首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Based on a large number of new boreholes in northern Denmark, and on the existing data, a revised event‐stratigraphy is presented for southwestern Scandinavia. Five significant Late Saalian to Late Weichselian glacial events, each separated by periods of interglacial or interstadial marine or glaciolacustrine conditions, are identified in northern Denmark. The first glacial event is attributed to the Late Saalian c. 160–140 kyr BP, when the Warthe Ice Sheet advanced from easterly and southeasterly directions through the Baltic depression into Germany and Denmark. This Baltic ice extended as far as northern Denmark, where it probably merged with the Norwegian Channel Ice Stream (NCIS) and contributed to a large discharge of icebergs into the Norwegian Sea. Following the break up, marine conditions were established that persisted from the Late Saalian until the end of the Early Weichselian. The next glaciation occurred c. 65–60 kyr BP, when the Sundsøre ice advanced from the north into Denmark and the North Sea, where the Scandinavian and British Ice Sheets merged. During the subsequent deglaciation, large ice‐dammed lakes formed before the ice disintegrated in the Norwegian Channel, and marine conditions were re‐established. The following Ristinge advance from the Baltic, initiated c. 55 kyr BP, also reached northern Denmark, where it probably merged with the NCIS. The deglaciation, c. 50 kyr BP, was followed by a long period of marine arctic conditions. Around 30 kyr BP, the Scandinavian Ice Sheet expanded from the north into the Norwegian Channel, where it dammed the Kattegat ice lake. Shortly after, c. 29 kyr BP, the Kattegat advance began, and once again the Scandinavian and British Ice Sheets merged in the North Sea. The subsequent retreat to the Norwegian Channel led to the formation of Ribjerg ice lake, which persisted from 27 to 23 kyr BP. The expansion of the last ice sheet started c. 23 kyr BP, when the main advance occurred from north–northeasterly directions into Denmark. An ice‐dammed lake was formed during deglaciation, while the NCIS was still active. During a re‐advance and subsequent retreat c. 19 kyr BP, a number of tunnel‐valley systems were formed in association with ice‐marginal positions. The NCIS finally began to break up in the Norwegian Sea 18.8 kyr BP, and the Younger Yoldia Sea inundated northern Denmark around 18 kyr BP. The extensive amount of new and existing data applied to this synthesis has provided a better understanding of the timing and dynamics of the Scandinavian Ice Sheet (SIS) during the last c. 160 kyr. Furthermore, our model contributes to the understanding of the timing of the occasional release of large quantities of meltwater from the southwestern part of the SIS that are likely to enter the North Atlantic and possibly affect the thermohaline circulation.  相似文献   

2.
The Quaternary sedimentary succession in Vendsyssel, northern Denmark, contains a unique, high‐resolution record of the last interglacial and glacial periods. There is still much debate, however, about the timing and ice extent in this southwestern part of the Scandinavian Ice Sheet, particularly during the Middle Weichselian. In this study, a detailed lithostratigraphical subdivision is established for the Late Saalian to Middle Weichselian Skærumhede Group on the basis of numerous, up to 250 m deep, boreholes in Vendsyssel. The sediments mainly consist of marine clays, glaciolacustrine sediments and tills, and the total thickness of the Skærumhede Group is up to 140 m. Marine intervals have been used as stratigraphical marker units to separate the formations indicative of ice‐sheet activity in Vendsyssel, and the timing of the events has been constrained by a large number of optically stimulated luminescence (OSL) and radiocarbon ages. The Skærumhede Group is subdivided into seven formations and two members, reflecting shifts between marine and terrestrial sedimentation caused by fluctuations of the Scandinavian Ice Sheet and changes in sea level. The lowermost Skærumhede Till Formation was deposited directly on top of the bedrock during the Warthe advance c. 160–140 kyr BP. Above, there are fine‐grained marine sediments, subdivided into the Lower, Middle and Upper Skærumhede Clay Formations. The marine formations are separated by the Brønderslev Formation related to the Sundsøre ice advance from the north c. 65–60 kyr BP, and the Åsted Formation, deposited during the Ristinge advance from an east–southeastern direction c. 55–50 kyr BP. The uppermost formation in the group is the Lønstrup Klint Formation, which is an upwards‐coarsening sequence of mainly glaciolacustrine sediments deposited prior to the Kattegat advance c. 30–29 kyr BP. The new evidence from Vendsyssel has shown that the Skærumhede Group covers a large area, and that it can be used as a regional stratigraphical marker horizon. Furthermore, it contributes to a better understanding of the timing and extent of glacial events during the Late Saalian to Middle Weichselian in southwest Scandinavia.  相似文献   

