首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
到目前为止从陨石中分离出的太阳系外物质有金刚石、碳化硅、石墨、Si3N4、刚玉及尖晶石等。除金刚石为纳米级大小外,其他为微米和次微米级颗粒。这些太阳系外物质主要存在于原始的球粒陨石的基质中,并通过化学分离的方法获得。金刚石携带分别由p-过程和r-过程产生的Xe同位素组分(Xe-HL),其源区可能提超新星。绝大部分碳化硅相对于太阳系物质富^29.30Si和^13C,贫^15N,并携带s-过程产生的各  相似文献   

2.
We report isotopic ratio measurements of small SiC and Si3N4 grains, with special emphasis on presolar SiC grains of type Z, and new nucleosynthesis models for 26Al/27Al and the Ti isotopic ratios in asymptotic giant branch (AGB) stars. With the NanoSIMS we analyzed 310 SiC grains from Murchison (carbonaceous CM2 chondrite) separate KJB (diameters 0.25-0.45 μm) and 153 SiC grains from KJG (diameters 1.8-3.7 μm), 154 SiC and 23 Si3N4 grains from Indarch (enstatite EH4 chondrite) separate IH6 (diameters 0.25-0.65 μm) for their C and N isotopic compositions, 549 SiC and 142 Si3N4 grains from IH6 for their C and Si isotopic compositions, 13 SiC grains from Murchison and 66 from Indarch for their Al-Mg compositions, and eight SiC grains from Murchison and 10 from Indarch for their Ti isotopic compositions. One of the original objectives of this effort was to compare isotopic analyses with the NanoSIMS with analyses previously obtained with the Cameca IMS 3f ion microprobe. Many of the Si3N4 grains from Indarch have isotopic anomalies but most of these apparently originate from adjacent SiC grains. Only one Si3N4 grain, with 13C and 14N excesses, has a likely AGB origin. The C, N, and Si isotopic data show that the percentage of SiC grains of type Y and Z increase with decreasing grain size (from ∼1% for grains >2 μm to ∼5-7% for grains of 0.5 μm), providing an opportunity for isotopic analyses in these rare grains. Our measurements expand the number of Al-Mg analyses on SiC Z grains from 4 to 23 and the number of Ti analyses on Z grains from 2 to 11. Inferred26Al/27Al ratios of Z grains are in the range found in mainstream and Y grains and do not exceed those predicted by models of AGB nucleosynthesis. Cool bottom processing (CBP) has been invoked to explain the low 12C/13C ratios of Z grains, but this process apparently does not lead to increased 26Al production in the parent stars of these grains. This finding is in contrast to presolar oxide grains where CBP is needed to explain their high 26Al/27Al ratios. The low 46,47,49Ti/48Ti ratios found in Z grains and their correlation with low 29Si/28Si ratios extend the trend seen in mainstream grains and confirm an origin in low-metallicity AGB stars. The relatively large excesses in 30Si and 50Ti in Z grains are predicted by our models to be the result of increased production of these isotopes by neutron-capture nucleosynthesis in low-metallicity AGB stars. However, the predicted excesses in 50Ti (and 49Ti) are much larger than those found. Even lowering the strength of the 13C pocket cannot solve this discrepancy in a consistent way.  相似文献   

3.
4.
Barium isotopic compositions of single 2.3-5.3 μm presolar SiC grains from the Murchison meteorite were measured by resonant ionization mass spectrometry. Mainstream SiC grains are enriched in s-process barium and show a spread in isotopic composition from solar to dominantly s-process. In the relatively coarse grain size fraction analyzed, there are large grain-to-grain variations of barium isotopic composition. Comparison of single grain data with models of nucleosynthesis in asymptotic giant branch (AGB) stars indicates that the grains most likely come from low mass carbon-rich AGB stars (1.5 to 3 solar masses) of about solar metallicity and with approximately solar initial proportions of r- and s-process isotopes. Measurements of single grains imply a wide variety of neutron-to-seed ratios, in agreement with previous measurements of strontium, zirconium and molybdenum isotopic compositions of single presolar SiC grains.  相似文献   

