首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on high-speed eclipse photometry of the dwarf nova V2051 Oph while it was in a low brightness state, at B  ≃ 16.2 mag. In comparison with the average IUE spectra, the ultraviolet continuum and emission lines appear reduced by factors of, respectively, ≃ 4 and ≃ 5. Flickering activity is mostly suppressed and the light curve shows the eclipse of a compact white dwarf at the disc centre which contributes ≃ 60 per cent of the total light at 3900–4300 Å. We use measurements of contact phases in the eclipse light curve to derive the binary geometry and to estimate masses and relevant dimensions. We find a mass ratio of q  = 0.19 ± 0.03 and an inclination of i  = 83 ± 2°. The masses of the component stars are M 1 = 0.78 ± 0.06 M⊙ and M 2 = 0.15 ± 0.03 M⊙. Our photometric model predicts K 1 = 83 ± 12 km s−1 and K 2 = 436 ± 11 km s−1. The predicted value of K1 is in accordance with the velocity amplitude obtained from the emission lines after a correction for asymmetric line emission in the disc is made. The secondary of V2051 Oph is significantly more massive than the secondaries of the other ultrashort period dwarf novae. V2051 Oph is probably a relatively young system, with a secondary star that has not had enough time to evolve out of thermal equilibrium.  相似文献   

2.
High-resolution spectroscopic observations around the Hα line and BVRI photometry of the eclipsing short-period RS CVn star UV Leo are presented. The simultaneous light-curve solution and radial velocity-curve solution led to the following values of the global parameters of the binary: temperatures   T 1= 6000 ± 100 K  and   T 2= 5970 ± 20 K  ; masses   M 1= 0.976 ± 0.067 M  and   M 2= 0.931 ± 0.052 M  ; separation   a = 3.716 ± 0.048 R  ; orbital inclination     ; radii   R 1= 1.115 ± 0.052 R  and   R 2= 1.078 ± 0.051 R  ; equatorial velocities   V 1= 98.8 ± 2.3 km s−1  and   V 2= 89.6 ± 2.7 km s−1  . These results lead to the conclusion that the two components of UV Leo are slightly oversized for their masses and lie within the main-sequence band on the mass–radius diagram, close to the isochrone 9 × 1010 yr.  相似文献   

3.
High-resolution spectroscopic observations around the Hα line of the binary star QX Cas covering the whole orbital period are presented. Our radial velocity solution, the first ever determined, requires an eccentric orbit with the following orbital parameters: eccentricity,   e = 0.22 ± 0.01  ; longitude of periastron,  ω= 45°± 5°  ; semi-amplitudes of the radial velocity curves of the primary and secondary stars,   K 1 sin  i = 125.8 ± 0.9 km s−1  and   K 2 sin  i = 144.8 ± 1.1 km s−1  ; gamma velocity,   V 0= 65.1 ± 0.5 km s−1  ; and mass ratio,   q = 0.869 ± 0.013  . The corresponding lower limits of the masses of the components and their separation are         , and   a sin  i = 31.34 ± 0.48 R  .  相似文献   

4.
Photoelectric, photographic and CCD UBV photometry, spectroscopic observations and star counts are presented for the open cluster Berkeley 58 to examine a possible association with the 4.37 d Cepheid CG Cas. The cluster is difficult to separate from the early-type stars belonging to the Perseus spiral arm, in which it is located, but has reasonably well-defined parameters: an evolutionary age of ∼108 yr, a mean reddening of   E ( B − V ) (B0) = 0.70 ± 0.03  s.e. and a distance of  3.03 ± 0.17 kpc ( V 0− M V = 12.40 ± 0.12  s.d.). CG Cas is a likely cluster coronal member on the basis of radial velocity, and its period increase of  +0.170 ± 0.014 s yr−1  and large light amplitude describe a Cepheid in the third crossing of the instability strip lying slightly blueward of strip centre. Its inferred reddening and luminosity are   E ( B − V ) = 0.64 ± 0.02  s.e. and  〈 M V 〉=−3.06 ± 0.12  . A possible K supergiant may also be a cluster member.  相似文献   

