首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An accurate theory of the rotation of the Moon has been constructed by numerical integration. All direct perturbations on the Moon's rotational motion have been analysed. The requirements of the current observational accuracy are such that some improvements had to be added to the theoretical models. First, the gravitational figure of the Moon has been developed up to the fifth degree harmonics. Second, mutual potential effects between the figure of the Moon and the figure of the Earth have been expanded farther up. The direct action of planets must be taken into account, its effects being very small but not always negligible. The physical librations resulting of planetary effects and Earth-Moon figure-figure interactions are presented in this paper.  相似文献   

2.
Physical librations of the Moon are small cyclic perturbations with periods of one month and longer, and amplitudes of 100 arc seconds or less. These cause the selenographic axes fixed in the true Moon to have a different orientation than similar axes fixed in the mean Moon.Physical librations have two types of effects of present interest. If the orbital elements of a lunar satellite are referred to selenographic axes in the true Moon as it rotates and librates, then the librations cause changes in the orientation angles (node, inclination, and periapsis argument of the satellite) large enough that long-period perturbation theory cannot be used without compensation for such geometrical effects. As a second effect, the gravitational potential of the Moon is actually wobbled in inertial space, a condition not included in the potential expression used in perturbation theory.This paper gives data on the magnitude of the physical librations, the geometrical effects on the orbital elements and the equivalent changes in the coefficients in the potential. It is shown that geometrical effects can be accommodated either by using an inertial axes system or by compensating for the lunar librations and precession when the selenographic axes are used. Further, it is shown that physical effects are small and negligible for all but the most exacting endeavors.  相似文献   

3.
An analytical theory of lunar physical librations based on its two-layer model consisting of a non-spherical solid mantle and ellipsoidal liquid core is developed. The Moon moves on a high-precision orbit in the gravitational field of the Earth and other celestial bodies. The defined fourth mode of a free libration is caused by the influence of the liquid core, with a long period of 205.7 yr, with amplitude S = 0″0395 and with an initial phase Π0 = ?134° (for the initial epoch 2000.0). Estimates of dynamic (meridional) oblatenesses of a liquid core of the Moon have been estimated: ?D = 4.42 × 10?4, μD = 2.83 × 10?4 (?D + μD = 7.24 × 10?4). These results have been obtained as a result of comparison of the developed analytical theory of physical librations of the Moon with the empirical theory of librations of the Moon constructed on the basis of laser observations.  相似文献   

4.
The second zonal and the second sectorial Stokes parameters of the Moon's gravitational field and/or the polar and equatorial flattenings of the lunar triaxial level ellipsoid have been explained by the tidal and rotational distortions due to the Earth. The Epoch at which the Moon's figure formation was finished has been estimated as 1.6 × 109 y B. P. when the Earth-Moon distance was about 168 400 km and the orbital/rotational period of the Moon about 8 days.  相似文献   

5.
It is pointed out that the observed moments of inertia of the Moon, disclosed by its librations, are influenced mainly by the distribution of mass in the outer zone in which the lithostatic pressure is less than 10 kb (i.e., in the outer shell not more than 200 km deep); and a conspicuous departure of such moments from those expected in hydrostatic equilibrium disclosed that these layers could never have been fluid. In the same way, the actual shape of the lunar surface cannot represent a solidified surface of a fluid, petrified at any distance from the Earth.The shape of the Moon, and differences of its moments of inertia must reflect the way in which the initial process of cold accretion fell short of producing a globe with strictly spherically-symmetrical stratification of material; and has nothing to do with tides - present or fossil. Such melting or lava flows as may have occurred at the Moon's surface from time to time must have remained localized, and without much effect on the dynamical properties of the Moon. A global ocean of molten magma some 200 km in depth (postulated sometimes to provide a reservoir in which the differentiation of elements exhibited by surface rocks could have taken place) at any time in the past is incompatible with the dynamical evidence on the motion of the Moon about its center of gravity.Bellcomm, Inc., 955 L'Enfant Plaza North, S.W. Washington, D.C. 20024, U.S.A.  相似文献   