5.
We report the development of a new analytical system allowing the fully automated measurement of isotopic ratios in micrometer-sized particles by secondary ion mass spectrometry (SIMS) in a Cameca ims-6f ion microprobe. Scanning ion images and image processing algorithms are used to locate individual particles dispersed on sample substrates. The primary ion beam is electrostatically deflected to and focused onto each particle in turn, followed by a peak-jumping isotopic measurement. Automatic measurements of terrestrial standards indicate similar analytical uncertainties to traditional manual particle analyses (e.g., ∼3‰/amu for Si isotopic ratios). We also present an initial application of the measurement system to obtain Si and C isotopic ratios for ∼3300 presolar SiC grains from the Murchison CM2 carbonaceous chondrite. Three rare presolar Si3N4 grains were also identified and analyzed. Most of the analyzed grains were extracted from the host meteorite using a new chemical dissolution procedure. The isotopic data are broadly consistent with previous observations of presolar SiC in the same size range (∼0.5-4 μm). Members of the previously identified SiC AB, X, Y, and Z subgroups were identified, as was a highly unusual grain with an extreme 30Si enrichment, a modest 29Si enrichment, and isotopically light C. The stellar source responsible for this grain is likely to have been a supernova. Minor differences in isotopic distributions between the present work and prior data can be partially explained by terrestrial contamination and grain aggregation on sample mounts, though some of the differences are probably intrinsic to the samples. We use the large new SiC database to explore the relationships between three previously identified isotopic subgroups—mainstream, Y, and Z grains—all believed to originate in asymptotic giant branch stars. The isotopic data for Z grains suggest that their parent stars experienced strong CNO-cycle nucleosynthesis during the early asymptotic giant branch phase, consistent with either cool bottom processing in low-mass (M < 2.3M) parent stars or hot-bottom burning in intermediate-mass stars (M > 4M). The data provide evidence for a sharp threshold in metallicity, above which SiC grains form with much higher 12C/13C ratios than below. Above this threshold, the fraction of grains with relatively high 12C/13C decreases exponentially with increasing 29Si/28Si ratio. This result indicates a sharp increase in the maximum mass of SiC parent stars with decreasing metallicity, in contrast to expectations from Galactic chemical evolution theory.  相似文献   

6.
Isotopic heterogeneity within the solar nebula has been a long-standing issue. Studies on primitive chondrites and chondrite components for Ba, Sm, Nd, Mo, Ru, Hf, Ti, and Os yielded conflicting results, with some studies suggesting large-scale heterogeneity. Low-grade enstatite and Rumuruti chondrites represent the most extreme ends of the chondrite meteorites in terms of oxidation state, and might thus also present extremes if there is significant isotopic heterogeneity across the region of chondrite formation. Osmium is an ideal tracer because of its multiple isotopes generated by a combination of p-, r-, and s-process and, as a refractory element; it records the earliest stages of condensation.Some grade 3-4 enstatite and Rumuruti chondrites show similar deficits of s-process components as revealed by high-precision Os isotope studies in some low-grade carbonaceous and ordinary chondrites. Enstatite chondrites of grades 5-6 have Os isotopic composition identical within error to terrestrial and solar composition. This supports the view of digestion-resistant presolar grains, most likely SiC, as the major carrier of these anomalies. Destruction of presolar grains during parent body processing, which all high-grade enstatite chondrites, but also some low-grade chondrites seemingly underwent, makes the isotopically anomalous Os accessible for analysis. The magnitude of the anomalies is consistent with the presence of a few ppm of presolar SiC with a highly unusual isotopic composition, produced in a different stellar environment like asymptotic giant branch stars (AGB) and injected into the solar nebula. The presence of similar Os isotopic anomalies throughout all major chondrite groups implies that carriers of Os isotopic anomalies were homogeneously distributed in the solar nebula, at least across the formation region of chondrites.  相似文献   