5.
We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variable V347 Pup (=LB 1800). There is evidence of irradiation on the inner hemisphere of the secondary star, which we correct for using a model to give a secondary-star radial velocity of   K R= 198 ± 5 km s−1  . The rotational velocity of the secondary star in V347 Pup is found to be   v sin  i = 131 ± 5 km s−1  and the system inclination is   i = 840 ± 23  . From these parameters we obtain masses of   M 1= 0.63 ± 0.04 M  for the white dwarf primary and   M 2= 0.52 ± 0.06 M  for the M0.5V secondary star, giving a mass ratio of   q = 0.83 ± 0.05  . On the basis of the component masses, and the spectral type and radius of the secondary star in V347 Pup, we find tentative evidence for an evolved companion. V347 Pup shows many of the characteristics of the SW Sex stars, exhibiting single-peaked emission lines, high-velocity S-wave components and phase-offsets in the radial velocity curve. We find spiral arms in the accretion disc of V347 Pup and measure the disc radius to be close to the maximum allowed in a pressureless disc.  相似文献   

6.
We have discovered that the spectrum of the well-known dwarf nova EM Cyg is contaminated by light from a K25V star (in addition to the K-type mass donor star). The K25V star contributes approximately 16 per cent of the light from the system and if not taken into account has a considerable effect upon radial velocity measurements of the mass donor star. We obtain a new radial velocity amplitude for the mass donor star of K 2=202±3 km s1, compared with the value of K 2=135±3 km s1 obtained in Stover, Robinson & Nather's classic study of EM Cyg. The revised value of the amplitude, combined with a measurement of rotational broadening of the mass donor, v  sin  i =140±6 km s1, leads to a new mass ratio of q M 2 M 1=0.88±0.05. This solves a long-standing problem with EM Cyg, because Stover et al.'s measurements indicated a mass ratio q >1, a value that should have led to dynamically unstable mass transfer for the secondary mass deduced by Stover et al. The revised value of the mass ratio, combined with the orbital inclination i =67±2°, leads to masses of 0.99±0.12 M and 1.12±0.08 M for the mass donor and white dwarf respectively. The mass donor is evolved, because it has a later spectral type (K3) than its mass would imply.
We discuss whether the K star could be physically associated with EM Cyg or not, and present the results of the spectroscopic study.  相似文献   

7.
A multifrequency analysis of the SX Phoenicis star BL Camelopardalis is presented on the basis of new high-speed photometry, along with fitting a total of 136 maxima. BL Cam is a multiple periodic pulsator. We find f 0=25.5768, f 1=25.2982, f 2=25.8622, f 3=31.5912, f 4=25.1065, f 5=25.5147 and f 6=25.6188 cycle d−1 together with the harmonics 51.1513 and 76.7268 cycle d−1 and combination frequencies f 0+ f 1, f 0+ f 2 and f 0+ f 3. The new frequency solution represents the light curves of BL Cam quite well. The observed minus calculated (O-C) analysis indicates that the fundamental frequency is in good agreement with the results of Fourier analysis.  相似文献   

8.
We present the results of a spectroscopic multisite campaign for the β Cephei star 12 (DD) Lacertae. Our study is based on more than thousand high-resolution high S/N spectra gathered with eight different telescopes in a time span of 11 months. In addition, we make use of numerous archival spectroscopic measurements. We confirm 10 independent frequencies recently discovered from photometry, as well as harmonics and combination frequencies. In particular, the slowly pulsating B-stars (SPB)-like g -mode with frequency 0.3428 d−1 reported before is detected in our spectroscopy. We identify the four main modes as  (ℓ1, m 1) = (1, 1), (ℓ2, m 2) = (0, 0), (ℓ3, m 3) = (1, 0)  and  (ℓ4, m 4) = (2, 1)  for   f 1= 5.178 964 d−1, f 2= 5.334 224 d−1, f 3= 5.066 316 d−1  and   f 4= 5.490 133 d−1  , respectively. Our seismic modelling shows that f 2 is likely the radial first overtone and that the core overshooting parameter  αov  is lower than 0.4 local pressure scale heights.  相似文献   

9.
Simultaneous spectroscopic and photometric observations of the Z Cam type dwarf nova SY Cancri were used to obtain absolute flux calibrations. A comparison of the photometric calibration with a wide-slit spectrophotometric calibration showed that either method is equally satisfactory. A radial velocity study of the secondary star, made using the far-red Na  i doublet, yielded a semi-amplitude of   K 2= 127 ± 23 km s−1  . Taking the published value of  86 ± 9 km s−1  for K 1 gives a mass ratio of   q = M 2/ M 1= 0.68 ± 0.14  ; this is very different from the value of  1.13 ± 0.35  quoted in the literature. Using the new lower mass ratio, and constraining the mass of the white dwarf to be within reasonable limits, then leads to a mass for the secondary star that is substantially less than would be expected for its orbital period if it satisfied a main-sequence mass–radius relationship. We find a spectral type of M0 that is consistent with that expected for a main-sequence star of the low mass we have found. However, in order to fill its Roche lobe, the secondary must be significantly larger than a main-sequence star of that mass and spectral type. The secondary is definitely not a normal main-sequence star.  相似文献   

