首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.  相似文献   

2.
We propose a new method for groundwater recharge rate estimation in regions with stream-aquifer interactions, at a linear scale on the order of 10 km and more. The method is based on visual identification and quantification of classically recognized water table contour patterns. Simple quantitative analysis of these patterns can be done manually from measurements on a map, or from more complex GIS data extraction and curve fitting. Recharge rate is then estimated from the groundwater table contour parameters, streambed gradients, and aquifer transmissivity using an analytical model for groundwater flow between parallel perennial streams. Recharge estimates were obtained in three regions (areas of 1500, 2200, and 3300 km2) using available water table maps produced by different methods at different times in the area of High Plains Aquifer in Nebraska. One region is located in the largely undeveloped Nebraska Sand Hills area, while the other two regions are located at a transition zone from Sand Hills to loess-covered area and include areas where groundwater is used for irrigation. Obtained recharge rates are consistent with other independent estimates. The approach is useful and robust diagnostic tool for preliminary estimates of recharge rates, evaluation of the quality of groundwater table maps, identification of priority areas for further aquifer characterization and expansion of groundwater monitoring networks prior to using more detailed methods.  相似文献   

3.
The rise in stream stage during high flow events (floods) can induce losing stream conditions, even along stream reaches that are gaining during baseflow conditions. The aquifer response to flood events can affect the geochemical composition of both near‐stream groundwater and post‐event streamflow, but the amount and persistence of recharged floodwater may differ as a function of local hydrogeologic forcings. As a result, this study focuses on how vertical flood recharge varies under different hydrogeologic forcings and the significance that recharge processes can have on groundwater and streamflow composition after floods. River and shallow groundwater samples were collected along three reaches of the Upper San Pedro River (Arizona, USA) before, during and after the 2009 and 2010 summer monsoon seasons. Tracer data from these samples indicate that subsurface floodwater propagation and residence times are strongly controlled by the direction and magnitude of the dominant stream–aquifer gradient. A reach that is typically strongly gaining shows minimal floodwater retention shortly after large events, whereas the moderately gaining and losing reaches can retain recharged floodwater from smaller events for longer periods. The moderately gaining reach likely returned flood recharge to the river as flow declined. These results indicate that reach‐scale differences in hydrogeologic forcing can control (i) the amount of local flood recharge during events and (ii) the duration of its subsurface retention and possible return to the stream during low‐flow periods. Our observations also suggest that the presence of floodwater in year‐round baseflow is not due to long‐term storage beneath the streambed along predominantly gaining reaches, so three alternative mechanisms are suggested: (i) repeated flooding that drives lateral redistribution of previously recharged floodwater, (ii) vertical recharge on the floodplain during overbank flow events and (iii) temporal variability in the stream–aquifer gradient due to seasonally varying water demands of riparian vegetation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The transition area between rivers and their adjacent riparian aquifers, which may comprise the hyporheic zone, hosts important biochemical reactions, which control water quality. The rates of these reactions and metabolic processes are temperature dependent. Yet the thermal dynamics of riparian aquifers, especially during flooding and dynamic groundwater flow conditions, has seldom been studied. Thus, we investigated heat transport in riparian aquifers during 3 flood events of different magnitudes at 2 sites along the same river. River and riparian aquifer temperature and water‐level data along the Lower Colorado River in Central Texas, USA, were monitored across 2‐dimensional vertical sections perpendicular to the bank. At the downstream site, preflood temperature penetration distance into the bank suggested that advective heat transport from lateral hyporheic exchange of river water into the riparian aquifer was occurring during relatively steady low‐flow river conditions. Although a small (20‐cm stage increase) dam‐controlled flood pulse had no observable influence on groundwater temperature, larger floods (40‐cm and >3‐m stage increases) caused lateral movement of distinct heat plumes away from the river during flood stage, which then retreated back towards the river after flood recession. These plumes result from advective heat transport caused by flood waters being forced into the riparian aquifer. These flood‐induced temperature responses were controlled by the size of the flood, river water temperature during the flood, and local factors at the study sites, such as topography and local ambient water table configuration. For the intermediate and large floods, the thermal disturbance in the riparian aquifer lasted days after flood waters receded. Large floods therefore have impacts on the temperature regime of riparian aquifers lasting long beyond the flood's timescale. These persistent thermal disturbances may have a significant impact on biochemical reaction rates, nutrient cycling, and ecological niches in the river corridor.  相似文献   