7.
We report the results of SIMS isotopic analyses of carbon, nitrogen, oxygen, and silicon made on 849 small (approximately 1 micrometer) individual silicon carbide grains from the Murchison meteorite. The isotopic compositions of the major elements carbon and silicon of most grains (mainstream) are similar to those observed in larger grain studies suggesting an AGB star origin of these grains. In contrast, the trace element nitrogen shows a clear dependency on grain size. 14N/15N ratios increase with decreasing grain size, suggesting different stellar sources for grains of different size. Typically observed 14N/15N ratios in the small grains of this study are approximately 2700, clearly larger than the values expected from model calculations of AGB stars. In addition to the three dredge-up episodes characteristic for the evolution of AGB stars, extra-mixing of CNO-processed matter in low mass AGB stars appears to be a promising possibility in order to explain the high 14N/15N ratios of the small circumstellar SiC grains. A small fraction of grains shows a silicon isotopic signature not observed in larger circumstellar SiC grains from Murchison. Their stellar origin is still uncertain. The minor type A, B, Y, and X grains were found to be present at a level of a percent, which is similar to their abundance in the larger-grain SiC separates from Murchison. Oxygen isotopic compositions are normal within the experimental uncertainties of several 10%, indicating that oxygen of stellar origin is rare or even absent in the SiC grains. We conclude that most of the oxygen is a contaminant which was introduced into the SiC grains after their formation, e.g., during sample processing in the laboratory. We identified a nitride grain, most likely Si3N4 with little carbon, with highly anomalous isotopic compositions (12C/13C = 157 +/- 33, 14N/15N = 18 +/- 1, delta 29 Si = -43 +/- 56%, delta 30 Si = -271 +/- 50%). The isotopic patterns of carbon, nitrogen, and silicon resemble those of the rare SiC X grains suggesting that these two rare constituents of circumstellar matter formed in the same type of stellar source, namely, Type II supernovae.  相似文献   

8.
With a new type of ion microprobe, the NanoSIMS, we determined the oxygen isotopic compositions of small (<1μm) oxide grains in chemical separates from two CM2 carbonaceous meteorites, Murray and Murchison. Among 628 grains from Murray separate CF (mean diameter 0.15 μm) we discovered 15 presolar spinel and 3 presolar corundum grains, among 753 grains from Murray separate CG (mean diameter 0.45 μm) 9 presolar spinel grains, and among 473 grains from Murchison separate KIE (mean diameter 0.5 μm) 2 presolar spinel and 4 presolar corundum grains. The abundance of presolar spinel is highest (2.4%) in the smallest size fraction. The total abundance in the whole meteorite is at least 1 ppm, which makes spinel the third-most abundant presolar grain species after nanodiamonds (if indeed a significant fraction of them are presolar) and silicon carbide. The O-isotopic distribution of the spinel grains is very similar to that of presolar corundum, the only statistically significant difference being that there is a larger fraction of corundum grains with large 17O excesses (17O/16O > 1.5 × 10−3), which indicates parent stars with masses between 1.8 and 4.5 M.  相似文献   

9.
Anomalous Xe enriched in both heavy and light isotopes (Xe-HL) was identified in the high-temperature Xe fraction in relict nanodiamond grains from chondrites, whereas the low-temperature Xe fraction (Xe-P3) typically has the normal isotopic composition. The paper presents a concise review of current models put forth to account for the genesis of nanodiamond with anomalous noble gas components and specifies a real process and major regularities during the generation of the isotopic relations of the anomalous Xe-HL component in relict nanodiamond grains. This component is demonstrated to be formed and captured simultaneously with the synthesis of nanodiamond, when shock waves induced by supernova explosions propagated. It is important that diamond synthesis during the passage of shock waves and the enrichment of this diamond in Xe-HL are also possible in the wave forefront region under extremal P-T conditions, in the pressure drop region behind the wave front (by means of nucleation), and by means of irradiation of carbonic grains with high-energy particles. The isotopic composition of Xe-HL results from an increase in the hardness of the spectrum of nuclear-active particles and its enrichment in heavy ions at acceleration in shock waves. Arguments are presented in support of the hypothesis that the nanodiamond population found in chondrites was produced during the latest supernova explosion before the development of the Solar System, with the supernova likely being a SnIa carbon detonation supernova. This furnishes evidence in support of recently advanced hypotheses that the nanodiamond population of chondrites is not presolar.  相似文献   