3.
The sediment–landform associations of the northern Taymyr Peninsula in Arctic Siberia tell a tale of ice sheets advancing from the Kara Sea shelf and inundating the peninsula, probably three times during the Weichselian. In each case the ice sheet had a margin frozen to its bed and an interior moving over a deforming bed. The North Taymyr ice‐marginal zone (NTZ) comprises ice‐marginal and supraglacial landsystems dominated by thrust‐block moraines 2–3 km wide and large‐scale deformation of sediments and ice. Large areas are still underlain by remnant glacier ice and a supraglacial landscape with numerous ice‐walled lakes and kames is forming even today. The proglacial landsystem is characterised by subaqueous (e.g. deltas) or terrestrial (e.g. sandar) environments, depending on location/altitude and time of formation. Dating results (OSL, 14C) indicate that the NTZ was initiated ca. 80 kyr BP during the retreat of the Early Weichselian ice sheet and that it records the maximum limit of a Middle Weichselian glaciation (ca. 65 kyr BP). During both these events, proglacial lakes were dammed by the ice sheets. Part of the NTZ was occupied by a thin Late Weichselian ice sheet (20–12 kyr BP), resulting in subaerial proglacial drainage. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Interpretation of Transient ElectroMagnetic (TEM) data and wire-line logs has led to the delineation of an intricate pattern of buried tunnel valleys, along with new evidence of glaciotectonically dislocated layers in recessional moraines in the central part of Vendsyssel, Denmark. The TEM data have been compared with recent results of stratigraphical investigations based on lithological and biostratigraphical analyses of borehole samples and dating with Optically Stimulated Luminescence (OSL) and radiocarbon. This has provided an overview of the spatial distribution of the late Quaternary lithostratigraphical formations, and the age of the tunnel valleys has been estimated. The tunnel valleys are typically 5–10 km long, 1 km wide and are locally eroded to depths of more than 180 m b.s.l. The valleys are interpreted to have been formed by subglacial meltwater erosion beneath the outermost part of the ice sheet during temporary standstills and minor re-advances during the overall Late Weichselian recession of the Scandinavian Ice Sheet. The formation of the tunnel valleys occurred after the retreat of the Main ice advance c . 20 kyr BP and before the Lateglacial marine inundation c . 18 kyr BP. Based on the occurrence of the tunnel valleys and the topography, four ice-marginal positions related to the recession of the northeastern Main advance and seven ice-marginal positions related to the recession from the following eastern re-advance across Vendsyssel are delineated. All the tunnel valleys were formed within a time interval of a few thousand years, giving only a few hundred years or less for the formation of the tunnel valleys at each ice-marginal position.  相似文献   

5.
The marine Quaternary of Vendsyssel has been studied in a series of new boreholes in the area, and the climatic development is discussed on the basis of foraminiferal assemblages and stable isotopes. The foraminiferal zones are correlated with previously published records from northern Denmark, and the spatial local and regional distribution is discussed in details based on the new evidence. The new data show that the marine sedimentation in Vendsyssel was not continuous from the Late Saalian to the Middle Weichselian, as previously thought. For example, there is indication of a hiatus at our key site, Åsted Vest in the central part of Vendsyssel, at the transition between regional foraminiferal zones N4 and N3, i.e. at the Late Saalian (MIS 6) – Eemian (MIS 5e) transition. The hitherto most complete Early Weichselian succession (zone N2) in Vendsyssel is presented from Åsted Vest. Deposits from the Early Weichselian sea‐level lowstands (MIS 5d and 5b) may, however, be missing in parts of the area. Two major breaks in the marine deposition during the Middle Weichselian represent glacial advances into northern Denmark. The first event occurred just after deposition of the regional foraminiferal zone N2 (late MIS 4), and the second event in the middle part of zone N1 (early MIS 3). Zone N1 is succeeded by a series of non‐marine units deposited during the sea‐level lowstand of the Weichselian maximum glaciation (late MIS 3 and MIS 2), including deeply incised tunnel valleys, which have been refilled with non‐marine sediments during the Late Weichselian. Vendsyssel was inundated by the sea again during the Late Weichselian, at c. 18 kyr BP. Subsequently, the marine conditions were gradually changed by forced regression caused by local isostatic uplift, and around the Weichselian–Holocene transition most of Vendsyssel was above sea level. A continuous deposition across the Late Weichselian–Holocene boundary only occurred at relatively deep sites such as Skagen. The environmental and climatic indications for Vendsyssel are in accordance with the global sea‐level curve, and the Quaternary record is correlated with the oxygen isotope record from the NorthGRIP ice core, as well as the marine isotope stages.  相似文献   