6.
Range of values of the Sun's mass quadrupole moment of coefficient J2 arising both from experimental and theoretical determinations enlarge across literature on two orders of magnitude, from around 10-7 until to 10-5. The accurate knowledge of the Moon's physical librations, for which the Lunar Laser Ranging data reach an outstanding precision level, prove to be appropriate to reduce the interval of J2 values by giving an upper bound of J2. A solar quadrupole moment as high as 1.1 10-5 given either from the upper bounds of the error bars of the observations, or from the Roche's theory, is not compatible with the knowledge of the lunar librations accurately modeled and observed with the LLR experiment. The suitable values of J2 have to be smaller than 3.0 10-6. As a consequence, this upper bound of 3.0 10-6 is accepted to study the impact of the Sun's quadrupole moment of mass on the dynamics of the Earth-Moon system. Such as effect (with J2 = 5.5±1.3 × 10-6) has been already tested in 1983 by Campbell & Moffat using analytical approximate equations, and thus for the orbits of Mercury, Venus, the Earth and Icarus. The approximate equations are no longer sufficient compared with present observational data and exact equations are required. As if to compute the effect on the lunar librations, we have used our BJV relativistic model of solar system integration including the spin-orbit coupled motion of the Moon. The model is solved by numerical integration. The BJV model stems from general relativity by using the DSX formalism for purposes of celestial mechanics when it is about to deal with a system of n extended, weakly self-gravitating, rotating and deformable bodies in mutual interactions. The resulting effects on the orbital elements of the Earth have been computed and plotted over 160 and 1600 years. The impact of the quadrupole moment of the Sun on the Earth's orbital motion is mainly characterized by variations of , , and . As a consequence, the Sun's quadrupole moment of mass could play a sensible role over long time periods of integration of solar system models. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Did a large impact reorient the Moon?   总被引:3,自引:0,他引:3  
The Moon is currently locked in a spin–orbit resonance of synchronous rotation, of which one consequence is that more impacts should occur near the Moon's apex of motion (0° N, 90° W) than near its antapex of motion (0° N, 90° E). Several of the largest lunar impact basins could have temporarily unlocked the Moon from synchronous rotation, and after the re-establishment of this state the Moon would have been left in either its initial orientation, or one that was rotated 180° about its spin axis. We show that there is less than a 2% probability that the oldest lunar impact basins are randomly distributed across the lunar surface. Furthermore, these basins are preferentially located near the Moon's antapex of motion, and this configuration has less than a 0.3% probability of occurring by chance. We postulate that the current “near side” of the Moon was in fact its “far side” when the oldest basins formed. One basin with the required size and temporal characteristics to account for a 180° reorientation is the Smythii basin.  相似文献   

8.
The Euler equations for the forced physical librations of the Moon have already been solved by using a digital computer to perform the semi-literal mathematical manipulations. Very near resonance, the computer solution for the physical libration in longitude is complemented by the solution of the appropriate Duffing equation with a dissipation term. Because of its apparent proximity to a resonant frequency, the term whose argument is 2 - twice the mean angular distance of the Moon's perigee from the ascending node of its orbit - is especially important. Its phase, which soon should be measurable, is related to the Moon's anelasticity. The term's frequency, in units of the sidereal month, increases as the semi-major axis of the Moon's orbit about the Earth increases. Using the Moon's mechanical ellipticity of Koziel and the rate of increase of the semi-major axis of MacDonald, it is estimated that the 2 term will cross the resonant frequency in 130 million years and, if the rate of energy dissipation is sufficiently low, a transient libration will be induced.  相似文献   

9.
Information about the structure of lunar interior and evolution could be obtained from measurements of lunar free librations, gravitational field, dissipation etc.. In this paper the precision of determining free librations with Lunar Laser Ranging (LLR) data are estimated. Using the observing data from four telescopes for eighteen years the amplitudes and phases of free librations, the moments of inertia ratio of The Moon were determined.  相似文献   

