首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the summer of 1984, a three-dimensional, high-resolution microearthquake network was operated in the vicinity of two coal mines beneath Gentry Mountain in the eastern Wasatch Plateau, Utah. During a six-week period, approximately 3,000 seismic events were observed of which the majority were impulsive, higher frequency (>10 Hz), short duration (<2–3 sec) events probably associated with the caving of the roof from a longwall operation. In contrast, 234 of the largest located events appeared to occur predominantlybeneath the mines to a depth of 2 to 3 km consistent with previous studies. The magnitudes of these events ranged from less thanM c 0 to 1.6. In addition to the unusual depths of these latter events, an anomalous aspect displayed by the events was an apparent dilatational focal mechanism suggesting a non-double-couple, possibly implosional source. Implosional events have been observed in other studies of mine seismicity; however, the generally inadequate instrumental coverage of the focal sphere has cast some doubt on the validity of such mechanisms. Previously suggested source mechanisms for such implosional events have included tensional failure through strata collapse, and a shear-implosional displacement mechanism. Shear failure must be involved in the failure process of the Gentry Mountain implosional events as evidenced by well-defined shear waves in the observed seismograms. Simultaneous monitoring in the East Mountain coal mining area to the south by the University of Utah revealed typical shear failure events mixed with implosional events. The observed double-couple, reverse focal mechanisms at East Mountain were similar to mechanisms determined in previous studies and a composite focal mechanism determined in this study for a sequence outside the mining areas. This suggested that the shear events within the mining areas are being influenced by the regional tectonic stress field. Thus in addition to the seismic events associated with caving of the roof from the longwall operation, there appear to be at least two other types of mining-induced seismic events occurring in the eastern Wasatch Plateau, both submine in origin: (1) events characterized by apparent non-double-couple possibly implosional focal mechanisms and well-defined shear waves; and (2) shear events, which are indistinguishable from tectonic earthquakes and may be considered mining triggered earthquakes. The small mining-induced stress changes that occur beyond a few hundred meters from the mine workings suggest both types of seismic events are occurring on critically stressed, pre-existing zones of weakness. Topography, overburden, method of mining, and mine configuration also appear to be significant factors influencing the occurrence of the implosional submine events.  相似文献   

2.
Coal mining in the Saar mine, Germany, is accompanied by mining-induced seismic events. Strong events occur only in certain areas of the mine, other areas exhibit almost no seismicity. Shear events occur simultaneously to non-shear events. The shear events occur in different depths but their epicenters do concentrate in bands. The strike of the bands coincides with the strike of larger regional faults in the area. The seismic events of the Saar mine show some characteristics which distinguish them from seismic events observed in other German coalfields. The Gutenberg–Richter relation, for example, does not hold for these events. Furthermore, radiated seismic energy and extracted coal volume are not correlated. In the Primsmulde field a strong seismic event was observed even before mining in that region started. The event was triggered just by driving roadways into the field. The shear events cannot be explained by the mining process alone. They are presumably induced in certain regions (bands) under tectonic load by an interaction of mining-induced and tectonic stresses. In February 2008, extraction in the Primsmulde field induced a seismic event of magnitude 4, which led to surface vibrations reaching 93 mm/s. After this event, the Primsmulde field had to be abandoned. Future extraction of the Saar mine will be restricted to some small areas not intersected by the event bands found in the Dilsburg Ost and Primsmulde fields. The Saar mine will close in 2011.  相似文献   

3.
Field estimates of the normal and shear compliance of water saturated fractures were obtained from a seismic experiment carried out on a wave‐cut platform of Upper Caithness Flagstone on the North coast of Scotland. The rocks are cut by two orthogonal sets of vertical fractures. Vertical geophones were glued to the rock surface and seismic waves were generated by striking the surface with a sledge hammer. First arrival traveltimes were obtained for source‐receiver distances up to 30 m. Differences of compressional velocity with direction across the platform were interpreted as resulting from the compliance of the fractures intersected by the transmitted waves. The average normal compliance for fractures at this site is 4.0 × 10?12± 1.0 × 10?12 m/Pa. There is much less certainty about the precise value of shear compliance. However, the normal/shear compliance ratio is determined to be ≤0.1.  相似文献   