6.
We measured 10Be concentrations in boulders collected from the Orsha and Braslav moraines, associated with the Last Glacial Maximum extent and a recessional stage of the Scandinavian Ice Sheet (SIS), respectively, providing a direct dating of the southeastern sector of the ice-sheet margin in Belarus. By combining these data with selected existing radiocarbon ages, we developed a chronology for the last deglaciation of Belarus. The northeastern part of the country remained ice free until at least 19.2±0.2 cal. kyr BP, whereas the northwestern part of the country was ice free until 22.3±1.5 cal. kyr BP. A lobate ice margin subsequently advanced to its maximum extent and deposited the Orsha Moraine. The ice margin retreated from this moraine at 17.7±2.0 10Be kyr to a position in the northern part of the country, where it deposited the Braslav Moraine. Subsequent ice-margin retreat from that moraine at 13.1±0.5 10Be kyr represented the final deglaciation of Belarus. Direct dating of these moraines better constrains the relation of ice-margin positions in Belarus to those in adjacent countries as well as the SIS response to climate change.  相似文献   

7.
In the UK, a combination of outcrop mapping, satellite digital elevation models, high‐resolution marine geophysical data and a range of dating techniques have constrained the maximum limit and overall retreat behaviour of the British and Irish Ice Sheet (BIIS). The changing styles of deglaciation have been most extensively studied in the west and north‐western sectors of the BIIS, primarily using offshore geophysical surveys. The surviving record in the southern, terrestrial sector is fragmentary, permitting only large‐scale (tens of kilometres) and longer timescale (c. 1 ka) reconstructions of ice‐margin movement, with limited information on deglacial processes. Here we present a high‐resolution study of the retreat behaviour for a section of the southern ice‐margin from Windermere in the Lake District, using high‐resolution two‐dimensional multi‐channel seismic data, processed using prestack depth migration. By combining the seismic stratigraphy with landform morphologies, extant cores and seismic velocity measurements, we are able to distinguish between: over‐consolidated till; recessional moraines; De Geer moraines; flowed till/ice‐front fan; supra‐/en‐glacial melt‐out till; and subsequent glaciolacustrine/lacustrine sedimentation. The results reveal a complex and active valley glacier withdrawal from Windermere that changed character between basins and produced two small, localized areas of ice‐stagnation and downwasting. This study indicates that similar active ice‐margin retreats probably took place in other valleys of the Lake District during the Late Devensian deglaciation rather than the previously held view of rapid ice‐stagnation and downwasting. When combined with the regional terrestrial record, this supports a model of early ice loss in terrestrial England compared with other parts of the UK. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Late Weichselian and Holocene sediment flux and sedimentation rates in a continental‐shelf trough, Andfjord, and its inshore continuation, Vågsfjord, North Norway, have been analysed. The study is based on sediment cores and high‐resolution acoustic data. Andfjord was deglaciated between 14.6 and 13 14C kyr BP (17.5 and 15.6 calibrated (cal.) kyr BP), the Vågsfjord basin before 12.5 14C kyr BP (14.7 cal. kyr BP), and the heads of the inner tributary fjords about 9.7 14C kyr BP (11.2 cal. kyr BP). In Andfjord, five seismostratigraphical units are correlated to a radiocarbon dated lithostratigraphy. Three seismostratigraphical units are recognised in Vågsfjord. A total volume of 23 km3 post‐glacial glacimarine and marine sediments was mapped in the study area, of which 80% are of Late Weichselian origin. Sedimentation rates in outer Andfjord indicate reduced sediment accumulation with increasing distance from the ice margin. The Late Weichselian sediment flux and sedimentation rates are significantly higher in Vågsfjord than Andfjord. Basin morphology, the position of the ice front and the timing of deglaciation are assumed to be the reasons for this. Late Weichselian sedimentation rates in Andfjord and Vågsfjord are comparable to modern subpolar glacimarine environments of Greenland, Baffin Island and Spitsbergen. Downwasting of the Fennoscandian Ice Sheet, and winnowing of the banks owing to the full introduction of the Norwegian Current, caused very high sedimentation rates in parts of the Andfjord trough at the Late Weichselian–Holocene boundary. Holocene sediment flux and sedimentation rates in Andfjord are about half the amount found in Vågsfjord, and about one‐tenth the amount of Late Weichselian values. A strong bottom current system, established at the Late Weichselian–Holocene boundary, caused erosion of the Late Weichselian sediments and an asymmetric Holocene sediment distribution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