10.
Silicon carbide (SiC) is a particularly interesting species of presolar grain because it is known to form on the order of a hundred different polytypes in the laboratory, and the formation of a particular polytype is sensitive to growth conditions. Astronomical evidence for the formation of SiC in expanding circumstellar atmospheres of asymptotic giant branch (AGB) carbon stars is provided by infrared (IR) studies. However, identification of the crystallographic structure of SiC from IR spectra is controversial. Since >95% of the presolar SiC isolated from meteorites formed around carbon stars, a determination of the structure of presolar SiC is, to first order, a direct determination of the structure of circumstellar SiC. We therefore determined the polytype distribution of presolar SiC from the Murchison CM2 carbonaceous meteorite using analytical and high-resolution transmission electron microscopy (TEM). High-resolution lattice images and electron diffraction of 508 individual SiC grains demonstrate that only two polytypes are present, the cubic 3C (β-SiC) polytype (79.4% of population by number) and the hexagonal 2H (α-SiC) polytype (2.7%). Intergrowths of these two polytypes are relatively abundant (17.1%). No other polytypes were found. A small population of one-dimensionally disordered SiC grains (0.9%), whose high density of stacking faults precluded classification as any polytype, was also observed. The presolar origin of 2H α-SiC is unambiguously established by tens-of-nanometers-resolution secondary ion mass spectroscopy (NanoSIMS). Isotopic maps of a TEM-characterized 2H α-SiC grain exhibit non-solar isotopic compositions of 12C/13C = 64 ± 4 and 14N/15N = 575 ± 24. These measurements are consistent with mainstream presolar SiC thought to originate in the expanding atmospheres of AGB carbon stars. Equilibrium condensation calculations together with inferred mineral condensation sequences predict relatively low SiC condensation temperatures in carbon stars. The laboratory observed condensation temperatures of 2H and 3C SiC are generally the lowest of all SiC polytypes and fall within the predictions of the equilibrium calculations. These points account for the occurrence of only 2H and 3C polytypes of SiC in circumstellar outflows. The 2H and 3C SiC polytypes presumably condense at different radii (i.e., temperatures) in the expanding stellar atmospheres of AGB carbon stars.  相似文献   

11.
We have investigated the presolar grain inventories of two CR chondrites, QUE 99177 and MET 00426, which are less altered than most members of this meteorite group. Both meteorites contain high abundances of O-anomalous presolar grains, with concentrations of 220 ± 40 and 160 ± 30 ppm for QUE 99177 and MET 00426, respectively. The presolar grain inventories are dominated by ferromagnesian silicates with group 1 oxygen isotopic compositions, indicative of origins in low mass red giant or asymptotic giant branch stars. Grains with pyroxene-like compositions are somewhat more common than those with olivine-like compositions, but most grains are non-stoichiometric with compositions intermediate between these two phases, consistent with recent work suggesting that amorphous interstellar silicates have stoichiometries between olivine and pyroxene type silicates. Although structural data are not available, one grain contains only Si and O, and has a stoichiometry consistent with SiO2.Our presolar grains are much more Fe-rich than predicted by astronomical observations. Although secondary alteration may play a role in enhancing the Fe contents of presolar grains, it seems unlikely that the large and ubiquitous Fe enrichments observed in the grains from this study can be due only to secondary processing, particularly given the highly primitive nature of these two meteorites. Grain condensation in the stellar outflows where these grains formed likely proceeded under rapidly changing kinetic conditions that may have enhanced the incorporation of Fe into the grains over that expected based on equilibrium condensation theory.Both QUE 99177 and MET 00426 appear to contain unusually low abundances of oxide grains and have higher silicate/oxide ratios than other primitive meteorites analyzed to date. We explore various possibilities for this discrepancy, but note that most scenarios are not likely to result in the preferential destruction of oxides relative to silicates. Thus, the highest silicate/oxide ratios, such as those observed in the CR chondrites, should reflect the true initial proportions of presolar silicate and oxide grains in the parent molecular cloud from which the solar nebula evolved.  相似文献   