4.
The Lihir open pit mine in Papua New Guinea is located inside an old volcano where geothermal activity is strongly present. Outbursts of hot water and steam into the mining areas were a major safety concern. Passive seismic monitoring was carried out at the mine to investigate whether the geothermal activities could be detected and located using microseismic techniques in a mining environment. In this trial, sixteen triaxial geophones which can withstand temperature up to 200°C were used and installed in four deep boreholes inside the pit. The microseismic events were discriminated using the STA/LTA triggering criterion. During 6 weeks of monitoring, more than 17,000 events were recorded. Approximately 12% of the events showed harmonic vibration characteristics similar to those observed in other geothermal and volcanic areas, suggesting that the geothermal activity inside the pit was captured by the microseismic monitoring system. More than 75% of the events present both P and S waves and they were interpreted to be associated with rock fracturing due to stress release near the bottom of the pit. Many geothermal-type events were located in areas where shear events occurred, implying that the detected geothermal events were not far from the mining area below the pit and they may also be associated with mining. The borehole installation of the geophones significantly reduced the interference of mining noise and achieved good observation of the seismic events. However, equipment installation requires great attention as the geophones may be destroyed due to unexpected rising temperature within the boreholes.  相似文献   

5.
Seismological models for mining-induced seismic events   总被引:1,自引:0,他引:1  
  相似文献   

6.
—?On September 29, 1996, a routine mining blast of about 390 metric tons was detonated underground at the Kirovskiy mine in the central Kola Peninsula. The United States was notified two weeks in advance that the blast was to take place and was given the date, approximate time, location and total charge. The explosion was detected and located by the prototype International Data Center (pIDC) and published in the Reviewed Event Bulletin (REB). Detailed information about the blast, including the type and depth of mining operation, the underground charge configuration, and the blasting delay pattern, is reviewed and combined with a seismological analysis of the event. The seismic analysis points to a possible associated tectonic component to the blast, consisting of a small rock burst or induced tremor, spall, or some combination of these mechanisms, that may have enhanced the shear waves, produced large Rg waves at low frequency, and small Pn/Sn and Pn/Lg amplitude ratios at high frequency. While these discriminants might identify the event as an earthquake, the spectral/cepstral analysis of the event clearly shows the ripple-fire delays. This event provides important confidence-building measures for both location calibration, in the form of travel-time corrections for location of mine events in this region, and for improved understanding of seismic discriminants expected for large mine blasts that may have an associated induced tectonic component (e.g., spall, mine tremor or rock burst).  相似文献   

7.
As part of a larger multi-institutional seismic monitoring experiment during June–August 1984 in the eastern Wasatch Plateau, Utah, data from a subarray of 20 portable seismographs were used to investigate seismicity in the East Mountain area, an area of active underground coal mining and intense microseismicity. Eight stations of the subarray were concentrated on top of East Mountain, about 600 m above mine level, at an average spacing of 2 to 3 km. The primary objective was the accurate resolution of hypocenters and focal mechanisms for seismic events originating at submine levels. Data from high-resolution seismic reflection profiles and drill-hole sonic logs yielded a detailed velocity model. This model features a strong velocity gradient in the uppermost 1 km, which has a significant effect on takeoff angles for first-arrivingP-waves from shallow seismic events. Two hundred epicenters located with a precision of ±500 m cluster within an area about 5 km in diameter and show an evident spatial association with four sites of longwall mining during the study period. A special set of foci rigorously tested for focal-depth reliability indicates submine seismicity predominating within 500 m of mine level and extending at least to 1 km, and perhaps to 2 km, below mine level. Continuous monitoring for a 61-day period (June 15–August 15) bracketed a 16-day mining shutdown (July 7–22) during which significant seismicity, comparable to that observed before the shutdown, was observed. Ten focal mechanisms for seismic events originating at or down to 2 km below mine level nearly all imply reverse faulting, consistent with previous results and the inferred tectonic stress field. Enigmatic events recorded with all dilatational first motions can be fit with double-couple normal-faulting solutions if they in fact occurabove mine level, perhaps reflecting overburden subsidence. If these events are constrained to occur at mine level, their first-motion distributions are incompatible with a double-couple source mechanism.  相似文献   