The Late Devensian (<20 ka BP) glacial geology of the Irish Sea Basin (4000 km2) is an event stratigraphy recording the entry of marine waters into a glacio-isostatically-depressed basin, and the rapid retreat of the Irish Sea Glacier as a tidewater ice margin. Marine limits occur up to 140 m O.D. Across much of the central basin, the ice margin was uncoupled from its bed exposing a subglacially-scoured topography to glaciomarine processes. The Irish Sea Glacier was a major drainage conduit of the last British Ice Sheet; calving of the marine ice margin resulted in fast flow (surging) of ice streams recorded by drumlin fields around the northern basin margin and tunnel valleys. Rapid evacuation of the basin may have stranded large areas of dead ice in peripheral zones (e.g. Cheshire/Shropshire Lowlands) and initiated the collapse of the ice sheet.Thick wedges of ice-contact glaciomarine sediments were deposited during ice retreat as morainal bank complexes by successive tidewater ice margins stabilized at pinning points around the Irish Sea coast. Where morainal banks occur on the seaward side of drumlin swarms there is a clear sequential relationship between rapid ice loss from calving ice margins, the development of fast flowing ice streams, drumlinization and the pumping of subglacial sediment to tidewater. Raised delta complexes are locally associated with marine limits along the high relief coastal margins of Wales, east central Ireland, and the Lake District. Associated valley infill complexes record downslope resedimentation of heterogenous sediments into the marine environment during ice retreat. Co-eval offshore deposits are represented by well-stratified glaciomarine complexes that infill a subglacially-scoured topography that shows networks of tunnel valleys. Glaciomarine mud drapes occur well to the south of the maximum limit of grounded ice in the basin (e.g. North Devon, Scilly Islands, Southern Ireland). The age of these distal sediments, previously mapped as pre-Devensian tills, is constrained by amino acid ratios.Basin rebound following deglaciation was rapid, with over 100 m recovery in 3 ka, and was followed by a low marine still stand. Peat, accumulating in offshore areas now as much as 55 m below sea level has been drowned by the postglacial eustatic rise in sea level.The glacio-sedimentary model identified in this paper, involving rapid ice retreat and related sedimentation triggered by rising relative sea level, suggests that isotatic downwarping is an important mechanism for deglaciating continental shelves.  相似文献   

10.
Timing of the last deglaciation in Lithuania   总被引:1,自引:1,他引:0  
Boulders from the Grūda Moraine, which is associated with the maximum extent of the Scandinavian Ice Sheet (SIS) during the last glaciation, and the Baltija (also referred to as the South Lithuanian), the Middle and North Lithuanian moraines, which are associated with recessional stages of the SIS, were sampled for surface exposure dating using 10Be. By combining these data with existing radiocarbon ages, we developed a chronology for the retreat of the SIS margin in Lithuania. Our new 10Be ages suggest that the SIS margin began to retreat from its maximum extent at 18.3 ± 0.8 10Be kyr. Based on a probable correlation of the Baltija Moraine with the Pomeranian Moraine in Poland, we infer that the Baltija Moraine was formed following a re-advance of the SIS margin. The ice margin retreated from the Baltija position at 14.0 ± 0.4 10Be kyr. The SIS-margin retreat paused at least two more times to form the Middle Lithuanian Moraine at 13.5 ± 0.6 10Be kyr and the North Lithuanian Moraine (tentatively correlated to the Pajūris Moraine) at 13.3 ± 0.7 10Be kyr. Subsequent ice-margin retreat from the North Lithuanian Moraine represented the final deglaciation of Lithuania. Direct dating of these moraines better constrains the relation of ice-margin positions in Lithuania to those in adjacent countries as well as the SIS response to climate change.  相似文献   