5.
The aim of this paper is to quantify peakflow attenuation and/or amplification in a river, investigating lateral flow from the intermediate catchment during floods. This is a challenge for the study of the hydrological response of permeable/intermittent streams, and our contribution refers to a modelling framework based on the inverse problem for the diffusive wave model applied in a karst catchment. Knowing the upstream and downstream hydrographs on a reach between two stations, we can model the lateral one, given information on the hydrological processes involved in the intermediate catchment. The model is applied to 33 flood events in the karst reach of the Iton River in French Normandy where peakflow attenuation is observed. The monitored zone consists of a succession of losing and gaining reaches controlled by strong surface‐water/groundwater (SW/GW) interactions. Our results show that despite a high baseflow increase in the reach, peakflow is attenuated. Model application shows that the intensity of lateral outflow for the flood component is linked to upstream discharge. A combination of river loss and overbank flow for highest floods is proposed for explaining the relationships. Our approach differentiates the role of outflow (river loss and overbank flow) and that of wave diffusion on peakflow attenuation. Based on several sets of model parameterization, diffusion is the main attenuation process for most cases, despite high river losses of up to several m3/s (half of peakflow for some parameterization strategies). Finally, this framework gives new insight into the SW/GW interactions during floods in karst basins, and more globally in basins characterized by disconnected river‐aquifer systems.  相似文献   

6.
Butler JJ  Zhan X  Zlotnik VA 《Ground water》2007,45(2):178-186
The impact of ground water pumping on nearby streams is often estimated using analytic models of the interconnected stream-aquifer system. A common assumption of these models is that the pumped aquifer is underlain by an impermeable formation. A new semianalytic solution for drawdown and stream depletion has been developed that does not require this assumption. This solution shows that pumping-induced flow (leakage) through an underlying aquitard can be an important recharge mechanism in many stream-aquifer systems. The relative importance of this source of recharge increases with the distance between the pumping well and the stream. The distance at which leakage becomes the primary component of the pumping-induced recharge depends on the specific properties of the aquifer, aquitard, and streambed. Even when the aquitard is orders of magnitude less transmissive than the aquifer, leakage can be an important recharge mechanism because of the large surface area over which it occurs. Failure to consider aquitard leakage can lead to large overestimations of both the drawdown produced by pumping and the contribution of stream depletion to the pumping-induced recharge. The ramifications for water resources management and water rights adjudication can be significant. A hypothetical example helps illustrate these points and demonstrates that more attention should be given to estimating the properties of aquitards underlying stream-aquifer systems. The solution presented here should serve as a relatively simple but versatile tool for practical assessments of pumping-induced stream-aquifer interactions. However, this solution should not be used for such assessments without site-specific data that indicate pumping has induced leakage through the aquitard.  相似文献   

7.
Chen X  Shu L 《Ground water》2002,40(3):284-290
Numerical modeling techniques were used to simulate stream-aquifer interactions from seasonal ground water pumping. We used stream-aquifer models in which a shallow stream penetrates the top of an aquifer that discharges ground water to the stream as base flow. Because of the pumping, the volume of base flow discharged to the stream was reduced, and as the pumping continued, infiltration from the stream to the aquifer was induced. Both base-flow reduction and stream infiltration contributed to total stream depletion. We analyzed the depletion rates and volumes of the reduced base flow and induced stream infiltration during pumping and postpumping periods. Our results suggested that for a shallow penetrating stream with a low streambed conductance, base-flow reduction accounts for a significant percentage of the total stream depletion. Its residual effects in postpumping can last very long and may continue into the next pumping season for areas where recharge is nominal. In contrast, the contribution of the induced stream infiltration to the total stream depletion is much smaller, and its effects often become negligible shortly after pumping was stopped. For areas where surface recharge replenishes the aquifer, the residual effects of base-flow reduction and thus its depletion volume will be significantly reduced. A stream of large conductance has a high hydraulic connection to the aquifer, but the relationship between stream conductance and stream depletion is not linear.  相似文献   