8.
Forty-six mining-induced seismic events with moment magnitude between ?1.2 and 2.1 that possibly caused damage were studied. The events occurred between 2008 and 2013 at mining level 850–1350 m in the Kiirunavaara Mine (Sweden). Hypocenter locations were refined using from 6 to 130 sensors at distances of up to 1400 m. The source parameters of the events were re-estimated using spectral analysis with a standard Brune model (slope ?2). The radiated energy for the studied events varied from 4.7 × 10?1 to 3.8 × 107 J, the source radii from 4 to 110 m, the apparent stress from 6.2 × 102 to 1.1 × 106 Pa, energy ratio (E s/E p) from 1.2 to 126, and apparent volume from 1.8 × 103 to 1.1 × 107 m3. 90% of the events were located in the footwall, close to the ore contact. The events were classified as shear/fault slip (FS) or non-shear (NS) based on the E s/E p ratio (>10 or <10). Out of 46 events 15 events were classified as NS located almost in the whole range between 840 and 1360 m, including many events below the production. The rest 31 FS events were concentrated mostly around the production levels and slightly below them. The relationships between some source parameters and seismic moment/moment magnitude showed dependence on the type of the source mechanism. The energy and the apparent stress were found to be three times larger for FS events than for NS events.  相似文献   

9.
分析矿震破裂机制及微震的时空分布能够为矿区灾害评估提供更多的有效信息.本研究基于密集台阵观测对2019 年11 月12 日辽宁抚顺2.4 级矿震开展震源参数研究,震源机制解显示地震破裂包含明显的非双力偶分量,表现为体积压缩的塌陷机制,且震源深度较浅,最佳拟合矩心深度为0.6 km.同时,对 11 月3 日—25 日记录...  相似文献   

10.
The relative source time function (RSTF) inversion uncertainty assessment was performed for two small, mining-induced seismic events (M W =2.9 and 3.0) that occurred at Rudna copper mine in Poland. The seismograms of selected events were recorded by the seismic net work composed of over 60, short-period, vertical seismometers, recording ground velocity, located in the distance ranging from 400 m up to 8 km from their hypocenters. The RSTFs were calculated for each seismic station independently, using the empirical Green’s function technique. The pseudospectral approximation of the sought RSTF by a finite sum of Gaussian kernel functions was used and the inverse problem was solved with the adaptive simulated annealing algorithm. Both methods improved the stability of the deconvolution procedure and physical correctness of the final solution in comparison to the classical deconvolution methods. To estimate the inversion uncertainties, classical Markov-chain Monte-Carlo techniques were used. The uncertainty analysis allows for improved selection of a priori data to the following inversion for kinematic rupture process.  相似文献   

11.
A single scattering model was used to analyse the temporary changes in the mean density of scattered waves in a discrete random medium. The model of the mean energy density, originally proposed bySato (1977) for spherical radiation and isotropic scattering, has been modified and applied to a medium in which the scatterers are confined to a specified volume. The time variation of the early part of the mean energy density function for the different source durations was investigated. The dominant effect on the theoretical mean energy density is caused by the specified volume containing scatterers. The duration of the source pulse influences the early part of the coda fort/t 0<1.2, wheret is the lapse time measured from the source origin time, andt 0is arrival time of the body wave.The analysis of the coda signal of micro-events occurring immediately in front of the face enables us to estimate the size of the fracture zone induced by the stope. The model of the mean energy density of coda for a medium containing scatterers close to the seismic source was used to analyse a large number of events recorded close to an advancing mine face in a deep level gold mine in South Africa. The coda decay rate has two trends: the first, with a steep decay of coda, is produced by a larger deviation of rock parameters and/or larger size of the scatterers; the second trend, which decays more slowly, has the corresponding mean-free path ranging from 20 m to 200 m. The analysis indicates that the rock mass about 15–20 m from the stope contains a large proportion of fractured and blocked rock, which is the source of scattering. The scattering of theS-wave was much stronger and more stable, with the mean-free path varying from 11 m to 45 m. This is due to the shorter wavelength of theS wave in comparison with theP wave. The quality factor for theP coda wave varies from 30 to 100 in the fracture zone of stope and outside this zone it has a value of 300. The quality factor of theS wave varies from 20 to 78 in the equivalent volume. For rock surrounding the stope the ratioQ sp –1 /Q ss –1 varied from 0.31 to 0.69. This suggests that the radii of scatterers are smaller than 3.5 m.  相似文献   

