共查询到20条相似文献,搜索用时 0 毫秒
1.
Kun Sang Lee 《Hydrogeology Journal》2014,22(1):251-262
Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems. 相似文献
2.
深层含水层储热是一种利用深度>500 m的深层含水层作为储热介质的储热技术,储热对象通常为50~150 ℃的热水。它通过地下水井从深层含水层中抽取和灌入地下水,实现热能储存和回收。深层含水层储热技术是弥补能源供需时空分布的不平衡,综合利用多种可再生能源,实现节能减排的有效途径,是国内外研究的前沿和热点。文中首先阐述了深层含水层储热系统在世界范围内的历史发展,归纳储热系统的热工性能,在总结前人研究工作的基础上分析影响其热回收效率的关键参数,并对各个参数对热回收效率的敏感性做了综述。在此基础上,本文还讨论了限制深层含水层储热系统发展的技术瓶颈,并针对系统的经济效益和市场潜力做了预测和展望。 相似文献
3.
A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a “non-layered” model domain with homogeneous hydraulic and thermal properties; and, a “layered” model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies. 相似文献
4.
地下含水层储能两阶段热量运移数值模型研究 总被引:5,自引:0,他引:5
为了简单而准确地预测地下含水层储能情况,考虑了地下含水层储能过程时间跨度大、储能保温分阶段的实际特点,分析了地下含水层流动和换热模型物理参数的对比特点,以热平衡和热扩散原理为基础,建立分成两个连续阶段的地下含水层储能数值计算模型.模型求解中,采用控制容积法,以全隐格式进行热扩散方程的离散化,然后应用Jacobi方法迭代求解,模拟结果和实际观测数据吻合很好.该模型还分析了含水层储能循环采灌过程中抽出储能水的温度变化的一般特点. 相似文献
5.
Judith Sippel Sven Fuchs Mauro Cacace Anna Braatz Oliver Kastner Ernst Huenges Magdalena Scheck-Wenderoth 《Environmental Earth Sciences》2013,70(8):3545-3566
This study predicts the subsurface temperature distribution of Germany’s capital Berlin. For this purpose, a data-based lithosphere-scale 3D structural model is developed incorporating 21 individual geological units. This model shows a horizontal grid resolution of (500 × 500) m and provides the geometric base for two different approaches of 3D thermal simulations: (1) calculations of the steady-state purely conductive thermal field and (2) simulations of coupled fluid flow and heat transport. The results point out fundamentally different structural and thermal configurations for potential geothermal target units. The top of the Triassic Middle Buntsandstein strongly varies in depth (159–2,470 m below sea level) and predicted temperatures (15–95 °C), mostly because of the complex geometry of the underlying Permian Zechstein salt. The top of the sub-salt Sedimentary Rotliegend is rather flat (2,890–3,785 m below sea level) and reveals temperatures of 85–139 °C. The predicted 70 °C-isotherm is located at depths of about 1,500–2,200 m, cutting the Middle Buntsandstein over large parts of Berlin. The 110 °C-isotherm at 2,900–3,700 m depth widely crosscuts the Sedimentary Rotliegend. Groundwater flow results in subsurface cooling the extent of which is strongly controlled by the geometry and the distribution of the Tertiary Rupelian Clay. The cooling effect is strongest where this clay-rich aquitard is thinnest or missing, thus facilitating deep-reaching forced convective flow. The differences between the purely conductive and coupled models highlight the need for investigations of the complex interrelation of flow- and thermal fields to properly predict temperatures in sedimentary systems. 相似文献
6.
7.
8.
9.
Abdelhafid Fekkoul Yassine Zarhloule Mimoun Boughriba Alae-eddine Barkaoui Abdelhakim Jilali Salem Bouri 《Arabian Journal of Geosciences》2013,6(12):4917-4924
Located at the northeastern part of Morocco, the plain of Triffa is characterized by a semi-arid climate where water resources are rather fragile and influenced by a highly irregular rainfall distribution, both in time (annual and inter-annual distribution) and in space. The mean annual rainfall does not exceed 240 mm. In the Triffa plain, the impact of anthropogenic activities on the groundwater resources is reflected both by (a) the decrease in the piezometric level due to the over exploitation and droughts and (b) the deterioration of the chemical quality of water. Currently, this situation is felt mainly by the farmers. The unconfined aquifer is under stress due to the increase of the pollution rate, especially by nitrates that are above the WHO standards, and salinity. Organochlorine pesticides are ubiquitous and persistent organic pollutants used widely in agriculture. Due to their extensive use in agriculture, organic environment contaminants such as hexachlorocyclohexane, DDT, and DDD along organochlorine pesticides are distributed globally by transport through water. Pesticides such as aldrin, lindane, and heptachlor have also been detected and were considered as indicators showing the need to inform and to train farmers on the pesticides and fertilizers use in order to reduce the threat of groundwater contamination. 相似文献
10.
