首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
不同尺度低纬电离层不规则体漂移特性的观测研究   总被引:1,自引:0,他引:1  
利用我国三亚站GPS短基线接收机阵以及VHF电离层相干散射雷达多波束扫描模式进行同时观测,对2011年10月22日至29日夜间两种不同尺度电离层不规则体的纬圈漂移速度进行比较研究.结果表明,两种不同手段观测的不同尺度不规则体漂移速度,在大小、变化趋势以及时间范围上基本一致.不规则体产生在20:00 LT(LT为北京时)左右,以100~250 m/s的速度东向漂移,并且速度幅值起伏较大;在不规则体发展中后期(21:00LT以后),东向漂移速度减低到50~150m/s,并延续至午夜.两种手段观测的漂移速度差异,一个重要原因可能来自于两者观测范围的不同.此外,GPS短基线接收机阵观测的400米尺度电离层不规则体通常比VHF雷达探测到的3米尺度电离层不规则体存在的时间要长.  相似文献   

2.
太阳活动低年夏季,低纬电离层F区场向不规则体表现出与太阳活动高年和其他季节明显不同的特征.本文利用我国三亚站(18.4°N,109.6°E,地磁倾角纬度dip latitude 12.8°N)VHF雷达、电离层测高仪、GPS闪烁监测仪和美国C/NOFS卫星观测数据,研究了太阳活动低年夏季我国低纬电离层F区场向不规则体的基本特征.分析发现无论磁静日还是磁扰日,夏季电离层F区不规则体回波主要出现于地方时午夜以后,回波出现的时间较短,高度范围较小,伴随着扩展F出现,但没有同时段的L波段电离层闪烁.太阳活动低年夏季午夜后的低纬电离层F区不规则体回波,可能并不总是与赤道等离子体泡沿磁力线向低纬地区的延伸相关,而可能由本地Es等扰动过程引起.  相似文献   

3.
太阳活动低年夏季,低纬电离层F区场向不规则体表现出与太阳活动高年和其他季节明显不同的特征.本文利用我国三亚站(18.4°N,109.6°E,地磁倾角纬度dip latitude 12.8°N)VHF雷达、电离层测高仪、GPS闪烁监测仪和美国C/NOFS卫星观测数据,研究了太阳活动低年夏季我国低纬电离层F区场向不规则体的基本特征.分析发现无论磁静日还是磁扰日,夏季电离层F区不规则体回波主要出现于地方时午夜以后,回波出现的时间较短,高度范围较小,伴随着扩展F出现,但没有同时段的L波段电离层闪烁.太阳活动低年夏季午夜后的低纬电离层F区不规则体回波,可能并不总是与赤道等离子体泡沿磁力线向低纬地区的延伸相关,而可能由本地Es等扰动过程引起.  相似文献   

4.
本文介绍一种利用相邻多站卫星闪烁信号之间相关性测量电离层不均匀结构漂移速度的方法.实验分析结果表明秋分前后我国低纬(海口)地区电离层不均匀结构的漂移速度在50~110 m/s之间,方向为东向.地方时22:00之前漂移速度的值变化较大,之后相对比较稳定.对同一次电离层闪烁事件,取不同采样长度的数据进行处理,得到的漂移速度整体上的变化趋势基本一致.结果表明,该方法是一种有效可行的方法,时间分辨率可以达到1 min.  相似文献   

5.
暴时低纬电离层不规则体响应特征的多手段观测   总被引:4,自引:2,他引:2       下载免费PDF全文
2010年10月11日发生了一次中等强度的磁暴.本文利用三亚(18.4°N,109.6°E)数字测高仪、VHF雷达和GPS TEC/闪烁监测仪数据以及120°E子午线附近我国漠河(53.5°N,122.4°E)、北京(40.3°N,116.2°E)和武汉(30.6°N,114.4°E)的数字测高仪和GPS TEC/闪烁监测仪数据,分析了磁暴期间我国中低纬地区电离层不规则体的响应特征.结果表明:这次磁暴触发了10月11日午夜前后两个时段低纬(三亚)电离层不规则体事件,而在较高的纬度地区(武汉及以北),并没有观测到电离层不规则体与闪烁.在午夜前,电离层不规则体的发生受磁暴主相期间快速穿透电场激发;在午夜后,电离层不规则体受磁暴恢复相的扰动发电机电场触发,该时段伴随行星际磁场北向翻转的过屏蔽穿透电场也可能是扰动源之一.此外,磁暴期间不同尺度的电离层不规则体会伴随发生.  相似文献   

