首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many of the states in India have been facing water scarcity for more than 2 decades due to increased demand, because of the increase in population and higher living standards. Consequently, many states have almost fully utilized the available surface water resources and are exploiting groundwater to augment water supplies. Investigations were carried out in the upper Thurinjalar watershed of Ponnaiyar basin in Tamil Nadu to determine the availability of surface water and to investigate the potential for enhancing groundwater recharge to support the water demand in the watershed. Increasing the water availability would also enable the community to convert the 46% of the land area in the watershed that is currently underutilised into productive uses. The surface water potential for the upper Thurinjalar watershed was assessed by applying the USDA–NRCS model with daily time steps. This modelling exercise indicated that the annual runoff from the 323 km2 area of the watershed is 61 million m3. Groundwater recharge in the watershed was assessed by carrying out daily water balance method and indicated that about 43 million m3 of water from recharge is available on an annual basis or about 14% of annual rainfall. A simple regression model was developed to compute groundwater recharge from rainfall based on water balance computations and this was statistically verified. The modelling indicated that there is sufficient water available in the watershed to support current land uses and to increase the productivity of underutilised land in the area. The study also demonstrates that simple regression models can be used as an effective tool to compute groundwater recharge for ungauged basins with proper calibration.  相似文献   

2.
Recently, water and soil resource competition and environmental degradation due to inadequate management practices have been increased and pose difficult problems for resource managers. Numerous watershed practices currently being implemented for runoff storage and flood control purposes have improved hydrologic conditions in watersheds and enhanced the establishment of riparian vegetation. The assessment of proposed management options increases management efficiency. The purpose of this study is to assess the impact of watershed managements on runoff storage and peak flow, and determine the land use and cover dynamics that it has induced in Gav-Darreh watershed, Kurdistan, Iran. The watershed area is 6.27 km2 which has been subjected to non-structural and structural measures. The implemented management practices and its impact on land use and cover were assessed by integrating field observation and geographic information systems (GIS). The data were used to derive the volume of retained water and determine reduction in peak flow. The hydrology of the watershed was modeled using the Hydrologic Engineering Center–Hydrologic Modeling System (HEC–HMS) model, and watershed changes were quantified through field work. Actual storms were used to calibrate and validate HEC–HMS rainfall–runoff model. The calibrated HEC–HMS model was used to simulate pre- and post-management conditions in the watershed. The results derived from field observation and HEC–HMS model showed that the practices had significant impacts on the runoff storage and peak flow reduction.  相似文献   

3.
Watershed degradation due to soil erosion and sedimentation is considered to be one of the major environmental problems in Iran. In order to address the critical conditions of watershed degradation in arid and semiarid regions, a study based on the Modified Pacific Southwest Inter-Agency Committee (MPSIAC) model was carried out at Golestan watershed, northeast of Iran. The model information layers comprising nine effective factors in erosion and sedimentation at the watershed site were obtained by digitalization and spatial interpolation of the basic information data in a GIS program. These factors are geology, soil, climate, runoff, topography, land cover, land use, channel, and upland erosion. The source data for the model were obtained from available records on rainfall and river discharge and sediment, topography, land use, geology, and soil maps as well as field surveys and laboratory analysis. The results of the MPSIAC model indicated that 60.75 % (194.4 km2) and 54.97 % (175.9 km2) of the total watershed area were classified in the heavy sedimentation and erosion classes, and the total basin sediment yield and erosion were calculated as 4,171.1 and 17,813.4 m3 km?2 year?1, respectively. In the sensitivity analysis, it was found that the most sensitive parameters of the model in order of importance were topography (slope), land cover and use, runoff, and channel erosion (R 2?=?0.92–0.94), while geology, climate (rainfall), soil, and upland erosion factors were found to have moderate effect to the model output (R 2?=?0.74–0.59).  相似文献   

4.
A self-organizing map (SOM) was used to cluster the water quality data of Xiangxi River in the Three Gorges Reservoir region. The results showed that 81 sampling sites could be divided into several groups representing different land use types. The forest dominated region had low concentrations of most nutrient variables except COD, whereas the agricultural region had high concentrations of NO3N, TN, Alkalinity, and Hardness. The sites downstream of an urban area were high in NH3N, NO2N, PO4P and TP. Redundancy analysis was used to identify the individual effects of topography and land use on river water quality. The results revealed that the watershed factors accounted for 61.7% variations of water quality in the Xiangxi River. Specifically, topographical characteristics explained 26.0% variations of water quality, land use explained 10.2%, and topography and land use together explained 25.5%. More than 50% of the variation in most water quality variables was explained by watershed characteristics. However, water quality variables which are strongly influenced by urban and industrial point source pollution (NH3N, NO2N, PO4P and TP) were not as well correlated with watershed characteristics.  相似文献   