8.
Hydraulic head response to stream-stage variations can be used to explore the hydraulic properties of stream-aquifer systems at a relatively large scale. These stream-stage response tests, also called flooding tests, are typically interpreted using one- or two-dimensional models that assume flow perpendicular to the river. Therefore, they cannot be applied to systems that are both horizontally and vertically heterogeneous. In this work, we use the geostatistical inverse problem to jointly interpret data from stream-stage response and pumping tests. The latter tests provide flow data (which are needed to resolve aquifer diffusivity into transmissivity and storage coefficient) and may supply supplementary small-scale information. Here, we summarize the methodology for the design, execution, and joint numerical interpretation of these tests. Application to the Aznalcóllar case study allows us to demonstrate that the proposed methodology may help in responding to questions such as the continuity of aquitards, the role and continuity of highly permeable paleochannels, or the time evolution of stream-aquifer interaction. These results expand the applicability and scope of stream-stage response tests.  相似文献   

9.
The Mississippi River Valley Alluvial Aquifer ranks among the most overdrafted aquifers in the United States due to intensive irrigation. Concern over declining water levels has increased focus on understanding the sources of recharge. Numerous oxbow lakes overlie the aquifer that are often considered hydraulically disconnected from the groundwater system due to fine-grained bottom sediments. In the current study, groundwater levels in and around a 445-ha oxbow lake-wetland in Mississippi were monitored for a 2-year period that included an unusually long low-water condition in the lake (>17 months), followed by a high-water event lasting over 4 months before returning to earlier low-water levels. The high-water pulse (>4 m rise) provided a unique opportunity to track the impact in the underlying alluvial aquifer. During low-water conditions, groundwater flowed westward beneath the lake. Following the lake rise, groundwater beneath and near the perimeter responded as quickly as the same day, with more delayed responses moving away from the lake. Within 2 months, a groundwater mound formed near the centre of the oxbow (>3 m increase), with a reversal in the local hydraulic gradient towards the east. Flow returned to a westward gradient when the lake level dropped back below 0.3 m. Analysis of precipitation and nearby river stage could not account for the observed behavior. Recharge to the aquifer is attributed to rising water levels spreading over point bar deposits and into the surrounding forested wetlands where preferential flow pathways are likely to exist due to buried and decomposing tree remains. An earlier study in the wetland demonstrated an increasing redox potential in isolated zones, consistent with the existence of preferential flow pathways through the bottom sediments (Lahiri & Davidson, 2020). Retaining high-water levels in oxbow lakes could be a relatively low-cost water management practice for enhancing aquifer recharge.  相似文献   

10.
Regional estimates of aquifer recharge are needed in data-scarce regions such as the Basin of Mexico, where nearly 20 million people are located and where the Basin’s aquifer system represents the main water source. In order to develop the spatio-temporal estimates of aquifer recharge and to analyze to what extent urban growth has affected aquifer recharge, this work presents a daily soil water balance which uses different vegetation and soil types as well as the effect of topography on climatological variables and evapotranspiration. The soil water balance was applied on a daily time step in the Basin of Mexico for the period 1975–1986, obtaining an annually-lumped potential recharge flow of 10.9–23.8 m3/s (35.9–78.1 mm) in the entire Basin, while the monthly values for the year with the largest lumped recharge value (1981 = 78.1 mm) range from 1 m3/s (0.3 mm) in December to 87.9 m3/s (23.7 mm) in June. As aquifer recharge in the Basin mainly occurs by subsurface flow from its enclosing mountains as Mountain Block Recharge, urban growth has had a minimal impact on aquifer recharge, although it has diminished recharge in the alluvial plain.  相似文献   