12.
Geotomographic imaging in the study of mining induced seismicity   总被引:1,自引:0,他引:1  
Geotomographic imaging is a technique which allows seismic waves to be used to gain information about the internal structure of rock masses, in a way conceptually similar to medical CAT scanning. Traditional approaches to the study of mining-induced seismic phenomena have concentrated on using passive monitoring methods. This paper gives an overview of the developments in the acquisition, processing and interpretation of geotomographic data and outlines how images can be used in conjunction with passive techniques to study mining-induced seismicity.Presented at the Fred Leighton Memorial Workshop on Mining Induced Seismicity, Montreal 1987.  相似文献   

13.
Scaling relations for seismic events induced by mining   总被引:1,自引:0,他引:1  
The values of seismic moment andS-wave corner frequency from 1575 seismic events induced in South African, Canadian, Polish, and German underground mines were collected to study their scaling relations. The values ofP-wave corner frequency from 649 events were also available. Seismic moments of these events range from 5*103 to 2*1015 N·m (moment magnitude is from –3.6 to 4.1), theS-wave corner frequency ranges from 0.7 to 4438 Hz, and theP-wave corner frequency is between 5 and 4010 Hz. The slope of a regression line between the logarithm ofS- andP-wave corner frequencies is equal to one, and the corner frequencies ofP waves are higher than those ofS waves on the average by about 25 percent. In studies of large and moderate earthquakes it has been found that stress drop is approximately independent of the seismic moment, which means that seismic moment is inversely proportional to the third power of corner frequency. Such a behavior was confirmed for most of the data considered here. A breakdown in the similarity betwen large and small events seems to occur for the events with moment magnitude below –2.5. The average values of seismic moment referred to the same range of corner frequency, however, are vastly different in various mining areas.  相似文献   

14.
Summary The paper is intended as a contribution to the quantitative analysis of travel-time curves of seismic events recorded in the Ostrava-Karviná District (OKD). The input data represent a set of 2621 seismic events, recorded by the local seismological network of 26 mine stations DSLA and a regional diagnostic polygon consisting of five surface Lennartz stations. All the events were processed automatically in the Operational Seismological Centre of the Czechoslovak Army Mine in Karviná and stored in the seismological data base. The results are presented in the form of graphs of arrival times versus distance for the whole OKD, for two mines and one tectonic block.Travel-time curves of direct P and S waves, as well as of reflected and refracted waves are given. The direct P and S waves propagate well practically throughout the whole region studied, but their apparent velocities of propagation are affected by the properties of the rock medium.As a result of the complicated geological conditions, the recorded wave image is quite complicated. Methods of mathematical modelling, using kinematic and dynamic parameters of seismic waves, will have to be applied to identify the separate wave groups uniquely.  相似文献   

15.
Relationships between the locations of mining-induced seismic events, local fault structure, and mine geometry were examined in a deep hard-rock mine in northern Idaho. Stopes experiencing rock bursts and other large seismic events were found to fall into two structural regimes: the Silver Vein, and the N48°W Trend, a steeply dipping plane of seismic activity that is subparallel to major local steeply dipping faults which bound blocky structures. The N48°W Trend also intersects a shaft that was seriously damaged when fault gouge was expelled into the opening during a 3-month period of high seismic energy release. Models of stress interaction are used to support the hypothesis that mining-induced deformation was mobilized along a 1.5 km length of the N48°W Trend. Specifically, numerical models are used to simulate rupture of seismic events and estimate induced changes in the quasi-static stress field. A Coulomb failure criterion is used with these results to estimate the spatial variation in potential for slip on planes parallel to local faulting. Increases in the potential for slip on fault planes subparallel to the N48°W Trend are consistent with activation of deformation along its 1.5 km length. For events with constant seismic moment, stress drop is shown to be far more important than source dimension in elevating slip potential along the observed plane of seismic activity  相似文献   