10.
The bright southern binary star β Centauri (HR 5267) has been observed with the Sydney University Stellar Interferometer (SUSI) and spectroscopically with the European Southern Observatory Coude Auxiliary Telescope and Swiss Euler telescope at La Silla. The interferometric observations have confirmed the binary nature of the primary component and have enabled the determination of the orbital parameters of the system. At the observing wavelength of 442 nm the two components of the primary system have a magnitude difference of  0.15 ± 0.02  . The combination of interferometric and spectroscopic data gives the following results: orbital period  357.00 ± 0.07 d  , semimajor axis  25.30 ± 0.19 mas  , inclination  674 ± 03  , eccentricity  0.821 ± 0.003  , distance  102.3 ± 1.7 pc  , primary and secondary masses   M 1= M 2= 9.1 ± 0.3 M  and absolute visual magnitudes of the primary and secondary   M 1 V =−3.85 ± 0.05  and   M 2 V =−3.70 ± 0.05  , respectively. The high degree of accuracy of the results offers a fruitful starting point for future asteroseismic modelling of the pulsating binary components.  相似文献   

11.
This paper presents a global analysis of the 2MASS (Two Micron All Sky Survey) data as observed in seven fields at different galactic latitudes in our Galaxy. The data allow the preliminary determination of the scale parameters, which lead to strong constraints on the radial and vertical structure of the galactic thin and thick disc. The interpretation of star counts and colour distributions of stars in the near-infrared with the synthetic stellar population model gives strong evidence that the galactic thin disc density scalelength ( h R ) is rather short (2.8±0.3 kpc). The galactic thick disc population is revisited in the light of new data. We find the thick disc to have a local density of 3.5±2.0 per cent of the thin disc, exponential scaleheight ( h z ) of 860±200 pc and exponential scalelength ( h R ) of 3.7±0.50.8 kpc.  相似文献   

12.
Intermediate-resolution (0.5–1 Å) optical spectroscopy of the cataclysmic variable (CV) SY Cnc reveals the spectrum of the donor star. Our data enable us to resolve the orbital motion of the donor and provide a new orbital solution, binary mass ratio and spectral classification. We find that the donor star has spectral-type G8 ± 2 V and orbits the white dwarf with   P = 0.382 3753 ± 0.000 0003  d,   K 2= 88.0 ± 2.9  km s−1 and   V sin  i = 75.5 ± 6.5  km s−1. Our values are significantly different from previous works and lead to   q = M 2/ M 1= 1.18 ± 0.14  . This is one of the highest mass ratios known in a CV and is very robust, because it is based on resolving the rotational broadening over a large number of metallic absorption lines. The donor could be a slightly evolved main sequence or descendant from a massive star which underwent an episode of thermal time-scale mass transfer.  相似文献   

13.
We present time-resolved, J ‐band (1.025–1.340 μm) infrared spectra of the short-period dwarf novae (DNe) WZ Sge and VY Aqr, and single spectra of the short-period DN EF Peg and the nova-like variable PX And. There is some evidence in the spectra of VY Aqr and EF Peg that we have detected the secondary star, both in the continuum slope and also through the possible presence of spectral features. The spectra of WZ Sge and PX And, on the other hand, show no evidence for the secondary star, with upper limits for its contribution to the J ‐band light of 10 and 20 per cent respectively. The spectral type of the secondary in WZ Sge is constrained to be later than M7.5V. Using skew mapping, we have been able to derive a value for the radial velocity semi-amplitude of the secondary star in VY Aqr of K R =320±70 km s−1, which in conjunction with K W from Thorstensen & Taylor gives a mass ratio of q =0.15±0.04.  相似文献   