5.
利用DEM提取地貌指数的方法述评   总被引:18,自引:4,他引:14       下载免费PDF全文
介绍了几个广泛应用于水文科学的流域地貌指数(包括地表坡度、流量分配系数、单宽集水面积、集水面积以及湿度指数)的计算方法,阐述了这些地貌指数在水文科学中所代表的物理意义和对流域水文过程空间分布的描述能力。对了解流域地貌对降雨径流的影响,揭示产汇流过程的物理机制,研制和开发分布式水文物理模型均有重要意义。  相似文献   

6.
Land degradation is still a very common problem in the mountains of Asia because of inappropriate land use practice in steep topography. Many studies have been carried out to map shifting cultivation and areas susceptible to soil erosion. Mostly, estimated soil loss is taken as the basis to classify the level of soil loss susceptibility of area. Factors that influence soil erosion are: rainfall erosivity, soil erodibility, slope length and steepness, crop management and conservation practices. Thus the reliability of estimated soil loss is based on how accurately the different factors were estimated or prepared. As each and every small pixel of our earth surface is different from one area to another, the manner in which the study area was discretized into smaller homogenous sizes and how the most accurate and efficient technique were adopted to estimate the soil loss are very important. The purpose of this study is to produce erosion susceptibility maps for an area that has suffered because of shifting cultivation located in the mountainous regions of Northern Thailand. For this purpose, an integrated approach using RS and GIS-based methods is proposed. Data from the Upper Nam Wa Watershed, a mountainous area of the Northern Thailand were used. An Earth Resources Data Analysis System (ERDAS) imagine image processor has been used for the digital analysis of satellite data and topographical analysis of the contour data for deriving the land use/land cover and the topographical data of the watershed, respectively. ARCInfo and ARCView have been used for carrying out geographical data analysis. The watershed was discretized into hydrologically, topographically, and geographically homogeneous grid cells to capture the watershed heterogeneity. The soil erosion in each cell was calculated using the universal soil loss equation (USLE) by carefully determining its various parameters and classifying the watershed into different levels of soil erosion severity. Results show that during the time of this study most of the areas under shifting cultivation fell in the highest severity class of susceptibility.  相似文献   

7.
分布式降雨径流物理模型的建立和应用   总被引:6,自引:4,他引:6       下载免费PDF全文
根据流域降雨径流的主要过程,考虑流域气象及下垫面要素的空间异质性,建立了具有物理基础的分布式降雨径流模型。模型将流域离散为栅格计算单元,并按水流特性分栅格单元为坡面单元和河网单元。在坡面单元上主要计算降雨、下渗、坡面流、壤中流等水文过程,而河网单元则主要计算河道汇流过程。模型利用空间权重插值方法将雨量站点的降雨量插值到各个计算单元,采用运动波方程来计算坡面流,将壤中流概化为垂向流和侧向流,分别用Green-Ampt公式和运动波方程来模拟,河道汇流也采用运动波方程。模型结构简单、参数的物理意义明确,大多数参数可利用DEM、土壤类型图、植被类型图直接获取,少数敏感参数通过率定确定。模型在浙江省甬江上游黄土岭流域和皎口流域进行了应用和检验,其结果令人满意。  相似文献   

8.
Land use/land cover change is a global phenomenon which reflects natural resources degradation and/or utilization. Remote sensing and GIS have been widely used to monitor such changes at watershed level. The present study evaluates the LU/LC change during 1989 - 2001 in a semi-arid watershed of central India. Geocoded satellite data of 1989 and 2001 on 1:50,000 scale, were visually interpreted to prepare thematic maps which were later digitized using ArcGIS softwares. The analysis shows that vast tracts of cultivated land have become uncultivated and at some places even converted to wasteland. However, the land under dense forest and open forest has decreased due to expansion of built-up land and other anthropogenic activities. Increase in area of uncultivated land, wasteland and decrease in cultivated land and open scrub is also supported by rainfall analysis, which shows a declining trend and a fall of 186.93 mm in average annual rainfall for 1986-2003 period. The change detection map prepared using land use/land cover of 1989 and 2001 as inputs shows that out of the total geographical area of the watershed, 25.78% of the watershed area has seen a change from one land use category to another, however rest 74.22% has remained unchanged.  相似文献   