The main results that derived from this study is the quantitative determination of subsurface water balance and the water loses along flow line during drought decade (before 2000–2009), with intense exploitation of groundwater from water wells. The hydrogeological data are presented as spatial distribution maps and three dimensional models. The results are correlated with the main hydrogeologic control points including (storage and transmissivity coefficients, groundwater depths, aquifers thickness, lateral extensions, well productivity) to determine the preferable hydrogeologic districts for development and exploitations, avoiding groundwater depletion as captured zone flow. Based on the isotope analysis of deuterium, oxygen-18, tritium, carbon-13, and carbon-14, the recharge of the aquifer is originated to direct infiltration of atmospheric water through exposure outcrops within Hauran catchments area. The isotope compositions also show that the groundwater is a mixture of an old groundwater with modern recharge in the areas adjacent to Rutba. The fact that the Mullusi aquifer is of major importance as the water supply of people in Rutba region, particularly, for increasing demand of water resources and sustainability assessment in the future, this study developed a reliable strategic suggested plan in groundwater supply, based on groundwater exploitation and amount of safe yield within Dhabaa basin. 相似文献
11.
L. Moreno J. J. Durán M. A. Casermeiro J. R. Quintana Ma A. Fernández 《Environmental Geology》2008,54(3):465-477
Over a period of 4 years and 4 months, the geopurification installations at Dehesas de Guadix (Granada, Spain) were monitored
to determine the impact on soil and groundwater of the controlled discharge of urban wastewater, and also to identify the
best indicators of the entry of the recharged water into the aquifer. The installations are located in an area where the climate
is Mediterranean sub-arid, with an average precipitation of less than 287 mm/year, and a rate of evapotranspiration that is
almost three times greater. The system was controlled by determining the balance of majority nutrients and boron in the soil
and in the groundwater, both at the points affected directly by the wastewater discharge and at others. The quantity of mass
discharged was relatively large (COD 14,656 g/m2, NO3 85 g/m2, NO2 4 g/m2, NH4 2,425 g/m2, PO4 1,143 g/m2, K 1,531 g/m2, B 63 g/m2). It was observed that the elimination of nutrients within the soil (COD 97.5%, PO4 94.4%, K 59.17%, N
total 18.8%, B 12.69%) was very efficient except for the nitrogen, which nevertheless did not reach the groundwater, as it was
eliminated at deep levels of the unsaturated zone. Only 12.69% of the boron was removed, and appreciable, increasing amounts
of this element did reach the groundwater. Unexpectedly, none of the majority nutrients behaved as a reliable indicator of
the impact on groundwater; despite this, the boron and the bicarbonate did clearly reflect the arrival of the recharged water,
and are proposed as the best indicators. 相似文献
12.
Tobias Lienen Klas Lüders Hannah Halm Anke Westphal Ralf Köber Hilke Würdemann 《Environmental Earth Sciences》2017,76(6):261
Aquifer thermal energy storage may result in increases in the groundwater temperature up to 70 °C and more. This may lead to geochemical and microbiological alterations in the aquifer. To study the temperature effects on the indigenous microbial community composition, sediment column experiments at four different temperatures were carried out and the effluents were characterized geochemically and microbiologically. After an equilibrium phase at groundwater temperature of 10 °C for 136 days, one column was kept at 10 °C as a reference and the others were heated to 25, 40 and 70 °C. Genetic fingerprinting and quantitative PCR revealed a change in the bacterial community composition and abundance due to the temperature increase. While at 25 °C only slight changes in geochemical composition and gene copy numbers for bacteria were observed, increasing concentrations of total organic carbon in the 40 °C column were followed by a strong increase in bacterial abundance. Thermophilic bacteria became dominant at 70 °C. Temporary sulfate reduction took place at 40 and 70 °C and this correlated with an increased abundance of sulfate-reducing bacteria (SRB). Furthermore, a coexistence of SRB and sulfur-oxidizing bacteria (SOB) at all temperatures indicated an interaction of these physiological groups in the sediments. The results show that increased temperatures led to significant shifts in the microbial community composition due to the altered availability of electron donors and acceptors. The interplay of SRB and SOB in sedimentary biofilms facilitated closed sulfur cycling and diminished harmful sulfur species. 相似文献
13.
成岩作用与油气侵位对鄂尔多斯盆地延长组砂岩储层物性的影响 总被引:35,自引:2,他引:35
对鄂尔多斯盆地不同地区上三叠统延长组砂岩的岩石学、储层物性与成岩作用特征及其分布与变化规律的对比研究表明,盆地东部与盆地西部延长组来自不同物源区。压实作用是造成延长组砂岩孔隙丧失的主要原因,分别使长1—长3砂岩和长4 5—长10砂岩丧失的平均孔隙度占原始孔隙的59%和73.3%。胶结作用导致长1—长3和长4 5—长10砂岩丧失的平均孔隙度分别占原始孔隙的25.8%和27.5%,碳酸盐是造成砂岩物性降低的主要胶结物。晚成岩阶段盆地中发生的油气侵位和烃类物质在砂岩孔隙中的聚集抑制了自生石英和碳酸盐胶结物的沉淀。油气的富集对伊利石和绿泥石薄膜的形成没有明显的影响,后者可能对油气的聚集起了促进作用。晚成岩阶段水-岩反应产生的无机酸性流体和烃源岩中有机质向烃类转化过程中产生的有机酸性流体、以及表生成岩阶段的大气降水是导致砂岩储层物性改善的重要途径。 相似文献
14.