11.
Ice sheets that advance upvalley, against the regional gradient, commonly block drainage and result in ice‐dammed proglacial lakes along their margins during advance and retreat phases. Ice‐dammed glacial lakes described in regional depositional models, in which ice blocks a major lake outlet, are often confined to basins in which the glacial lake palaeogeographical position generally remains semi‐stable (e.g. Great Lakes basins). However, in places where ice retreats downvalley, blocking regional drainage, the palaeogeographical position and lake level of glacial lakes evolve temporally in response to the position of the ice margin (referred to here as ‘multi‐stage’ lakes). In order to understand the sedimentary record of multi‐stage lakes, sediments were examined in 14 cored boreholes in the Peace and Wabasca valleys in north‐central Alberta, Canada. Three facies associations (FAI–III) were identified from core, and record Middle Wisconsinan ice‐distal to ice‐proximal glaciolacustrine (FAI) sediments deposited during ice advance, Late Wisconsinan subglacial and ice‐marginal sediments (FAII) deposited during ice‐occupation, and glaciolacustrine sediments (FAIII) that record ice retreat from the study area. Modelling of the lateral extent of FAs using water wells and gamma‐ray logs, combined with interpreted outlets and mapped moraines based on LiDAR imagery, facilitated palaeogeographical reconstruction of lakes and the identification of four major retreat‐phase lake stages. These lake reconstructions, together with the vertical succession of FAs, are used to develop a depositional model for ice‐dammed lakes during a cycle of glacial advance and retreat. This depositional model may be applied in other areas where meltwater was impounded by glacial ice advancing up the regional gradient, in order to understand the complex interaction between depositional processes, ice‐marginal position, and supply of meltwater and sediment in the lake basin. In particular, this model could be applied to decipher the genetic origin of diamicts previously interpreted to record strictly subglacial deposition or multiple re‐advances.  相似文献   

12.
Twelve palaeogeographical reconstructions illustrate environmental changes at the southwest rim of the Scandinavian Ice Sheet 40–15 kyr BP. Synchronised land, sea and glacier configurations are based on the lithostratigraphy of tills and intertill sediments. Dating is provided by optically stimulated luminescence and calibrated accelerator mass spectrometry radiocarbon. An interstadial sequence ca. 40–30 kyr BP with boreo‐arctic proglacial fjords and subarctic flora and occasional glaciation in the Baltic was succeeded by a Last Glacial Maximum sequence ca. 30–20 kyr BP, with the closure of fjords and subsequent ice streams in glacial lake basins in Kattegat and the Baltic. Steadily flowing ice from Sweden bordered the Norwegian Channel Ice Stream. A deglaciation sequence ca. 20–15 kyr BP indicates the transgression of arctic waters, retreat of the Swedish ice and advance of Baltic ice streams succeeded by a return to interstadial conditions. When ameliorated ice‐free conditions prevailed in maritime regions, glaciers advanced through the Baltic and when interstadial regimes dominated the Baltic, glaciers expanded off the Norwegian coast. The largest glacier extent was reached in the North Sea around 29 kyr BP, about 22 kyr BP in Denmark and ca. 18 kyr BP in the Baltic. Our model provides new data for future numerical and qualitative landform‐based models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Approximately 35 parallel, discontinuous glacial ridges occur in an area of about 100 km2 in north‐central Wisconsin. The ridges are located between about 6 and 15 km north (formerly up‐ice) of the maximum extent of the Wisconsin Valley Lobe of the Laurentide Ice Sheet. The ridges are between 1 and 4 m high, up to 1 km long, and spaced between 30 and 80 m apart. They are typically asymmetrical with a steep proximal (ice‐contact) slope and gentle distal slope. The ridges are composed primarily of subglacial till on their proximal sides and glacial debris‐flow sediment on the distal sides. In some ridges the till and debris‐flow sediment are underlain by sorted sediment that was deformed in the former direction of ice flow. We interpret the ridges to be recessional moraines that formed as the Wisconsin Valley Lobe wasted back from its maximum extent, with each ridge having formed by a sequence of (1) pushing of sorted ice‐marginal sediment, (2) partial overriding by the glacier and deposition of subglacial till on the proximal side of the ridge, and (3) deposition of debris‐flow sediment on the distal side of the ridge after the frozen till at the crest of the ridge melted. The moraines are similar to annual recessional moraines described at several modern glaciers, especially the northern margin of Myrdalsjokull, Iceland. Thus, we believe the ridges probably formed as a result of minor winter advances of the ice margin during deglaciation. Based on this assumption, we calculate the net rate of ice‐surface lowering of the Wisconsin Valley Lobe during the period when the moraines formed. Various estimates of ice‐surface slope and rates of ice‐margin retreat yield a wide range of values for ice‐surface lowering (1.7–14.5 m/yr). Given that ablation rates must exceed those of ice‐surface lowering, this range of values suggests relatively high summer temperatures along the margin of the Wisconsin Valley Lobe when it began retreating from its maximum extent. In addition, the formation of annual moraines indicates that the glacier toe was thin, the ice surface was clean, and the ice margin experienced relatively cold winters.  相似文献   