10.
月球卫星轨道变化的分析解   总被引:3,自引:0,他引:3  
刘林  王家松 《天文学报》1998,39(1):81-102
由于月球自转缓慢及其引力位的特点,使得讨论月球卫星与人造地球卫星轨道变化的方法有所不同。  相似文献   

11.
Paleocratering of the Moon: Review of post-Apollo data   总被引:1,自引:0,他引:1  
As a result of the dating of lunar samples, we are in a position to utilize the lunar surface as a recorder of environmental conditions in the Earth-Moon neighborhood in the past. Plots of crater density vs rock age at different lunar landing sites can be used to date unexplored lunar provinces. These plots also demonstrate evolution in the population of planetesimals that struck the Moon. Prior to 4.1 aeons ago, the cratering rate on the Moon was at least 103 times the present rate, and the rate declined with a half-life less than 8×107 yr. During the interval from 4.1 to 3.2 aeons ago, the number of planetesimals showed an exponential decay with a half-life about 3×108 yr, corresponding to sweep-up of particles from solar orbits somewhat similar to those of Apollo asteroids. A more nearly constant cratering rate applied in the last three aeons. These data indicate that the Moon displays at least the final stages of an ancient accretion process; they also set certain conditions on possible capture processes relating to the Moon's origin. Pre-Apollo expectations that the Moon would provide a Rosetta Stone for interpreting solar system history and planet formation thus appear justified.Paper given at Philadelphia meeting of American Association for Advancement of Science, December, 1971.  相似文献   

12.
The lunar disturbing function for a close-Earth satellite is expressed as a sum of products of harmonics of the satellite's position and harmonics of the Moon's position, and the latter are expanded about a rotating and precessing elliptic orbit inclined to the ecliptic. The deviations of the Moon from this approximate orbit are computed from Brown's lunar theory andthe perturbations in satellite orbital elements due to these inequalities are derived. Numerical calculations indicate that several perturbations in the position of the satellite's node and perigee have magnitudes on the order of one meter.The author is supported in part by a National Science Foundation Graduate Fellowship.  相似文献   

13.
Lunar physical librations and laser ranging   总被引:1,自引:0,他引:1  
The analysis of lunar laser ranging data requires very accurate calculations of the lunar physical librations. Libration terms are given which arise from the additive and planetary terms in the lunar theory. The large size of the recently discovered terms due to third degree gravitational harmonics will allow some of these harmonics to be measured, in addition to and, by laser ranging to the Moon. Combining the laser ranging determinations of = 630.6 ± 0.5 × 10–6 and = 226.4 ± 3.0 × 10–6 with lunar orbiter measurements ofC 20 andC 22 givesC/MR 2=0.395 -0.010 +0.006 . Numerical integration promises to be an effective method of calculating librations. Comparison of numerical integrations with analytic series indicates that the calculation of the series due to third and fourth degree harmonics is not yet as accurate as the more extensively developed second degree terms.Communication presented at the Conference on Lunar Dynamics and Observational Coordinate Systems, held January 15–17, 1973, at the Lunar Science Institute, Houston, Tex., U.S.A.  相似文献   

14.
A new method for determining the early history of the Earth-Moon system is described. Called the study of lunar paleotides, it describes a method for explaining features of the remnant lunar gravity field, and the generation of the lunar mascons. A method for the determination of Earth-Moon distances compared with the radiometric ages of the maria is developed. It is shown that the Moon underwent strong anomalous gravitational tidal forces, for a durationt<106yr, prior to the formation of the mascon surfaces. As these tidal forces had not been present at the time of the formation of the Moon, this shows that the Moon could not have been formed in orbit about the Earth.There are tides in the affairs of men which, taken at the flood, lead on to fortune... William Shakespeare 1564–1616  相似文献   