16.
Over the last 25 years mining-induced seismicity in the Ruhr area has continuously been monitored by the Ruhr-University Bochum. About 1,000 seismic events with local magnitudes between 0.7 ≤ M L ≤ 3.3 are located every year. For example, 1,336 events were located in 2006. General characteristics of induced seismicity in the entire Ruhr area are spatial and temporal correlation with mining activity and a nearly constant energy release per unit time. This suggests that induced stresses are released rapidly by many small events. The magnitude–frequency distribution follows a Gutenberg–Richter relation which is a result from combining distributions of single longwalls that themselves show large variability. A high b-value of about 2 was found indicating a lack of large magnitude events. Local analyses of single longwalls indicate that various factors such as local geology and mine layout lead to significant differences in seismicity. Stress redistribution acts very locally since differences on a small scale of some hundreds of meters are observed. A regional relation between seismic moment M 0 and local magnitude M L was derived. The magnitude–frequency distribution of a single longwall in Hamm was studied in detail and shows a maximum at M L = 1.4 corresponding to an estimated characteristic source area of about 2,200 m2. Sandstone layers in the hanging or foot wall of the active longwall might fail in these characteristic events. Source mechanisms can mostly be explained by shear failure of two different types above and below the longwall. Fault plane solutions of typical events are consistent with steeply dipping fracture planes parallel to the longwall face and nearly vertical dislocation in direction towards the goaf. We also derive an empirical relation for the decay of ground velocity with epicenter distance and compare maximum observed ground velocity to local magnitude. This is of considerable public interest because about 30 events larger than M L ≥ 1.2 are felt each month by people living in the mining regions. Our relations, for example, indicate that an event in Hamm with a peak ground velocity of 6 mm/s which corresponds to a local magnitude M L between 1.7 and 2.3 is likely to be felt within about 2.3 km radius from the event.  相似文献   

17.
The performance of an underground excavation at the Lucky Friday Mine that was subjected to repetitive episodes of mining-induced seismic activities is assessed. Field measurements indicate that an underground excavation may respond to mining-induced seismicity with step changes in displacement of the rock mass around the excavation or step changes in excavation closures. However, step changes in displacement or closure were also observed without the presence of mine seismic events. This behavior may be explained using the concept of stick-slip on joints or bedding planes within the rock mass. The stick-slip mechanism is believed to be controlled by the state of stresses at a joint or bedding plane. Through this mechanism, joint displacement is accumulated in a progressive fashion leading to a weakening of rock mass around an excavation. As a result, the excavation becomes less stable and therefore is more susceptible to seismic impacts. The concept of using peak particle velocity to assess damage threshold for underground excavations may not be conservative when considering the effect of rock mass fatigue.  相似文献   