11.
Transient storage of floodwaters in aquifers is known to attenuate peak flows in rivers and drive subsurface dissolution. Transient aquifer storage could be enhanced in watersheds overlying karst aquifers where caves facilitate surface and groundwater exchange. Few studies, however, have examined controls on, or magnitudes of, transient aquifer storage or flood peak attenuation in karstic watersheds. Here we evaluate flood peak attenuation with multiple linear regression analyses of 10 years of river and groundwater data from the Suwannee River, which flows over the karstic upper Floridan aquifer in north-central Florida and experiences frequent flooding. Regressions show antecedent river stage exerts the dominant control on magnitudes of transient aquifer storage, with recharge and time to peak having secondary controls. Specifically, low antecedent stages result in larger magnitudes of transient aquifer storage and thus greater flood attenuation than conditions of elevated antecedent stage. These findings suggest subsurface weathering, including cave formation and enlargement, caused by transient aquifer storage could occur on a more frequent basis in aquifers where groundwater table elevation is lowered due to anthropogenic or climatic influences. Our work also shows that measures of groundwater table elevation prior to an event could be used to improve predictive flood models. © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
New Zealand's gravel‐bed rivers have deposited coarse, highly conductive gravel aquifers that are predominantly fed by river water. Managing their groundwater resources is challenging because the recharge mechanisms in these rivers are poorly understood and recharge rates are difficult to predict, particularly under a more variable future climate. To understand the river‐groundwater exchange processes in gravel‐bed rivers, we investigate the Wairau Plain Aquifer using a three‐dimensional groundwater flow model which was calibrated using targeted field observations, “soft” information from experts of the local water authority, parameter regularization techniques, and the model‐independent parameter estimation software PEST. The uncertainty of simulated river‐aquifer exchange flows, groundwater heads, spring flows, and mean transit times were evaluated using Null‐space Monte‐Carlo methods. Our analysis suggests that the river is hydraulically perched (losing) above the regional water table in its upper reaches and is gaining downstream where marine sediments overlay unconfined gravels. River recharge rates are on average 7.3 m3/s, but are highly dynamic in time and variable in space. Although the river discharge regularly hits 1000 m3/s, the net exchange flow rarely exceeds 12 m3/s and seems to be limited by the physical constraints of unit‐gradient flux under disconnected rivers. An important finding for the management of the aquifer is that changes in aquifer storage are mainly affected by the frequency and duration of low‐flow periods in the river. We hypothesize that the new insights into the river‐groundwater exchange mechanisms of the presented case study are transferable to other rivers with similar characteristics.  相似文献   

13.
Groundwater is a primary source of drinking water worldwide, but excess nutrients and emerging contaminants could compromise groundwater quality and limit its usage as a drinking water source. As such contaminants become increasingly prevalent in the biosphere, a fundamental understanding of their fate and transport in groundwater systems is necessary to implement successful remediation strategies. The dynamics of surface water-groundwater (hyporheic) exchange within a glacial, buried-valley aquifer system are examined in the context of their implications for the transport of nutrients and contaminants in riparian sediments. High conductivity facies act as preferential flow pathways which enhance nutrient and contaminant delivery, especially during storm events, but transport throughout the aquifer also depends on subsurface sedimentary architecture (e.g. interbedded high and low conductivity facies). Temperature and specific conductance measurements indicate extensive hyporheic mixing close to the river channel, but surface water influence was also observed far from the stream-aquifer interface. Measurements of river stage and hydraulic head indicate that significant flows during storms (i.e., hot moments) alter groundwater flow patterns, even between consecutive storm events, as riverbed conductivity and, more importantly, the hydraulic connectivity between the river and aquifer change. Given the similar mass transport characteristics among buried-valley aquifers, these findings are likely representative of glacial aquifer systems worldwide. Our results suggest that water resources management decisions based on average (base) flow conditions may inaccurately represent the system being evaluated, and could reduce the effectiveness of remediation strategies for nutrients and emerging contaminants.  相似文献   