9.
Groundwater resources in the semi-arid regions of southern India are under immense pressure due to large-scale groundwater abstraction vis-à-vis meager rainfall recharge. Therefore, understanding and evaluating the spatial distribution of groundwater is essential for viable utilization of the resource. Here, we assess groundwater potential at the watershed scale, in a semi-arid environment with crystalline aquifer system without a perennial surface water source using remote sensing, geophysical, and GIS-based integrated multi-parameter approach. GIS-based weighed overlay analysis is performed with input parameters, viz., geology, geomorphology, lineament density, land use, soil, drainage density, slope, and aquifer thickness. The watershed is categorized into four zones, namely, “very good” (GWP4), “good” (GWP3), “moderate” (GWP2), and “low” (GWP1) in terms of groundwater potential. Overall, ~?70% of the study area falls under moderate to low groundwater potential, indicating a serious threat to the future availability of the resource. Therefore, serious measures are required for maintaining aquifer resilience in this over-exploited aquifer (e.g., restricting groundwater withdrawal from GWP1 and GWP2 zones). Further, as the aquifer is under tremendous anthropogenic pressure, rainwater harvesting and artificial recharge during monsoon are advocated for sustainable aquifer management. Due to the direct dependence of crop production vis-à-vis farmer economy on groundwater, this study is an important step towards sustainable groundwater management and can be applied in diverse hydrological terrains.  相似文献   

10.
Groundwater is a valuable natural resource for drinking, domestic, livestock use, and irrigation, especially in arid and semi-arid regions like the Garmiyan belt in Kurdistan region. The Awaspi watershed is located 50 km east of Kirkuk city, south Kurdistan, Iraq; and covers an area of 2146 km2. The paper presents result of a study aimed at: (1) mapping and preparing thematic layers of factors that control groundwater recharge areas, and (2) determination of sites suitable for groundwater recharge. We used available data such as geological map, groundwater depth map, digital elevation model (DEM), Landsat 8 imagery, and tropical rainfall measuring mission (TRMM) data for this study. These data, supplemented by slope features, lithology, land use land cover, rainfall, groundwater depth, drainage density, landform, lineament density, elevation and topographic position index, were utilized to create thematic maps to identify suitable areas of groundwater recharge, using GIS and remote sensing techniques. Analytic hierarchy process (AHP) was applied to weight, rank, and reclassify these maps in the ArcGIS 10.3 environment, to determine the suitable sites for groundwater recharge within the Awaspi watershed. Fifty-five percent of the total area of the watershed was found to be suitable for groundwater recharge; whereas 45% of the area was determined to have poor suitability for groundwater recharge, but can be used for surface water harvesting.  相似文献   

11.
Soil degradation resulted from unreasonable land use and erosion has been a serious problem in the black soil region of northeastern China. This paper seeks to understand the relationships between topsoil properties and topography and land use for land management targeting at improving soil quality in this region. A total of 292 soil samples and 81 volumetric rings were taken from a typical small watershed of the region in June 2005 for examining total carbon (TC), total nitrogen (TN), soil texture (classified into gravel, sand, silt, and clay), and bulk density (ρ b), respectively. Spatial variability of these soil properties was evaluated with classical statistics and geostatistics methods. The results of classical statistics indicated that TC, TN, sand, silt, clay content, and ρ b were moderate variables while gravel had great variability. Soil properties were mainly correlated to slope position, elevation and land types. Geostatistical analyses showed that the spatial autocorrelation for TC, TN, and silt was weak, strong for clay and moderate for and ρ b sand, respectively. The spatial variations of soil properties are affected comprehensively by topographic factors, land use, erosion, and erosion control in this watershed. Past erosion, however, is the most important component to induce change of soil properties. In this small watershed, current soil and water conservation measures play an important role in controlling soil loss. But the restoration of soil properties was unsatisfactory. Comparing with untilled soil of this region, TC, TN, silt content are excessively low; whereas ρ b, sand and clay content are excessively high; gravel appears at most sampling locations. It is necessary for improving soil properties to protect forest and grassland and change cultivation system of farmlands.  相似文献   