12.
We have detected 138 presolar silicate, 20 presolar oxide and three presolar complex grains within the carbonaceous chondrite Acfer 094 by NanoSIMS oxygen isotope mapping. These grains were further investigated by scanning electron microscopy (SEM) and Auger electron spectroscopy for morphological and chemical details and their distribution within the meteorite matrix. The three complex grains consist of Al-rich oxides (grossite and hibonite) attached to non-stoichiometric Si-rich silicates. Refractory Al-rich oxides therefore serve as seed nuclei for silicates to condense onto, which is proposed by condensation theory and astronomical observations. However, in the majority of presolar silicates we did not find any indications for large subgrains. Most of the grains (80%) belong to O isotope Group I (17O-enriched) and come from 1 to 2.5 M asymptotic giant branch (AGB) stars of close-to-solar or slightly lower-than-solar metallicity. About 60% of these grains are irregular in shape; 40% display elliptical morphologies together with smooth, platy surfaces. Three grains with large 17O enrichments (17O/16O > 3 × 10−3) have highly irregular shapes and are very small (<250 nm); these grains may have formed in binary star systems or around higher mass () AGB stars. About 10% of the presolar silicates in this study can be assigned to the O isotope Group IV, which most likely originate from type II supernovae (SNeII). These grains are also generally smaller than 300 nm and are often irregular in shape (88%), consistent with the SNII origin scenario. The presolar grains are generally evenly distributed within the matrix on an mm scale, although in one case a statistically significant clustering of five grains in one 10 × 10 μm2 sized field is observed. This could be an important hint that the distribution of presolar material in the parental molecular cloud was heterogeneous on a very fine scale. The matrix-normalized abundance of silicate stardust in Acfer 094 is 163 ± 14 ppm, which is among the highest abundance of O-rich stardust in primitive meteorites. Oxide stardust comprises 26 ± 6 ppm of the matrix. Auger Nanoprobe measurements of 69 presolar silicates and oxides (30 on a quantitative, 39 on a qualitative basis) indicate that most of the grains are Fe-rich (Mg/(Mg + Fe) of 0.82 and lower), which is either due to non-equilibrium condensation, secondary alteration, or both. (Mg + Fe)/Si ratios of the silicates are mostly non-stoichiometric and scatter around pyroxene-like rather than olivine-like compositions, which is consistent with recent Auger and transmission electron microscopy observations and astrophysical predictions. Mg-rich grains (Mg/(Mg + Fe) > 0.5) more likely exhibit elliptical, smooth surfaces (14 out of 18 grains), which is an indication that these grains have not been strongly altered since their circumstellar condensation. We identified only one grain similar to the “glass with embedded metal and sulfides” (GEMS) with a statistically significant sulfur content (>2–3 at.%). It remains unclear why the typical high-sulfur GEMS grains are only found in interplanetary dust particles, but have not yet been unequivocally identified in primitive meteorites.  相似文献   

13.
We report the isotopic composition of molybdenum in twenty-three presolar SiC grains from the Murchison meteorite which have been measured by resonant ionization mass spectrometry (RIMS). Relative to terrestrial abundance (and normalized to s-process-only 96Mo), the majority of the analyzed grains show strong depletions in the p-process isotopes 92Mo and 94Mo and the r-process isotope 100Mo. Sixteen of these grains have δ-values <−600% for these three isotopes. The observed isotopic patterns of Mo from mainstream SiC grains clearly reveal the signature of s-process nucleosynthesis. Three-isotope plots of all grain data (δiMo vs. δ92Mo) show strong linear correlations with characteristic slopes. This finding suggests mixing of solar-like material and pure s-process material in the parent stars. Comparison with evolutionary calculations of nucleosynthesis and mixing in red giants suggests that low-mass thermally-pulsed symptotic giant branch (TP-AGB) stars are the most likely site for the observed s-process nucleosynthesis.  相似文献   