14.
We present phase resolved optical spectroscopy and Doppler tomography of V1341 Cygni, the optical counterpart to the neutron star low-mass X-ray binary (LMXB) Cygnus X-2 (Cyg X-2). We derive a radial velocity (RV) curve for the secondary star, finding a projected RV semi-amplitude of   K 2= 79 ± 3 km s−1  , leading to a mass function of  0.51 ± 0.06 M, ∼30  per cent lower than the previous estimate. We tentatively attribute the lower value of K 2 (compared to that obtained by other authors) to variations in the X-ray irradiation of the secondary star at different epochs of observations. The limited phase coverage and/or longer timebase of previous observations may also contribute to the difference in K 2. Our value for the mass function implies a primary mass of  1.5 ± 0.3 M  , somewhat lower than previous dynamical estimates, but consistent with the value found by analysis of type-I X-ray bursts from this system. Our Doppler tomography of the broad He  ii λ4686 line reveals that most of the emission from this line is produced on the irradiated face of the donor star, with little emission from the accretion disc. In contrast, the Doppler tomogram of the N  iii λ4640.64 Bowen blend line shows bright emission from near the gas stream/accretion disc impact region, with fainter emission from the gas stream and secondary star. This is the first LMXB for which the Bowen blend is dominated by emission from the gas stream/accretion disc impact region, without comparable emission from the secondary star. This has implications for the interpretation of Bowen blend Doppler tomograms of other LMXBs for which the ephemeris may not be accurately known.  相似文献   

15.
We present a Roche tomography reconstruction of the secondary star in the cataclysmic variable AE Aqr. The tomogram reveals several surface inhomogeneities that are due to the presence of large, cool star-spots. In addition to a number of lower latitude spots, the maps also show the presence of a large, high-latitude spot similar to that seen in Doppler images of rapidly rotating isolated stars, and a relative paucity of spots at a latitude of 40°. In total, we estimate that some 18 per cent of the Northern hemisphere of AE Aqr is spotted.
We have also applied the entropy landscape technique to determine accurate parameters for the binary system. We obtain optimal masses   M 1= 0.74 M, M 2= 0.50 M  , a systemic velocity  γ=−63 km s−1  and an orbital inclination   i = 66°  .
Given that this is the first study to successfully image star-spots on the secondary star in a cataclysmic variable, we discuss the role that further studies of this kind may play in our understanding of these binaries.  相似文献   

16.
We present high- and medium-resolution spectroscopic observations of the cataclysmic variable BF Eridani (BF Eri) during its low and bright states. The orbital period of this system was found to be 0.270881(3) d. The secondary star is clearly visible in the spectra through the absorption lines of the neutral metals Mg  i , Fe  i and Ca  i . Its spectral type was found to be K3±0.5. A radial velocity study of the secondary yielded a semi-amplitude of   K 2= 182.5 ± 0.9 km s−1  . The radial velocity semi-amplitude of the white dwarf was found to be   K 1= 74 ± 3 km s−1  from the motion of the wings of the Hα and Hβ emission lines. From these parameters, we have obtained that the secondary in BF Eri is an evolved star with a mass of  0.50–0.59 M  , whose size is about 30 per cent larger than a zero-age main-sequence single star of the same mass. We also show that BF Eri contains a massive white dwarf  ( M 1≥ 1.2 M)  , which allows us to consider the system as a Type Ia supernova progenitor. BF Eri also shows a high γ-velocity  (γ=−94 km s−1)  and substantial proper motion. With our estimation of the distance to the system  ( d ≈ 700 ± 200 pc)  , this corresponds to a space velocity of ∼350 km s−1 with respect to the dynamical local standard of rest. The cumulative effect of repeated nova eruptions with asymmetric envelope ejection might explain the high space velocity of the system. We analyse the outburst behaviour of BF Eri and question the current classification of the system as a dwarf nova. We propose that BF Eri might be an old nova exhibiting 'stunted' outbursts.  相似文献   

17.
We report on Two-Micron All-Sky Survey (2MASS) J01542930+0053266, a faint eclipsing system composed of two M dwarfs. The variability of this system was originally discovered during a pilot study of the 2MASS Calibration Point Source Working Data base. Additional photometry from the Sloan Digital Sky Survey yields an eight-passband light curve from which we derive an orbital period of  2.639 0157 ± 0.000 0016  d. Spectroscopic followup confirms our photometric classification of the system, which is likely composed of M0 and M1 dwarfs. Radial velocity measurements allow us to derive the masses  (M1= 0.66 ± 0.03 M; M2= 0.62 ± 0.03 M)  and radii  (R1= 0.64 ± 0.08 R; R2= 0.61 ± 0.09 R)  of the components, which are consistent with empirical mass–radius relationships for low-mass stars in binary systems. We perform Monte Carlo simulations of the light curves which allow us to uncover complicated degeneracies between the system parameters. Both stars show evidence of Hα emission, something not common in early-type M dwarfs. This suggests that binarity may influence the magnetic activity properties of low-mass stars; activity in the binary may persist long after the dynamos in their isolated counterparts have decayed, yielding a new potential foreground of flaring activity for next generation variability surveys.  相似文献   

