence on the amplitudes of coda waves, as compared with those due to the passive crack. In the active structures, multiple scattering between cracks and the waves triggered by fracturing strongly affect the amplitudes of first arrivals and coda waves. Compared to the case of the passive structures, the attenuation of initial phase is weak and the coda amplitudes decrease slowly. 相似文献
2.
3.
Scattering attenuation ratios of P and S waves in elastic media 总被引:1,自引:0,他引:1
Tae-Kyung Hong 《Geophysical Journal International》2004,158(1):211-224
4.
5.
6.
Generalized Born scattering of elastic waves in 3-D media 总被引:1,自引:0,他引:1
It is well known that when a seismic wave propagates through an elastic medium with gradients in the parameters which describe it (e.g. slowness and density), energy is scattered from the incident wave generating low-frequency partial reflections. Many approximate solutions to the wave equation, e.g. geometrical ray theory (GRT), Maslov theory and Gaussian beams, do not model these signals. The problem of describing partial reflections in 1-D media has been extensively studied in the seismic literature and considerable progress has been made using iterative techniques based on WKBJ, Airy or Langer type ansätze. In this paper we derive a first-order scattering formalism to describe partial reflections in 3-D media. The correction term describing the scattered energy is developed as a volume integral over terms dependent upon the first spatial derivatives (gradients) of the parameters describing the medium and the solution. The relationship we derive could, in principle, be used as the basis for an iterative scheme but the computational expense, particularly for elastic media, will usually prohibit this approach. The result we obtain is closely related to the usual Born approximation, but differs in that the scattering term is not derived from a perturbation to a background model, but rather from the error in an approximate Green's function. We examine analytically the relationship between the results produced by the new formalism and the usual Born approximation for a medium which has no long-wavelength heterogeneities. We show that in such a case the two methods agree approximately as expected, but that in a media with heterogeneities of all wavelengths the new gradient scattering formalism is superior. We establish analytically the connection between the formalism developed here and the iterative approach based on the WKBJ solution which has been used previously in 1-D media. Numerical examples are shown to illustrate the examples discussed. 相似文献
7.
8.
9.
10.
11.
12.
13.
14.
Traveltimes of waves in three-dimensional random media 总被引:4,自引:0,他引:4
15.
16.
The energy–flux vector and other energy-related quantities play an important role in various wave propagation problems. In acoustics and seismology, the main attention has been devoted to the time-averaged energy flux of time-harmonic wavefields propagating in non-dissipative, isotropic and anisotropic media. In this paper, we investigate the energy–flux vector and other energy-related quantities of wavefields propagating in inhomogeneous anisotropic viscoelastic media. These quantities satisfy energy-balance equations, which have, as we show, formally different forms for real-valued wavefields with arbitrary time dependence and for time-harmonic wavefields. In case of time-harmonic wavefields, we study both time-averaged and time-dependent constituents of the energy-related quantities. We show that the energy-balance equations for time-harmonic wavefields can be obtained in two different ways. First, using real-valued wavefields satisfying the real-valued equation of motion and stress–strain relation. Second, using complex-valued wavefields satisfying the complex-valued equation of motion and stress–strain relation. The former approach yields simple results only for particularly simple viscoelastic models, such as the Kelvin–Voigt model. The latter approach is considerably more general and can be applied to viscoelastic models of unrestricted anisotropy and viscoelasticity. Both approaches, when applied to the Kelvin–Voigt viscoelastic model, yield the same expressions for the time-averaged and time-dependent constituents of all energy-related quantities and the same energy-balance equations. This indicates that the approach based on complex-valued representation of the wavefield may be used for time harmonic waves quite universally. This study also shows importance of joint consideration of time-averaged and time-dependent constituents of the energy-related quantities in some applications. 相似文献
17.
18.
19.
Sylvie Kelner Michel Bouchon & Olivier Coutant 《Geophysical Journal International》1999,137(1):197-206
We study the propagation of P waves through media containing open fractures by performing numerical simulations. The important parameter in such problems is the ratio between crack length and incident wavelength. When the wavelength of the incident wavefield is close to or shorter than the crack length, the scattered waves are efficiently excited and the attenuation of the primary waves can be observed on synthetic seismograms. On the other hand, when the incident wavelength is greater than the crack length, we can simulate the anisotropic behaviour of fractured media resulting from the scattering of seismic waves by the cracks through the time delay of the arrival of the transmitted wave. The method of calculation used is a boundary element method in which the Green's functions are computed by the discrete wavenumber method. For simplicity, the 2-D elastodynamic diffraction problem is considered. The rock matrix is supposed to be elastic, isotropic and homogeneous, while the cracks are all empty and have the same length and strike direction. An iterative method of calculation of the diffracted wavefield is developed in the case where a large number of cracks are present in order to reduce the computation time. The attenuation factor Q −1 of the direct waves passing through a fractured zone is measured in several frequency bands. We observe that the attenuation factor Q −1 of the direct P wave peaks around kd = 2, where k is the incident wavenumber and d the crack length, and decreases proportionally to ( kd ) −1 in the high-wavenumber range. In the long-wavelength domain, the velocity of the direct P wave measured for two different crack realizations is very close to the value predicted by Hudson's theory on the overall elastic properties of fractured materials. 相似文献