6.
本文利用设在武汉(11436°E,3053°N,磁纬194°)的GPS电离层TEC和电波闪烁监测仪的测量数据,分析了2004年11月强磁暴期间TEC的响应以及电波闪烁和TEC起伏的特征.结果表明,在这次强磁暴期间,武汉及其邻近地区电离层TEC的响应以正暴相为主,正暴相分别出现在两次主相期间,最大正偏离达到50 TECU.这次磁暴另一个重要影响是主相期间L波段振幅闪烁的活动性及其强度显著增强.S4指数最大接近10.伴随增强的闪烁活动,多次观测到深度耗尽的等离子体泡与TEC起伏,TEC变化率的标准差ROTI指数也显著增强.分析揭示, ROTI指数与S4指数呈正相关,相关系数达到097.线性回归计算得到,ROTI和S4的比率为964.  相似文献   

7.
基于COSMIC资料分析电离层F层不规则体结构   总被引:2,自引:0,他引:2       下载免费PDF全文
根据电离层不规则体的产生会导致周围电子浓度发生起伏变化的原理,利用2007年COSMIC掩星系统的TEC数据,通过平滑滤波得到TEC的扰动值ΔTEC的变化,利用其研究F层不规则体的时空变化特征.统计结果表明:扰动较大的掩星事件主要发生在磁纬±20°之间和高纬地区,春季和秋季带状分布较为明显,不同经度地区较强扰动的掩星事件的分布也有不同特征;较强ΔTEC的掩星事件主要发生在地方时午夜前和午夜后两个时段,发生的高度主要在250~400km范围内.这些结果与已知的F层不规则体的时空分布特征较为一致,说明利用TEC的扰动量来分析电离层F层不规则体结构是可行的.  相似文献   

8.
本文同时利用DMSP、ROCSAT-1卫星数据和地基的GPS观测数据,研究一种与低纬等离子体泡相伴随的局部等离子体浓度增强现象.地基GPS的观测表明电离层总电子含量(TEC)也能反映这种等离子体浓度增强.通过4个观测事例的详细分析表明:这种等离子体浓度增强主要出现在磁纬±10°~±20°的局部区域,有时在近磁赤道区和中纬地区的电离层顶部也能观测到;与等离子体泡的出现规律相似,这种等离子体浓度增强主要出现在地方时21∶00以后,并在午夜后也能观测到.当等离子体浓度增强和等离子体泡发生时,在午夜前一般对应着背景垂直速度明显向上的扰动,在午夜后一般处于等离子体垂直速度下降至反向前的时间段,表明东向电场对于低纬不规则体的产生有非常重要的作用.  相似文献   

9.
穿过电离层不规则体传播后的无线电波,其振幅和相位出现快速随机起伏,即电离层闪烁.为了量化电离层不规则体和相位闪烁的强度,本文提出用TEC起伏δTEC作为特征参量,并用δTEC的标准差构建一种新指数σtec.文中证明指数σtec与相位闪烁指数完全等效.在电离层强闪烁期间,经常出现信号短暂失锁和周跳,导致TEC值突跳和不连续.为此,本文设计了一种周跳检测与校正的批处理算法,用于消除TEC值突跳.在此基础上,利用位于我国中南部电离层闪烁监测台网2012—2015年的观测数据,考察了GPS信号相位闪烁和不规则体的统计特征.结果表明,我国低纬电离层不规则体和相位闪烁与振幅闪烁随地方时和月份变化的特征类似,一天之中主要出现在日落后至黎明前,一年之中,春季不规则体出现最频繁、秋季次之,呈现春秋不对称性,冬夏季出现很少.此外,我们还比较分析了指数S4与σtec的联系,两者之间显著正相关表明,小于第一菲涅尔带尺度的小尺度不规则体和大于第一菲涅尔带尺度的大尺度不规则体一般同时存在.  相似文献   