14.
Heggen, H. P., Svendsen, J. I. & Mangerud, J. 2009: River sections at the Byzovaya Palaeolithic site – keyholes into the late Quaternary of northern European Russia. Boreas, 10.1111/j.1502‐3885.2009.00109.x. ISSN 0300‐9483. The geological history of northern European Russia over the past two glacial cycles is reconstructed from the stratigraphy in river bluffs along the upper reaches of the Pechora River. From a till bed near the base of the sections it is inferred that the Barents–Kara Ice Sheet covered the area during the late Saalian (MIS 6). After deglaciation, and prior to the last interglacial, the area was flooded by an ice‐dammed lake, suggesting that the Pechora Basin was blocked by a subsequent ice advance at the very end of the Saalian. Ice‐wedge casts and periglacial sediments reflect a pronounced cooling with formation of permafrost during the Early Weichselian (MIS 5d). An overlying thick sequence of shallow lacustrine sediments accumulated in the ice‐dammed Lake Komi, formed by the advancing Barents–Kara Ice Sheet 80–100 kyr BP (MIS 5b?). Following drainage of the lake, many of the older formations were eroded by fluvial activity. Animal remains found together with palaeolithic artefacts within debrisflow sediments at the base of one of the incised gullies yielded radiocarbon ages around 28 000–30 000 14C yr BP (33–34 cal. kyr BP). The surface with traces of human activities was subsequently covered by aeolian sediments representing the northern extension of the European belt of periglacial coversand that accumulated in the cold and dry climate during the late Weichselian (MIS 2). The results of this work confirm the assumption that the last shelf‐centred ice sheet that covered this part of Russia occurred during the late Saalian (MIS 6), but that this glaciation was followed by a younger and less extensive ice advance that has not been described before. There are no indications that local glaciers originating in the Ural Mountains reached the Pechora River valley throughout the last two glacial cycles.  相似文献   

15.
Houmark‐Nielsen, M. 2010: Extent, age and dynamics of Marine Isotope Stage 3 glaciations in the southwestern Baltic Basin. Boreas, 10.1111/j.1502‐3885.2009.00136.x. ISSN 0300‐9483 The southwestern Baltic region is known as a major crossroad for the expansion of Pleistocene glaciers from the Scandinavian Ice Sheet (SIS). At the peak of the Last Glacial Maximum (LGM, 25–20 kyr BP), steady‐flowing inter‐stream glaciers expanded radially from the major ice divide over central Scandinavia. During the subsequent deglaciation phase (20–15 kyr BP), streaming ice was flowing through the Baltic gateway onto the North European lowland. The lithology and directional ice‐flow properties of pre‐LGM till formations of Baltic provenance in Denmark (the Ristinge till and Klintholm till) suggest that the ice‐sheet dynamics during the Marine Isotope Stage (MIS) 3 glacier expansion were similar to those for the post‐LGM advances. Increasing geological evidence indicates that glaciers extended onto the Circum‐Baltic lowlands during MIS 3. Reconstructions of flow paths and estimates of the basal ice‐sheet coupling in Denmark suggest that southward flow of the SIS through the Baltic was probably the result of ice streaming. Despite methodological uncertainties, available OSL and 14C dates indicate that glaciers advanced at least twice during the mild second half of the Middle Weichselian (c. 75–25 kyr BP), most probably in connection with Dansgaard‐Oeschger (D‐O) events 14–13 (54–46 kyr BP) and 8–5 (35–30 kyr BP). The chronology and dynamics of glacier expansion in the southwestern Baltic in response to long‐term cooling trends, the contemporary presence of a low Arctic biota in large parts of Scandinavia and of possible leads or lags in relation to North Atlantic climate changes during MIS 3 are discussed.  相似文献   