18.
The concept of Roche lobe overflow is fundamental to the theory of interacting binaries. Based on potential theory, it is dependent on all the relevant material corotating in a single frame of reference. Therefore if the mass losing star is asynchronous with the orbital motion or the orbit is eccentric, the simple theory no longer applies and no exact analytical treatment has been found. We use an analytic approximation whose predictions are largely justified by smoothed particle hydrodynamic simulations (SPH). We present SPH simulations of binary systems with the same semi-major axis   a = 5.55 R  , masses   M 1= 1 M, M 2= 2 M  and radius   R 1= 0.89 R  for the primary star but with different eccentricities   e = 0.4, 0.5, 0.6  and 0.7. In each case the secondary star is treated as a point mass. When   e = 0.4  no mass is lost from the primary while at   e = 0.7  catastrophic mass transfer, partly through the L2 point, takes place near periastron. This would probably lead to common-envelope evolution if star 1 were a giant or to coalescence for a main-sequence star. In between, at   e ≥ 0.5  , some mass is lost through the L1 point from the primary close to periastron. However, rather than being all accreted by the secondary, some of the stream appears to leave the system. Our results indicate that the radius of the Roche lobe is similar to circular binaries when calculated for the separation and angular velocity at periastron. Part of the mass loss occurs through the L2 point.  相似文献   

19.
We have performed high-speed UBV photometric observations on the peculiar binary V Sagittae. Using three new eclipse timings we update the orbital ephemeris and convert it to a dynamical time-scale (TDB). We also searched for quasi-periodic oscillations but did not detect them. Using the Wilson–Devinney algorithm we have modelled the light curve to find the stellar parameters of V Sge. We find that the system is a detached binary but that the primary star is very close to filling its Roche lobe, while the secondary star fills 90 per cent of its Roche lobe volume. We find temperatures of the primary and the secondary star to be T 1=41 000 K and T 2=22 000 K. We find i =72° and masses of 0.8 M and 3.3 M for the primary and secondary stars respectively. De-archived Hubble Space Telescope ( HST ) spectroscopy of V Sge shows evidence of mass loss via a wind or winds. In addition we report radio observations of V Sge during an optical high state at 2 cm, 3.6 cm and 6 cm wavelengths. The 3.6 cm emission is increased by a factor of more than six compared with an earlier detection in a previous optical high state.  相似文献   

20.
The sdB star PG 1336−018 is found to be a very short-period eclipsing binary system, remarkably similar to the previously unique system HW Vir. In addition, and unlike HW Vir, the sdB star in the PG 1336 system shows rapid oscillations of the type found in the recently discovered sdB pulsators, or EC 14026 stars. The orbital period, 0.101 0174 d, is one of the shortest known for a detached binary. Analysis of photoelectric and CCD photometry reveals pulsation periods near 184 and 141 s, with semi-amplitudes of ∼0.01 and ∼0.005 mag respectively. Both oscillations might have variable amplitude, and it is probable that other frequencies are present with amplitudes ∼0.003 mag or less. The 184- and 141-s pulsations are in the range of periods predicted by models for hot horizontal-branch stars. Analysis of medium-dispersion spectrograms yields T eff=33 000±1000 K and log g =5.7±0.1 for the sdB primary star, a radial velocity semi-amplitude K 1=78±3 km s−1 and a system velocity γ=6±2 km s−1. Spectrograms from the IUE Final Archive give T eff=33 000±3000 K and E ( B − V )=0.05 for log g =6.0 models. The derived angular radius leads to a distance of 710±50 pc for the system, and an absolute magnitude for the sdB star of +4.1±0.2. A preliminary analysis of U , V and R light curves indicates the orbital inclination to be near 81° and the relative radii to be r 1=0.19 and r 2=0.205. Assuming the mass of the sdB primary to be 0.5 M⊙ leads to a mass ratio q =0.3 for the system, and indicates that the secondary is a late-type dwarf of type ∼M5. As with HW Vir, it is necessary to invoke small limb-darkening coefficients and high albedos for the secondary star to obtain reasonable fits to the observed light curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号