14.
Lincolns municipal wellfield consists of 44 wells developed in an alluvial aquifer adjacent to the Platte River near Ashland, Nebraska Induced recharge from the river is the primary source of water for the wellfield. Wafer samples were collected on a periodic basis from the Platte River arid two transects of monitoring wells. These samples were analyzed for the herbicide atrazine, which was used as a tracer of induced recharge in this stream-aquifer system. Atrazine concentrations in the river and aquifer were much less than 1.0 ppb during late fall and winter, but increased to as high as 18.9 ppb during spring and summer, associated with runoff from upgradient agricultural lands. There was approximately a 21-day lag time from the first detection of increasing atrazine concentration in the river to the first detection in monitoring wells immediately adjacent to the river. This lag time was relatively constant throughout the year and from one year to the next, even with major fluctuations of river stage and wellfield production. This consistency of lag time indicated that the travel times from the river to the first set of monitoring wells immediately adjacent to the river were fairly constant.
Paths of preferential flow were identified in the aquifer at a depth of 25 to 35 feet below land surface. This aquifer zone appeared to play a significant role in movement of water from beneath the river into the wellfield.
Aquifer dispersivity was calculated using a method described by Hoehn and Santschi (1987). Macrodispersivity (AL) was shown to increase linearly over the scale of the wellfield. Calculated values of AL were within limits of other reported values for this type of aquifer material and agreed well with values reported by Hoehn and Santschi (1987); These findings will be extremely beneficial for planning and management of the municipal wellfield.  相似文献   

15.
Ground water recharge and flow characterization using multiple isotopes   总被引:2,自引:0,他引:2  
Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern carbon [pmC]), and (3)H (tritium units [TU]), suggesting older recharge. In addition, water levels lie at greater depths, and basin-bounding faults that locally act as a flow barrier may further reduce subsurface inflow into the aquifer along the mountain front. Chemical differences in ground water composition, attributed to varying aquifer mineralogy and recharge processes, further discriminate the basin-margin and the basin-center water. Direct recharge through the indurated sandstones and mudstones in the basin center is minimal. Modern recharge in the aquifer is mainly through the broad, exposed stream channel beds containing coarse sand and gravel where ground water contains higher delta(18)O, (14)C (pmC), and (3)H (TU). Spatial differences in delta(18)O, (14)C (pmC), and (3)H (TU) and occurrences of extensive mudstones in the basin center suggest sluggish ground water movement, including local compartmentalization of the flow system.  相似文献   

16.
The Grenchen aquifer system in the Swiss Plateau was extensively investigated in order to determine the extent of groundwater contamination and to assess the natural attenuation capacity. Environmental tracer data were applied to estimate groundwater travel times, mixing ratios, and evaluate groundwater origin. Recharge is basically possible in two distinct topographical areas, the immediate vicinity of the town of Grenchen and the elevated plateau of the first Jura Mountain ridge. Groundwater dating was performed with the 3H/3He dating method and supplemented by 85Kr measurements. Stable isotope data (δ18O, δ2H) and dissolved noble gas concentrations allow the determination of the recharge temperature, which is correlated to the recharge elevation. Noble gas temperatures (NGT) decrease in the direction of groundwater flow and range from 10 to 13 °C in the upstream area of the town to 7–9 °C in the downstream river plain. This trend could suggest the admixture of water from the underlying limestone aquifer recharged under cooler infiltration conditions, e.g. at higher recharge elevations. However, it is shown in this study that the difference in NGT does not require such a recharge. Rather, increasing air temperatures over the last 40 years and the urban heat island effect could possibly explain most of the observed temperature shift. Furthermore, it is concluded that the downstream river plain is hydrologically disconnected from the upstream town area. Consequently most water from the town area is drained by the creek Witibach and recharge in the river plain is higher than previously assumed.  相似文献   

17.
Intermontane basin aquifers worldwide, particularly in the Himalayan region, are recharged largely by the adjoining mountains. Recharge in these basins can occur either by water infiltrating from streams near mountain fronts (MFs) as mountain front recharge (MFR) or by sub-surface mountain block infiltration as mountain block recharge (MBR). MFR and MBR recharge are challenging to distinguish and are least quantified, considering the lack of extensive understanding of the hydrological processes in the mountains. This study used oxygen and hydrogen isotopes (δ18O and δ2H), electrical conductivity (EC) data, hydraulic head, and groundwater level data to differentiate MFR and MBR. Groundwater level data provide information about the groundwater-surface water interactions and groundwater flow directions, whereas isotopes and EC data are used to distinguish and quantify different recharge sources. The present methodology is tested in an intermontane basin of the Himalayan region. The results suggest that karst springs (KS) and deep groundwater (DGW) recharge are dominated by snowmelt (47% ± 10% and 46% ± 9%) as MBR from adjacent mountains, insignificantly affected by evaporation. The hydraulic head data and isotopes indicate Quaternary shallow groundwater (SGW) aquifer system recharge as MFR of local meteoric water with significant evaporation. The results indicate several flow paths in the aquifer system, a local flow for KS, intermediate flow for SGW, and regional flow for DGW. The findings will significantly impact water resource management in the area and provide vital baseline knowledge for sustainable groundwater management in other Himalayan intermontane basins.  相似文献   