16.
Sharp-crested moraines, up to 120 m high and 9 km beyond Little Ice Age glacier limits, record a late Pleistocene advance of alpine glaciers in the Finlay River area in northern British Columbia. The moraines are regional in extent and record climatic deterioration near the end of the last glaciation. Several lateral moraines are crosscut by meltwater channels that record downwasting of trunk valley ice of the northern Cordilleran ice sheet. Other lateral moraines merge with ice-stagnation deposits in trunk valleys. These relationships confirm the interaction of advancing alpine glaciers with the regionally decaying Cordilleran ice sheet and verify a late-glacial age for the moraines. Sediment cores were collected from eight lakes dammed by the moraines. Two tephras occur in basal sediments of five lakes, demonstrating that the moraines are the same age. Plant macrofossils from sediment cores provide a minimum limiting age of 10,550-10,250 cal yr BP (9230 ± 50 14C yr BP) for abandonment of the moraines. The advance that left the moraines may date to the Younger Dryas period. The Finlay moraines demonstrate that the timing and style of regional deglaciation was important in determining the magnitude of late-glacial glacier advances.  相似文献   

17.
Anjar, J., Larsen, N. K., Björck, S., Adrielsson, L. & Filipsson, H. L. 2010: MIS 3 marine and lacustrine sediments at Kriegers Flak, southwestern Baltic Sea. Boreas, 10.1111/j.1502‐3885.2010.00139.x. ISSN 0300‐9483. Sediment cores from the Kriegers Flak area in the southwestern Baltic Sea show a distinct lithological succession, starting with a lower diamict that is overlain by a c. 10 m thick clay unit that contains peat, gyttja and other organic remains. On top follows an upper diamict that is inter‐layered with sorted sediments and overlain by an upward‐coarsening sequence with molluscs. In this paper we focus on the clay unit, which has been subdivided into three subunits: (A) lower clay with benthic foraminifera and with diamict beds in the lower part; (B) thin beds of gyttja and peat, which have been radiocarbon‐dated to 31–35 14C kyr BP (c. 36–41 cal. kyr BP); and (C) upper clay unit. Based on the preliminary results we suggest the following depositional model: fine‐grained sediments interbedded with diamict in the lower part (subunit A) were deposited in a brackish basin during a retreat of the Scandinavian Ice Sheet, probably during the Middle Weichselian. Around 40 kyr BP the area turned into a wetland with small ponds (subunit B). A transgression, possibly caused by the damming of the Baltic Basin during the Kattegat advance at 29 kyr BP, led to the deposition of massive clay (subunit C). The data presented here provide new information about the paleoenvironmental changes occurring in the Baltic Basin following the Middle Weichselian glaciation.  相似文献   

18.
《Quaternary Science Reviews》2005,24(14-15):1673-1690
Sedimentary sequences deposited by the decaying marine margin of the British–Irish Ice Sheet (BIIS) record isostatic depression and successive ice sheet retreat towards centres of ice dispersion. Radiocarbon dating by accelerator mass spectrometry (AMS) of in situ marine microfaunas that are commonly associated with these sequences constrain the timing of glacial and sea level fluctuations during the last deglaciation, enabling us to evaluate the dynamics of the BIIS and its response to North Atlantic climate change. Here we use our radiocarbon-dated stratigraphy to define six major glacial and sea level events since the Last Glacial Maximum. (1) Initial deglaciation may have occurred ⩾18.3 kyr 14C BP along the northwestern Irish coast, in agreement with a deglacial age of ∼22 36Cl kyr BP for southwestern Ireland. Ice retreated to inland centres and areas of transverse moraine began to form across the north Irish lowlands. (2) Channels cut into glaciomarine deglacial sediments along the western Irish Sea coast are graded to below present sea level, identifying a fall of relative sea level (RSL) in response to isostatic emergence of the coast. (3) Marine mud that rapidly infilled these channels records an abrupt rise in global sea level of 10–15 m ∼16.7 14C kyr BP that flooded the Irish Sea coast and may have triggered deglaciation of a marine-based margin in Donegal Bay. (4) Intertidal boulder pavements in Dundalk Bay indicate that RSL ∼15.0 14C kyr BP was similar to present. (5) A major readvance of all sectors of the BIIS occurred between 14 and 15 kyr 14C BP which overprinted subglacial transverse moraines and delivered a substantial sediment flux to tidewater ice sheet margins. This event, the Killard Point Stadial, indicates that the BIIS participated in Heinrich event 1. (6) Subsequent deposition of marine muds on drumlins 12.7 14C kyr BP indicates isostatic depression and attendant high RSL resulting from the Killard Point readvance. These events identify a dynamic BIIS during the last deglaciation, as well as significant changes in RSL that reflect a combination of isostatic loading and eustatic changes in global sea level.  相似文献   