10.
欧空局Swarm星座包含三颗飞行在不同地方时的卫星,其为研究夜侧电离层纬向四峰结构随时间的演化提供了很好的机会.在2017年1月31日夜间,Swarm A和C两颗并排飞行的卫星在黄昏前后(17:55/18:01地方时)的美洲扇区并没有观测到赤道电离异常的两个峰,而Swarm B卫星在约4.5小时后飞行于大致相同的经度扇区,并观测到夜侧电离层呈现出明显的纬向四峰结构.该观测证明了纬向四峰结构中靠近低纬的两个内峰不是黄昏前后赤道电离异常峰的残余.在该事件中,位于秘鲁的Jicamarca非相干散射雷达从黄昏至午夜观测到向下的等离子体垂直漂移速度,表明向上的等离子体漂移速度并不是引起夜间纬向四峰结构的必要条件;而位于Arecibo的法布里-珀罗干涉仪观测到中性风显示出东向和南向分量的增强,表明中性风对夜侧纬向四峰结构的形成有着重要作用. SAMI2模型的模拟结果与卫星、非相干散射雷达及法布里-珀罗干涉仪的观测一致.模拟结果显示夜侧东向与赤道向风为纬向四峰结构的形成提供了有利条件;但当赤道向风过大时,会导致背景电子密度出现显著半球不对称性,从而阻碍夜侧纬向四峰结构的发展.  相似文献   

11.
The main scientific objective of this research is to study the spatial variability and dynamics of the F-region irregularities. To achieve this, amplitude scintillations at the L-band, total electron content (TEC) and irregularity drifts were measured, as part of the Conjugate Point Equatorial Experiment (COPEX) campaign, by a network of ground-based global positioning system (GPS) receivers. The observations reveal a strong variability in the evolution of the irregularities from the equator to low-latitudes, and their zonal velocities at conjugate sites present a decrease with local time, and also with latitude. Moreover, the scintillations appear to be correlated with strong TEC gradients in the equatorward edge of the enhanced equatorial anomaly peaks. Other relevant aspects of the observations are highlighted and discussed.  相似文献   

12.
With increasing reliance on space-based platforms for global navigation and communication, concerns about the impact of ionospheric scintillation on these systems have become a high priority. Recently, the Air Force Research Laboratory (AFRL) performed amplitude scintillation measurements of L1 (1.575 MHz) signals from GPS satellites at Ascension Island (14.45° W, 7.95° S; magnetic latitude 16° S) during February–April, 1998, to compare amplitude scintillations with fluctuations of the total electron content (TEC). Ascension Island is located in the South Atlantic under the southern crest of the equatorial anomaly of F2 ionization where scintillations will be much enhanced during the upcoming solar maximum period. Ascension Island is included in the global network of the International GPS Service (IGS) and the GPS receivers in this network report the carrier to noise (C/N) ratio, the dual frequency carrier phase and pseudorange data at 30-s intervals. Such data with a sampling interval of 30 s were analyzed to determine TEC, the rate of change of TEC (ROT) and also ROTI, defined as the standard deviation of ROT. The spatial scale of ROTI, sampled at 30 s interval, will correspond to 6 km when the vector sum of the ionospheric projection of the satellite velocity and the irregularity drift orthogonal to the propagation path is of the order of 100 m/s. On the other hand, the scale-length of the amplitude scintillation index corresponds to the Fresnel dimension which is about 400 m for the GPS L1 frequency and an ionospheric height of 400 km. It is shown that, in view of the co-existence of large and small scale irregularities in equatorial irregularity structures, during the early evening hours, and small magnitude of irregularity drifts, ROTI measurements can be used to predict the presence of scintillation causing irregularities. The quantitative relationship between ROTI and S4, however, varies considerably due to variations of the ionospheric projection of the satellite velocity and the ionospheric irregularity drift. During the post-midnight period, due to the decay of small scale irregularities leading to a steepening of irregularity power spectrum, ROTI, on occasions, may not be associated with detectable levels of scintillation. In view of the power law type of irregularity power spectrum, ROTI will, in general, be larger than S4 and the ratio, ROTI/S4, in the present dataset is found to vary between 2 and 10. At high latitudes, where the ionospheric motion, driven by large electric fields of magnetospheric origin, is much enhanced during magnetically active periods, ROTI/S4 may be considerably larger than that in the equatorial region.  相似文献   