18.
For years, severe rockburst problems at the Lucky Friday mine in northern Idaho have been a persistent safety hazard and an impediment to production. An MP250 based microseismic monitoring system, which uses simple voltage threshold picking of first arrivals, has been used in this mine since 1973 to provide source locations and energy estimates of seismic events. Recently, interest has been expressed in developing a whole waveform microseismic monitoring system for the mine to provide more accurate source locations and information about source characteristics. For this study, we have developed a prototype whole-waveform microseismic monitoring system based on a 80386 computer equipped with a 50 kHz analog-digital convertor board. The software developed includes a data collection program, a data analysis program, and an event detection program. Whole-waveform data collected and analyzed using this system during a three-day test have been employed to investigate sources of error in the hypocenter location process and to develop an automatic phase picker appropriate for microseismic events.Comparison of hypocenter estimates produced by the MP250 system to those produced by the whole-waveform system shows that significant timing errors are common in the MP250 system and that these errors caused a large part of the scatter evident in the daily activity plots produced at the mine. Simulations and analysis of blast data show that analytical control over the solutions is strongly influenced by the array geometry. Within the geophone array, large errors in the velocity model or moderate timing errors may result in small changes in the solution, but outside the array, the solution is very sensitive to small changes in the data.Our whole-waveform detection program picks event onset times and determines event durations by analysis of a segmented envelope function (SEF) derived from the microseismic signal. The detection program has been tested by comparing its arrival time picks to those generated by human analysis of the data set. The program picked 87% of the channels that were picked by hand with a standard error of 0.75 milliseconds. Source locations calculated using times provided by our entire waveform detection program were similar to those calculated using hand-picked arrival times. In particular, they show far less scatter than source locations calculated using arrival times based on simple voltage threshold picking of first arrivals.  相似文献   

19.
We utilized nuclear explosions from the Degelen Mountain sub-region of the Semipalatinsk Test Site (STS), Kazakhstan, to assess seismic location capability directly. Excellent ground truth information for these events was either known or was estimated from maps of the Degelen Mountain adit complex. Origin times were refined for events for which absolute origin time information was unknown using catalog arrival times, our ground truth location estimates, and a time baseline provided by fixing known origin times during a joint hypocenter determination (JHD). Precise arrival time picks were determined using a waveform cross-correlation process applied to the available digital data. These data were used in a JHD analysis. We found that very accurate locations were possible when high precision, waveform cross-correlation arrival times were combined with JHD. Relocation with our full digital data set resulted in a mean mislocation of 2 km and a mean 95% confidence ellipse (CE) area of 6.6 km2 (90% CE: 5.1 km2), however, only 5 of the 18 computed error ellipses actually covered the associated ground truth location estimate. To test a more realistic nuclear test monitoring scenario, we applied our JHD analysis to a set of seven events (one fixed) using data only from seismic stations within 40° epicentral distance. Relocation with these data resulted in a mean mislocation of 7.4 km, with four of the 95% error ellipses covering less than 570 km2 (90% CE: 438 km2), and the other two covering 1730 and 8869 km2 (90% CE: 1331 and 6822 km2). Location uncertainties calculated using JHD often underestimated the true error, but a circular region with a radius equal to the mislocation covered less than 1000 km2 for all events having more than three observations.  相似文献   

20.
Microearthquake activity (impulsive, transient seismic events, with durations up to several seconds at a distance of 500 m, that exhibit a coda with a shift toward lower frequencies with increasing time) was monitored for a three-month period by a single seismograph sited directly above an undergound longwall mine in the coal-mining region of Buchanan County, Virginia, U.S.A. The purpose of this investigation was to determine if precursory increases in microseismicity prior to cavings (subsidence) of overburden in the mine were present and, if so, could they be detected by surface seismographic observations. The first two recording weeks were prior to the beginning of coal removal operations at the monitored mine. A comparision of the before and after levels of microearthquake occurrence indicated a sevenfold increase to about seven seismic events/hour that was attendant with the development of the time over the level of the background, non-coal-mining period seismicity.A total of over 15,000 microearthquakes were recorded during the monitoring period, most of which occurred during the actual coal-mining operations. The workday rate exceeded 30 seismic events/hour in contrast with the non-workday rate of about seven such events/hour. Rock and coal fracturing ahead of the mine plow are believed to be the primary cause of the majority of these very small seismic events. Cavings and rockbursts (violent eruptions that propel rock debris into the mine) also contributed to the total seismic activity. It appears that cavings, some of which were large enough to be felt on ground surface, are the primary source of the non-plowing related seismicity as larger free surface areas are opened underground. Any seismic activity premonitory to cavings, however, was effectively masked by the high workday rate. Thus, the use of surface seismic monitoring, in an attempt to document any increases of localized seismicity precursory to cavings, failed in this instance.The exact location of the mine and the survey dates are not given in this paper at the request of the mine operator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号