14.
We have carried out a comprehensive survey of the isotopic compositions (H, B, C, N, O, and S) of a suite of interplanetary dust particles (IDPs), including both cluster and individual particles. Isotopic imaging with the NanoSIMS shows the presence of numerous discrete hotspots that are strongly enriched in 15N, up to ∼1300‰. A number of the IDPs also contain larger regions with more modest enrichments in 15N, leading to average bulk N isotopic compositions that are 15N-enriched in these IDPs. Although C isotopic compositions are normal in most of the IDPs, two 15N-rich hotspots have correlated 13C anomalies. CN/C ratios suggest that most of the 15N-rich hotspots are associated with relatively N-poor carbonaceous matter, although specific carriers have not been determined. H isotopic distributions are similar to those of N: D anomalies are present both as distinct D-rich hotspots and as larger regions with more modest enrichments. Nevertheless, H and N isotopic anomalies are not directly correlated, consistent with results from previous studies. Oxygen isotopic imaging shows the presence of abundant presolar silicate grains in some of the IDPs. The O isotopic compositions of the grains are similar to those of presolar oxide and silicate grains from primitive meteorites. Most of the silicate grains in the IDPs have isotopic ratios consistent with meteoritic Group 1 oxide grains, indicating origins in oxygen-rich red giant and asymptotic giant branch stars, but several presolar silicates exhibit the 17O and 18O enrichments of Group 4 oxide grains, whose origin is less well understood. Based on their N isotopic compositions, the IDPs studied here can be divided into two groups. One group is characterized as being “isotopically primitive” and consists of those IDPs that have anomalous bulk N isotopic compositions. These particles typically also contain numerous 15N-rich hotspots, occasional C isotopic anomalies, and abundant presolar silicate grains. In contrast, the other “isotopically normal” IDPs have normal bulk N isotopic compositions and, although some contain 15N-rich hotspots, none exhibit C isotopic anomalies and none contain presolar silicate or oxide grains. Thus, isotopically interesting IDPs can be identified and selected on the basis of their bulk N isotopic compositions for further study. However, this distinction does not appear to extend to H isotopic compositions. Although both H and N anomalies are frequently attributed to the survival of molecular cloud material in IDPs and, thus, should be more common in IDPs with anomalous bulk N compositions, D anomalies are as common in normal IDPs as they are in those characterized as isotopically primitive, based on their N isotopes.  相似文献   

15.
The applications of the isotopes of the abundant element silicon as a tracer in the study of the earth sciences are discussed. The relatively long-lived radionuclide of silicon, 32Si, finds important applications as a tracer for studying aqueous geochemistry, biogeochemical cycles of silicon in the oceans, and the chronology of glaciers and biogenic silica-rich sediments in lacustrine and marine environments.It is pointed out that a simultaneous study of 16O and 30Si in exotic phases frequently found in carbonaceous chondrites should be useful for delineating nucleosynthetic effects distinctly from isotopic effects due to chemical fractionation.  相似文献   