13.
This paper reports differences in the occurrence statistics of global positioning system (GPS) L-band scintillations at observational sites located in the inner regions of the northern and southern crests of the equatorial ionization anomaly. Ground-based GPS data acquired at the closed magnetically aligned stations of Manaus (3.1°S; 59.9°W; dip lat. 6.2°N) and Cuiabá (15.5°S; 56.1°W; dip. lat. 6.2°S), Brazil, from December 2001 to February 2007 are used in the analysis. The drift dynamics of Fresnel-scale ionospheric irregularities at the southern station of Cuiabá are also investigated. Only geomagnetically quiet days with the sum of daily Kp < 24 were used in the analysis statistics and in the irregularity drift studies. The results reveal a clear dependence of the scintillation occurrence with the solar activity, but there exists an asymmetry in the percentage of scintillation occurrence between the two stations throughout the period analyzed. The nocturnal occurrence of the scintillations over Cuiabá is predominantly larger than over Manaus, but this scenario seems to change with the decline in the solar activity (mainly during local post-midnight hours). A broad minimum and maximum in the scintillation occurrence appears to occur over both the stations, respectively, during the June solstice (winter) and December solstice (summer) months. The dynamics of the Fresnel-scale irregularities, as investigated from the estimations of the mean zonal drift velocities, reveals that the amplitude of the eastward drifts tends to reduce with the decline in the solar activity. The magnitude of the zonal drift velocities during the December solstice months is larger than during the equinoxes, with the differences being more pronounced at solar maximum years. Other relevant aspects of the observations, with complementary data from a low-latitude ionospheric model, are highlighted and discussed.  相似文献   

14.
In this work, the climatology of ionospheric scintillations at global positioning system (GPS) L-band frequency and the zonal drift velocities of scintillation-producing irregularities were depicted for the equatorial observatory of São Luis (2.33°S; 44.21°W; dip latitude 1.3°S), Brazil. This is the first time that the hourly, monthly, and seasonal variations of scintillations and irregularity zonal drifts at São Luis were characterized during periods of different solar activity levels (from December 1998 to February 2007). The percentage occurrence of scintillations at different sectors of the sky was also investigated, and the results revealed that the scintillations are more probable to be observed in the west sector of the sky above São Luis, whereas the north–south asymmetries are possibly related to asymmetries in the plasma density distribution at off-equatorial latitudes. The scintillations on GPS signals occurred more frequently around solar maximum years, but it is also clear from the results of a strong variability in the scintillation activity in the years with moderate solar flux during the descending phase of the solar cycle. The equatorial scintillations occur predominantly during pre-midnight hours with a broad maximum near the December solstice months. In general, weak level of scintillations (S 4 index between 0.2 and 0.4) dominated at all seasons; however, during the winter months around solar maximum years (although the scintillation occurrence is extremely low), stronger levels of scintillations (S 4 > 0.6) may occur at comparable rate with the weak scintillations. The irregularity zonal velocities, as estimated from the GPS spaced-receiver technique, presented a different scenario for the two seasons analyzed; during the equinoxes, the magnitude of the zonal velocities appeared not to change with the solar activity, whereas during the December solstice months, the larger magnitudes were observed around solar maximum years. Other relevant aspects of the observations are highlighted and discussed.  相似文献   

15.
The occurrence of strong ionospheric scintillations with S4≥0.2 was studied using global positioning system (GPS) measurements at Guilin (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of equatorial anomaly in China. The results are presented for data collected from January 2007 to December 2008. The results show that amplitude scintillations occurred only during the first five months of the considered years. Nighttime amplitude scintillations, observed mainly in the south of Guilin, always occurred with phase scintillations, total electron content (TEC) depletions, and Rate Of change of TEC (ROT) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations usually occurred in most of the azimuth directions. GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively.  相似文献   

16.
The effects of geomagnetic storm on GPS ionospheric scintillations are studied here using GPS scintillation data recorded at Sanya (18.3°N, 109.5°E; geomagnetic: 7.6°N, 180.8°E), the southmost station in the Chinese longitude region. GPS scintillation/TEC and DMSP data are utilized to show the development of irregularities during the period year 2005 (solar minimum). Statistical analysis of K planetary index (Kp) and amplitude scintillation index (S4) indicates that most storms of the year did not trigger the scintillation occurrence at Sanya. However, cases of scintillation occurring during moderate and strong storm (Dst<−100) periods show clearly that the development of irregularities producing scintillations can be triggered by geomagnetic storms during the low scintillation occurrence season. The effects (trigger or not trigger/inhibit) depend on the maximum dDst/dt determined local time sector, and can be explained by the response of the equatorial vertical drift velocities to magnetospheric and ionospheric disturbance electric fields. For station Sanya, the maximum dDst/dt determined local time is near the noon (or post-midnight) sector for most storms of the year 2005, which inhibited (or did not trigger) the post-sunset (or post-midnight) scintillation occurrence and then led to the phenomena that the statistical results presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号