12.
城市下垫面改变引起水文循环过程发生变异,导致目前已掌握的天然情况下的产汇流规律和机制难以解释城市化等新形势下的水文现象与过程,而面临需重新再认识的挑战。本文以长三角地区为典型,建立了不同城市化水平及空间规模的水文试验流域,探讨了快速城市化地区暴雨洪水响应规律和机制。结果表明:(1)不同量级降水事件下城镇用地土壤水响应程度(表层土壤水涨幅基本超过4%)总体高于其他土地利用类型,城市化地区下垫面的改变通过影响土壤水动态响应模式直接影响了地表产流过程,植被覆盖率较低的城镇用地和荒地土壤含水率呈现出陡涨陡落现象,而植被作用下的土地利用类型则表现出缓慢上升和缓慢消退的土壤水响应过程。(2)流域洪峰滞时和洪峰流量整体表现为随流域面积增加而呈幂律函数关系形式的增加。(3)总降水量与主要洪水特征(如洪峰流量、单位面积洪峰流量和径流深)基本呈显著相关(相关系数分别达0.49、0.41和0.78以上)。城市下垫面通过改变土壤水动态响应等产汇流特征而直接影响了洪水过程,未来长三角地区暴雨洪水在城市化和气候因素双重作用下呈现持续加剧的趋势。  相似文献   

13.
This paper focuses on artificial groundwater recharge study in Ayyar basin, Tamil Nadu, India. The basin is covered by hard crystalline rock and overall has poor groundwater conditions. Hence, an artificial recharge study was carried out in this region through a project sponsored by Tamil Nadu State Council for Science and Technology. The Indian Remote Sensing satellite 1A Linear Imaging Self Scanning Sensor II (IRS 1A LISS II) satellite imagery, aerial photographs and geophysical resistivity data were used to prioritize suitable sites for artificial recharge and to estimate the volume of aquifer dimension available to recharge. The runoff water available for artificial recharge in the basin is estimated through Soil Conservation Service curve number method. The land use/land cover, hydrological soil group and storm rainfall data in different watershed areas were used to calculate the runoff in the watersheds. The weighted curve number for each watershed is obtained through spatial intersection of land use/land cover and hydrological soil group through GeoMedia 3.0 Professional GIS software. Artificial recharge planning was derived on the basis of availability of runoff, aquifer dimension, priority areas and water table conditions in different watersheds in the basin.  相似文献   

14.
Soil texture is a key variable that reflect a number of soil properties such as soil permeability, water holding capacity, nutrient storage and availability, and soil erosion. The main objective of this study was to produce the kriged maps of soils of the Shahrekord region, central Iran. One hundred four soil samples were collected on a 375-m2 sampling grid from the depths of 0–30, 30–60, and 60–100 centimeter, and their particle sizes were determined using hydrometer method. The results showed a moderately spatial correlation in the soil particles among sampling soil layers and across the study area. Moreover, increasing clay and therewith observation of heavier soil textures is evident from surface to subsurface layers of the soils in the studied area due to rainfall and/or irrigation agriculture. These findings indicated that study of the soil texture variation with depth can be used as a clue for site-specific management and precision agriculture. Moreover, we suggest further analysis by using other data layers like topographical parameters, land use, parent material, soil erosion, and any other information which might influence the spatial distribution of soil texture.  相似文献   

15.
The assessment of freshwater resources in a drainage basin is not only dependent on its hydrologic parameters but also on the socio-economic system driving development in the watershed area; the socio-economic aspect, that is often neglected in hydrologic studies, is one of the novelties of this study. The aim of this paper is twofold: (1) presenting an integrated working methodology and (2) studying a local case of a North African watershed where scarce field data are available. Using this integrated methodology, the effects of climate and land use change on the water resources and the economic development of the Tahadart drainage basin in Northern Morocco have been evaluated. Water salinization, tourism, urbanization, and water withdrawals are a threat to water resources that will increase with future climate change. The Tahadart Basin (Morocco 1,145 km2) is characterized by rain-fed agriculture and by the presence of two water retention basins. Assessment of the effects of climate and land use change on this drainage basin was based on current and future land cover maps obtained from spatial interactions models, climate data (current and future; scenario A1b for the period 2080–2100), and hydrological models for water budget calculations. Land use suitability maps were designed assuming a A1b Special Report on Emissions Scenarios socio-economic development scenario. The most important conclusions for the period 2080–2100 are the following: (1) Freshwater availability within the watershed will likely be affected by a strong increase in evaporation from open water surface bodies due to increased temperature. This increase in evaporation will limit the amount of freshwater that can be stored in the surface reservoirs. (2) Sea level rise will cause flooding and salinization of the coastal area. (3) The risk for drought in winter is likely to increase. The methodology used in this paper is integrated into a decision support tool that is used to quantify change in land use and water resources.  相似文献   