16.
Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter F. M., Davis A. M., Ebel D. S., and Hashimoto A. (2002) Elemental and isotopic fractionation of Type B CAIs: experiments, theoretical considerations, and constraints on their thermal evolution. Geochim. Cosmochim. Acta66, 521-540; Richter F. M., Janney P. E., Mendybaev R. A., Davis A. M., and Wadhwa M. (2007a) Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochim. Cosmochim. Acta71, 5544-5564.). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, αSi, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that αSi = 0.98985 ± 0.00044 (2σ) for 29Si/28Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 °C. This value is different from what has been reported for evaporation of liquid Mg2SiO4 (Davis A. M., Hashimoto A., Clayton R. N., and Mayeda T. K. (1990) Isotope mass fractionation during evaporation of Mg2SiO4. Nature347, 655-658.) and of a melt with CI chondritic proportions of the major elements (Wang J., Davis A. M., Clayton R. N., Mayeda T. K., and Hashimoto A. (2001) Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO2-CaO-Al2O3-TiO2-REE melt system. Geochim. Cosmochim. Acta65, 479-494.). There appears to be some compositional control on αSi, whereas no compositional effects have been reported for αMg. We use the values of αSi and αMg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured.  相似文献   

17.
We have determined abundances of presolar diamond, silicon carbide, graphite, and Xe-P1 (Q-Xe) in eight carbonaceous chondrites by measuring the abundances of noble gas tracers in acid residues. The meteorites studied were Murchison (CM2), Murray (CM2), Renazzo (CR2), ALHA77307 (CO3.0), Colony (CO3.0), Mokoia (CV3ox), Axtell (CV3ox), and Acfer 214 (CH). These data and data obtained previously by Huss and Lewis (1995) provide the first reasonably comprehensive database of presolar-grain abundances in carbonaceous chondrites. Evidence is presented for a currently unrecognized Ne-E(H) carrier in CI and CM2 chondrites.After accounting for parent-body metamorphism, abundances and characteristics of presolar components still show large variations across the classes of carbonaceous chondrites. These variations correlate with the bulk compositions of the host meteorites and imply that the same thermal processing that was responsible for generating the compositional differences between the various chondrite groups also modified the initial presolar-grain assemblages. The CI chondrites and CM2 matrix have the least fractionated bulk compositions relative to the sun and the highest abundances of most types of presolar material, particularly the most fragile types, and thus are probably most representative of the material inherited from the sun's parent molecular cloud. The other classes can be understood as the products of various degrees of heating of bulk molecular cloud material in the solar nebula, removing the volatile elements and destroying the most fragile presolar components, followed by chondrule formation, metal-silicate fractionation in some cases, further nebula processing in some cases, accretion, and parent body processing. If the bulk compositions and the characteristics of the presolar-grain assemblages in various chondrite classes reflect the same processes, as seems likely, then differential condensation from a nebula of solar composition is ruled out as the mechanism for producing the chondrite classes. Presolar grains would have been destroyed if the nebula had been completely vaporized. Our analysis shows that carbonaceous chondrites reflect all stages of nebular processing and thus are no more closely related to one another than they are to ordinary and enstatite chondrites.  相似文献   

18.
Noble gases were measured both in bulk samples (stepped pyrolysis and total extraction) and in a HF/HCl residue (stepped pyrolysis and combustion) from the Klein Glacier (KLE) 98300 EH3 chondrite. Like the bulk meteorite and as seen in previous studies of bulk type 3 E chondrites (“sub-Q”), the acid residue contains elementally fractionated primordial noble gases. As we show here, isotopically these are like those in phase-Q of primitive meteorites, but elementally they are heavily fractionated relative to these. The observed noble gases are different from “normal” Q noble gases also with respect to release patterns, which are similar to those of Ar-rich noble gases in anhydrous carbonaceous chondrites and unequilibrated ordinary chondrites (with also similar isotopic compositions). While we cannot completely rule out a role for parent body processes such as thermal and shock metamorphism (including a later thermal event) in creating the fractionated elemental compositions, parent body processes in general seem not be able to account for the distinct release patterns from those of normal Q noble gases. The fractionated gases may have originated from ion implantation from a nebular plasma as has been suggested for other types of primordial noble gases, including Q, Ar-rich, and ureilite noble gases. With solar starting composition, the corresponding effective electron temperature is about 5000 K. This is lower than inferred for other primordial noble gases (10,000-6000 K). Thus, if ion implantation from a solar composition reservoir was a common process for the acquisition of primordial gas, electron temperatures in the early solar system must have varied spatially or temporally between 10,000 and 5000 K.Neon and xenon isotopic ratios of the residue suggest the presence of presolar silicon carbide and diamond in abundances lower than in the Qingzhen EH3 and Indarch EH4 chondrites. Parent body processes including thermal and shock metamorphism and a late thermal event also cannot be responsible for the low abundances of presolar grains. KLE 98300 may have started out with smaller amounts of presolar grains than Qingzhen and Indarch.  相似文献   