15.
Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium) 总被引:2,自引:1,他引:2
Sedimentological processes often result in complex three-dimensional subsurface heterogeneity of hydrogeological parameter values. Variogram-based stochastic approaches are often not able to describe heterogeneity in such complex geological environments. This work shows how multiple-point geostatistics can be applied in a realistic hydrogeological application to determine the impact of complex geological heterogeneity on groundwater flow and transport. The approach is applied to a real aquifer in Belgium that exhibits a complex sedimentary heterogeneity and anisotropy. A training image is constructed based on geological and hydrogeological field data. Multiple-point statistics are borrowed from this training image to simulate hydrofacies occurrence, while intrafacies permeability variability is simulated using conventional variogram-based geostatistical methods. The simulated hydraulic conductivity realizations are used as input to a groundwater flow and transport model to investigate the effect of small-scale sedimentary heterogeneity on contaminant plume migration. Results show that small-scale sedimentary heterogeneity has a significant effect on contaminant transport in the studied aquifer. The uncertainty on the spatial facies distribution and intrafacies hydraulic conductivity distribution results in a significant uncertainty on the calculated concentration distribution. Comparison with standard variogram-based techniques shows that multiple-point geostatistics allow better reproduction of irregularly shaped low-permeability clay drapes that influence solute transport. 相似文献
16.
Rita Sandrina Rabet Celalettin Simsek Alper Baba Alim Murathan 《Environmental Earth Sciences》2017,76(1):49
Anatolia region is one of the most seismically active regions in the world and has a considerably high level of geothermal energy potential. Some of these geothermal resources have been used for power generation and direct heating. Most of the high enthalpy geothermal systems are located in western part of Turkey. Alasehir is the most important geothermal site in western part of Turkey. Many geothermal wells have been drilled in Alasehir Plain to produce the geothermal fluid from the deep reservoir in the last 10 years. A blowout accident happened during a geothermal well drilling operation in Alasehir Plain, and significant amount of geothermal fluid surfaced out along the fault zone in three locations. When drilling string entered the reservoir rock about 1000 m, blowout occurred. As the well head preventer system was closed because of the blowout, high-pressure fluid surfaced out along the fault zone cutting the Neogene formation. In order to understand the geothermal fluid effects on groundwater chemistry, physical and chemical compositions of local cold groundwater were monitored from May 2012 to September 2014 in the study area. The geothermal fluid was found to be of Na–HCO3 water type, and especially, arsenic and boron concentrations reached levels as high as 3 and 127 mg/L, respectively. The concentrations of arsenic and boron in the geothermal fluid and groundwater exceeded the maximum allowable limits given in the national and international standards for drinking water quality. According to temporally monitored results, geothermal fluid has extremely high mineral content which influenced the quality of groundwater resources of the area where water resource is commonly used for agricultural irrigation. 相似文献
17.
Many numerical methods that simulate groundwater flow, particularly the continuous Galerkin finite element method, do not produce velocity information directly. Many algorithms have been proposed to improve the accuracy of velocity fields computed from hydraulic potentials. The differences in the streamlines generated from velocity fields obtained using different algorithms are presented in this report. The superconvergence method employed by FEFLOW, a popular commercial code, and some dual-mesh methods proposed in recent years are selected for comparison. The applications to depict hydrogeologic conditions using streamlines are used, and errors in streamlines are shown to lead to notable errors in boundary conditions, the locations of material interfaces, fluxes and conductivities. Furthermore, the effects of the procedures used in these two types of methods, including velocity integration and local conservation, are analyzed. The method of interpolating velocities across edges using fluxes is shown to be able to eliminate errors associated with refraction points that are not located along material interfaces and streamline ends at no-flow boundaries. Local conservation is shown to be a crucial property of velocity fields and can result in more accurate streamline densities. A case study involving both three-dimensional and two-dimensional cross-sectional models of a coal mine in Inner Mongolia, China, are used to support the conclusions presented. 相似文献
18.
D. Knaust 《International Journal of Earth Sciences》1998,87(1):21-31
In the German Triassic of Thuringia, the Lower Muschelkalk sequence can be subdivided by application of ichnological methods. Three ichnofacies with five ichnofabrics are described. In accordance with the lithological features, trace fossils are found to defining parasequences on the basis of a regular change of bioturbation. Furthermore, it is possible to establish deepening-upward cycles. The reconstruction of parasequences allows the establishment of a high-resolution sequence stratigraphy. The position of the maximum flooding surface can be identified in the Terebratula Member and is developed in a condensed interval. The most significant of the additional major marine flooding surfaces is found at the top of the Upper Oolith Bed, characterized by lithostratigraphy, ichnology, biostratigraphy and parasequence thickness trends. 相似文献
19.
Acta Geotechnica - Natural rock is considered a solution for thermal energy storage (TES). comprehensive understanding of the effect of high temperature on the physical and mechanical properties of... 相似文献