16.
Chemical weathering of silicate minerals has long been known as a sink for atmospheric CO2, and feedbacks between weathering and climate are believed to affect global climate. While warmer temperatures are believed to increase rates of weathering, weathering in cool climates can be accelerated by increased mineral exposure due to mechanical weathering by ice. In this study, chemical weathering of silicate minerals is investigated in a small temperate watershed. The Jamieson Creek watershed is covered by mature coniferous forest and receives high annual precipitation (4000 mm), mostly in the form of rainfall, and is underlain by quartz diorite bedrock and glacial till. Analysis of pore water concentration gradients indicates that weathering in hydraulically unsaturated ablation till is dominated by dissolution of plagioclase and hornblende. However, a watershed scale solute mass balance indicates high relative fluxes of K and Ca, indicating preferential leaching of these solutes possibly from the relatively unweathered lodgement till. Weathering rates for plagioclase and hornblende calculated from a watershed scale solute mass balance are similar in magnitude to rates determined using pore water concentration gradients.When compared to the Rio Icacos basin in Puerto Rico, a pristine tropical watershed with similar annual precipitation and bedrock, but with dissimilar regolith properties, fluxes of weathering products in stream discharge from the warmer site are 1.8 to 16.2-fold higher, respectively, and regolith profile-averaged plagioclase weathering rates are 3.8 to 9.0-fold higher. This suggests that the Arrhenius effect, which predicts a 3.5- to 9-fold increase in the dissolution rate of plagioclase as temperature is increased from 3.4° to 22 °C, may explain the greater weathering fluxes and rates at the Rio Icacos site. However, more modest differences in K and Ca fluxes between the two sites are attributed to accelerated leaching of those solutes from glacial till at Jamieson Creek. Our findings suggest that under conditions of high rainfall and favorable topography, weathering rates of silicate minerals in warm tropical systems will tend to be higher than in cool temperate systems, even if the temperate system is has been perturbed by an episode of glaciation that deposits regolith high in fresh mineral surface area.  相似文献   

17.
Groundwater, the most vital water resource being used for irrigation, domestic and industrial purposes is nowadays under severe threat of contamination. Groundwater contamination risk assessment is an effective tool for groundwater management. In the study, a DRASTIC model which is based on the seven hydrogeological parameters viz: depth of water, net-recharge, aquifer media, soil media, topography, impact of vadose zone and hydraulic conductivity was used to evaluate the groundwater pollution potentiality of upper Betwa watershed. ArcGIS was used to create the ground water vulnerability map by overlaying the seven layers. Based on groundwater vulnerability map, the watershed has been divided in three vulnerable zones viz; low vulnerability zone with 42.83 km2 of area, moderate with 369.21 km2 area and high having 270.96 km2 of area. Furthermore, the DRASTIC model has been validated by nitrate concentration over the area. Results of validation have shown that in low vulnerable zone, no nitrate contamination has been recorded. While in the moderate zone nitrate has been found in the range of 1.6-10ppm. However, in high vulnerable zone 11-40ppm of nitrate concentration in groundwater has been recorded, which proves that the DRASTIC model is applicable for the prediction of groundwater vulnerability in the watershed and in similar areas too.  相似文献   

18.
Demand for irrigation water increases day by day along with meteorological vagaries and extension of irrigated area in the drought-prone Barind area of Bangladesh. This increasing stress on water resource is gradually making the area water scare. The study is aimed at studying the morphometric parameters of the Atrai-Sib river basin in the Barind area and on their relevance in water resource management based on satellite images and SRTM DEM. Computation and delineation of linear and areal aspects of the river basin and its morphometric components reveals that stream order ranges from first to eighth order showing dendritic drainage pattern. The basin represents homogeneity of soil texture; possibility of flash flood after heavy rainfall with low discharge of runoff; and is not largely affected by structural disturbance. Moderate drainage density of the river basin area indicates semipermeable soil lithology with moderate vegetation. Mean bifurcation ratio of the basin is calculated as 3.92 and elongation ratio 0.75, which indicate elongated shape of the river basin with low to moderate relief bounded in the east and west by ‘moderate to steep’ sloping land area. It reveals a flatter peak of runoff flow for longer duration and gravity flow of water. The gentle but undulating slope of the basin represents ‘excellent’ category for groundwater management as the site is favorable for infiltration due to maximum time of runoff water percolation. The east facing slopes of the basin show higher moisture content and higher vegetation than the west-facing slope. The land use pattern of the area shows that major part (95.29%) comes under the cultivated land which will support future river basin development and management. Results obtained from the study would be useful in categorization of river basins for future water resource development and management, and selection of suitable sites for water conservation structures such as check dam, percolation tank, artificial recharge of groundwater through MAR technique etc.  相似文献   