19.
The geochemistry of the stable isotopes of silicon   总被引:1,自引:0,他引:1  
One hundred thirty two new measurements of the relative abundances of the stable isotopes of silicon in terrestrial materials are presented. The total variation of δ30Si found is 6.2%., centered on the mean of terrestrial mafic and ultramafic igneous rocks, δ30Si = ?0.4%.. Igneous rocks show limited (1.1%.) variation; coexisting minerals exhibit small, systematic silicon isotopic fractionations that are roughly 13 the magnitude of concomitant oxygen isotopic fractionations at 1150°C. In both igneous minerals and rocks, δ30Si shows a positive correlation with silicon content, as does δ18O. Opal from both sponge spicules and sinters is light, with \?gd30Si = ?2.3 and ?1.4%., respectively. Large δ30Si values of both positive and negative sign are reported for the first time from clay minerals (?2.3 to +1.8%.), opaline phytoliths (?1.4 to +2.8%.), and authigenic quartz (+ 1.4%.). All highly fractionated samples were precipitated from solution at low temperatures; however, aqueous silicon is not measurably fractionated relative to quartz at equilibrium. A kinetic isotope fractionation of ≈3.5%. is postulated to occur during the low temperature precipitation of opal and, possibly, poorly ordered phyllosilicates, with the silicate phase being enriched in 28Si. This fractionation, coupled with a Rayleigh precipitation model, is capable of explaining most non-magmatic δ30Si variations. Chert δ30Si values are largely inherited, but the primary opal δ30Si values can be modified by isotopic equilibration of silicate silicon and dissolved silicon during the transformation of opal into quartz.  相似文献   

20.
We discuss the possible stellar sources of short-lived radionuclides (SLRs) known to have been present in the early solar system (26Al, 36Cl, 41Ca, 53Mn, 60Fe, 107Pd, 129I, 182Hf, 244Pu). SLRs produced primarily by irradiation (7Be, 10Be) are not discussed in this paper. We evaluate the role of the galactic background in explaining the inventory of SLRs in the early solar system. We review the nucleosynthetic processes that produce the different SLRs and place the processes in the context of stellar evolution of stars from 1 to 120 M. The ejection of newly synthesized SLRs from these stars is also discussed. We then examine the extent to which each stellar source can, by itself, explain the relative abundances of the different SLRs in the early solar system, and the probability that each source would have been in the right place at the right time to provide the SLRs. We conclude that intermediate-mass AGB stars and massive stars in the range from ∼20 to ∼60 M are the most plausible sources. Low-mass AGB stars fail to produce enough 60Fe. Core-collapse Type II supernovae from stars with initial masses of <20 M produce too much 60Fe and 53Mn. Sources such as novae, Type Ia supernovae, and core-collapse supernovae of O-Ne-Mg white dwarfs do not appear to provide the SLRs in the correct proportions. However, intermediate-mass AGB stars cannot provide 53Mn or the r-process elements, so if an AGB star provided the 41Ca, 36Cl, 26Al, 60Fe, and 107Pd, and if a late stellar source is required for 53Mn and the r-process elements, then two types of sources would be required. A separate discussion of the production of r-process elements highlights the difficulties in modeling their production. There appear to be two sources of r-process elements, one that produces the heavy r-process elements, including the actinides, and one that produces the elements from N to Ge and the elements ∼110 < A < ∼130. These can be assigned to SNII explosions of stars of ?11 M and stars of 12-25 M, respectively. More-massive stars, which leave black holes as supernova remnants, apparently do not produce r-process elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号