18.
In South Korea, a significant amount of groundwater is used for the heating of water-curtain insulated greenhouses during the winter dry season, which had led to problems of groundwater depletion. A managed aquifer recharge (MAR) project is currently underway with the goal of preventing such groundwater depletion in a typical cultivation area, located on an alluvial aquifer near the Nam River. In the present study, FEFLOW, a three-dimensional finite element model, was used to evaluate different strategies for MAR of the cultivation areas. A conceptual model was developed to simulate the stream-aquifer dynamics under the influence of seasonal groundwater pumping and MAR. The optimal rates and duration of MAR were assessed by analyzing the recovery of the groundwater levels and the change in the groundwater temperature. The simulation results indicate that a MAR rate of 8000 m3/d effectively restores the groundwater level when the injection wells are located inside the groundwater depletion area. It is also demonstrated that starting the MAR before the beginning of the seasonal pumping is more effective. Riverbank filtration is preferable for securing the injection water owing to plentiful source of induced recharge from the river. Locating the pumping wells adjacent to the river where there are thick permeable layers could be a good strategy for minimizing decreases in the groundwater level and temperature.  相似文献   

19.
SUMMARY

The Coastal Plain aquifer of Israel, of Plio-Pleistocene Age, stretches from Binyamina in the North to the Gaza Strip in the South-a distance of about 112 km and has an average width of about 15 Km. The allowed withdrawal is estimated at about 200 MCM/year.

As a result of an average yearly withdrawal of 426 MCM/year during the last 10 years the water levels dropped to a dangerously low position (-2)-(-4) m below sea level at distances of 3–5 Km from the coast, causing sea water intrusion which, in Tel Aviv and Emek Hefer, endangered water supply wells.

As a counter-measure, artificial groundwater recharge through wells was practiced in Emek Hefer since 1959. Recharge was practiced in 7 wells at a rate of 6 MCM/year, the water coming from adjacent Cretaceous limestone aquifers.

In Tel Aviv a fresh water barrier was established in 1964 by injecting Lake Kinereth water into 17 wells during winter at a rate of 6 MCM/winter. In the rest of the Coastal Plain water was injected to the aquifer through about 40–45 wells at a total yearly rate of about 10–12 MCM.

Recharge by spreading is practiced in Yavneh at a rate of about 10–13 MCM per winter, also recharge by spreading is practiced with flood water of Nahal Shikma at a rate of up to 8 MCM/winter.  相似文献   

20.
Analytical solutions for the water table and lateral discharge in a heterogeneous unconfined aquifer with time-dependent source and fluctuating river stage were derived and compared with those in an equivalent homogeneous aquifer. The heterogeneous aquifer considered consists of a number of sections of different hydraulic conductivity values. The source term and river stage were assumed to be time-dependent but spatially uniform. The solutions derived is useful in studying various groundwater flow problems in a horizontally heterogeneous aquifer since the spatially piecewise-constant hydraulic conductivity and temporally piecewise-constant recharge and lateral discharge can be used to quantify variations in these processes commonly observed in reality. Applying the solutions derived to an aquifer of three sections of different hydraulic conductivity values shown that (1) the aquifer heterogeneity significantly increases the spatial variation of the water table and thus its gradient but it has little effect on lateral discharge in the case of temporally and spatially uniform recharge, (2) the time-dependent but spatially uniform recharge increases the temporal variation of groundwater table over the entire aquifer but its effect on lateral discharge is limited in the zone near the river, and (3) the effect of river stage fluctuation on the water table and lateral discharge is limited in the zone near the river and the effect of the heterogeneity is to increase lateral discharge to or recharge from the river.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号