19.
Graham, A.G.C., Lonergan, L. & Stoker, M.S. 2010: Depositional environments and chronology of Late Weichselian glaciation and deglaciation in the central North Sea. Boreas, Vol. 39, pp. 471–491. 10.1111/j.1502‐3885.2010.00144.x. ISSN 0300‐9483. Geological constraints on ice‐sheet deglaciation are essential for improving the modelling of ice masses and understanding their potential for future change. Here, we present a detailed interpretation of depositional environments from a new 30‐m‐long borehole in the central North Sea, with the aim of improving constraints on the history of the marine Late Pleistocene British–Fennoscandian Ice Sheet. Seven units characterize a sequence of compacted and distorted glaciomarine diamictons, which are overlain by interbedded glaciomarine diamictons and soft, bedded to homogeneous marine muds. Through correlation of borehole and 2D/3D seismic observations, we identify three palaeoregimes. These are: a period of advance and ice‐sheet overriding; a phase of deglaciation; and a phase of postglacial glaciomarine‐to‐marine sedimentation. Deformed subglacial sediments correlate with a buried suite of streamlined subglacial bedforms, and indicate overriding by the SE–NW‐flowing Witch Ground ice stream. AMS 14C dating confirms ice‐stream activity and extensive glaciation of the North Sea during the Last Glacial Maximum, between c. 30 and 16.2 14C ka BP. Sediments overlying the ice‐compacted deposits have been reworked, but can be used to constrain initial deglaciation to no later than 16.2 14C ka BP. A re‐advance of British ice during the last deglaciation, dated at 13.9 14C ka BP, delivered ice‐proximal deposits to the core site and deposited glaciomarine sediments rapidly during the subsequent retreat. A transition to more temperate marine conditions is clear in lithostratigraphic and seismic records, marked by a regionally pervasive iceberg‐ploughmarked erosion surface. The iceberg discharges that formed this horizon are dated to between 13.9 and 12 14C ka BP, and may correspond to oscillating ice‐sheet margins during final, dynamic ice‐sheet decay.  相似文献   

20.
Cryolithological, ground ice and fossil bioindicator (pollen, diatoms, plant macrofossils, rhizopods, insects, mammal bones) records from Bol'shoy Lyakhovsky Island permafrost sequences (73°20′N, 141°30′E) document the environmental history in the region for the past c. 115 kyr. Vegetation similar to modern subarctic tundra communities prevailed during the Eemian/Early Weichselian transition with a climate warmer than the present. Sparse tundra‐like vegetation and harsher climate conditions were predominant during the Early Weichselian. The Middle Weichselian deposits contain peat and peaty soil horizons with bioindicators documenting climate amelioration. Although dwarf willows grew in more protected places, tundra and steppe vegetation prevailed. Climate conditions became colder and drier c. 30 kyr BP. No sediments dated between c. 28.5 and 12.05 14C kyr BP were found, which may reflect active erosion during that time. Herb and shrubby vegetation were predominant 11.6–11.3 14C kyr BP. Summer temperatures were c. 4 °C higher than today. Typical arctic environments prevailed around 10.5 14C kyr BP. Shrub alder and dwarf birch tundra were predominant between c. 9 and 7.6 kyr BP. Reconstructed summer temperatures were at least 4 °C higher than present. However, insect remains reflect that steppe‐like habitats existed until c. 8 kyr BP. After 7.6 kyr BP, shrubs gradually disappeared and the vegetation cover became similar to that of modern tundra. Pollen and beetles indicate a severe arctic environment c. 3.7 kyr BP. However, Betula nana, absent on the island today, was still present. Together with our previous study on Bol'shoy Lyakhovsky Island covering the period between about 200 and 115 kyr, a comprehensive terrestrial palaeoenvironmental data set from this area in western Beringia is now available for the past two glacial–interglacial cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号