19.
根据陇东黄土高塬沟壑区典型小流域——南小河沟流域1954—2014年实测降雨产沙资料,应用降雨侵蚀力偏差系数法研究不同土地利用类型及空间尺度下侵蚀产沙的雨量阈值、雨强阈值及复合阈值标准,并通过对比分析确定了最优降雨阈值标准。结果表明:① 对于林地和草地坡面小区,其雨量阈值标准平均值(21.0 mm)较裸地(8.7 mm)和农地(9.7 mm)坡面小区分别提高了141%和116%,植被措施能够显著提高降雨阈值标准。② 杨家沟林地小流域的雨量阈值标准为16.5 mm,低于布设在该流域的林地坡面小区,同时对比董庄沟草地小流域及其坡面和全坡面小区的雨量阈值标准,其大小亦为:草地坡面尺度 > 草地全坡面尺度 > 草地小流域尺度,由此可见,降雨阈值标准会随着空间尺度增大而减小。③ 降雨阈值标准综合评价结果表明,各样点最优降雨阈值标准均为P≥a或I30≥b这一复合因子标准,而在降雨单因子阈值标准中,对于农耕地和裸地坡面小区,宜采用最大30 min雨强(I30)标准;对于经过水土流失治理的下垫面,宜采用雨量(P)标准。该研究可为区域土壤侵蚀预报提供参考。  相似文献   

20.
Agricultural nonpoint source (NPS) pollution at the Three Gorges reservoir area in China has been increasingly recognized as a threat to aquatic environment in recent years due to the serious eutrophication problem. Adsorbed NPS pollution is one of the major forms of NPS pollution in mountainous regions, the essential of the adsorbed NPS pollution is soil loss. Thus, simple, highly sensitive and continuous methods are required to simulate and quantify sediments yield at watershed scales. It is imperative to construct an integrated model to estimate the sediment yield and adsorbed NPS pollution load. According to the characteristics of climate, hydrology, topography, geology, geomorphology and land use types in Three Gorges reservoir area, a GIS-based dynamic-integrated-distributed model of annual adsorbed NPS load was presented in view of impacts of the rainfall intensity, sediment delivery ratio (SDR) and land management, where the temporally dynamic-continuous model of annual sediment yield was established by modifying the revised Universal Soil Loss Equation (RUSLE), and the spatially integrated-distributed model of annual adsorbed NPS load was then developed via the correlation between sediment yield and adsorbed NPS load. Furthermore, a case study of the Jialing River basin in China was applied to validate the integrated model, the dynamic-distributed coupling among GIS technology, sediment yield model, and adsorbed NPS load model was achieved successfully. The simulation results demonstrate the following: (1) runoff and sediment are influenced greatly by rainfall intensity, SDR and vegetation cover; rainfall and land management show high sensitivities to the integrated model; the average annual adsorbed TN and TP pollution loads from 2006 to 2010 decreased by 76 and 74 % compared with the previous treatment (1990), respectively. (2) Spatio-temporal variations of adsorbed NPS nitrogen and phosphorus load are mainly related to different land use types and the background level of nutriments in topsoil; different land use types have different contribution rates; the largest contribution rates of adsorbed total nitrogen (TN, 58.9 %) and total phosphorus (TP, 53 %) loads are both from the dryland cropland. (3) The identification of critical source areas can help to implement the prevention and control measures aiming at the reduction of water environmental pollution. These results will provide useful and valuable information for decision makers and planners to take sustainable land use management and soil conservation measures for the control of sediment pollution in the Three Gorges reservoir area. The application of this model in the catchment shows that the integrated model may be used as a major tool to assess sediment yield risks and adsorbed NPS pollution load at mountainous watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号