15.
There have been many models describing the evolution of our sister planet. As information from the intensive exploration by the Apollo program has accumulated, more constraints on these models have emerged. We specifically consider a hypothesis in which there is a present day asthenosphere, a heat flow between 24 and 32 ergs cm−2 s−1 and a crust which developed early in the Moon's history by melting of the outer 100 to 200 km. We have also introduced a constraint which keeps the deep interior below the Curie point of iron for the first 1 to 1.5 b.y. so that it is able to carry the memory of an early field which magnetized the cold interior. The magnetized mare basalts and breccias cooled in this field from above the Curie point of iron (≈800°C.) and acquired a thermoremanent magnetization. While fully recognizing that some of these constraints are subject to other interpretations, it is nevertheless instructive to consider the thermal history that follows from such a model. First, the initial temperature must be high enough to cause melting in the outer 100–200 km, while the interior temperature must be cool enough to be below the Curie point of iron. Second, the crust in this model cools off so rapidly that the mare basalts could not be developed as late as indicated in lunar history. Rather we propose that the mare basalts result from local remelting associated with giant impacts. Third, the Moon's deep interior must have warmed up enough to erase the memory of the ancient magnetic field from the deep interior and to develop the asthenosphere which has been detected seismically. Fourth, if this asthenosphere is real, the viscosity of the Moon as a function of temperature must be high enough to have prevented convective cooling until the temperature increased to a value near the solidus temperature. At this temperature, the Moon would then likely cool by convection in the solid state. It is, therefore, a consequence of this model that solid body convection tool place late in lunar history. This may well have contributed to the lunar center of figure and center of mass offset, to the low order terms in its gravity field and to, its disequilibrium moment of inertia differences.  相似文献   

16.
The aim of this work is to combine the model of orbital and rotational motion of the Moon developed for DE430 with up-to-date astronomical, geodynamical, and geo- and selenophysical models. The parameters of the orbit and physical libration are determined in this work from lunar laser ranging (LLR) observations made at different observatories in 1970–2013. Parameters of other models are taken from solutions that were obtained independently from LLR. A new implementation of the DE430 lunar model, including the liquid core equations, was done within the EPM ephemeris. The postfit residuals of LLR observations make evident that the terrestrial models and solutions recommended by the IERS Conventions are compatible with the lunar theory. That includes: EGM2008 gravitational potential with conventional corrections and variations from solid and ocean tides; displacement of stations due to solid and ocean loading tides; and precession-nutation model. Usage of these models in the solution for LLR observations has allowed us to reduce the number of parameters to be fit. The fixed model of tidal variations of the geopotential has resulted in a lesser value of Moon’s extra eccentricity rate, as compared to the original DE430 model with two fit parameters. A mixed model of lunar gravitational potential was used, with some coefficients determined from LLR observations, and other taken from the GL660b solution obtained from the GRAIL spacecraft mission. Solutions obtain accurate positions for the ranging stations and the five retroreflectors. Station motion is derived for sites with long data spans. Dissipation is detected at the lunar fluid core-solid mantle boundary demonstrating that a fluid core is present. Tidal dissipation is strong at both Earth and Moon. Consequently, the lunar semimajor axis is expanding by 38.20 mm/yr, the tidal acceleration in mean longitude is \(-25.90 {{}^{\prime \prime }}/\mathrm{cy}^2\), and the eccentricity is increasing by \(1.48\times 10^{-11}\) each year.  相似文献   

17.
The Moon’s physical librations and determination of their free modes   总被引:2,自引:0,他引:2  
The Lunar Laser Ranging experiment has been active since 1969 when Apollo astronauts placed the first retroreflector on the Moon. The data accuracy of a few centimeters over recent decades, joined to a new numerically integrated ephemeris, DE421, encourages a new analysis of the lunar physical librations of that ephemeris, and especially the detection of three modes of free physical librations (longitude, latitude, and wobble modes). This analysis was performed by iterating a frequency analysis and linear least-squares fit of the wide spectrum of DE421 lunar physical librations. From this analysis we identified and estimated about 130–140 terms in the angular series of latitude librations and polar coordinates, and 89 terms in the longitude angle. In this determination, we found the non-negligible amplitudes of the three modes of free physical libration. The determined amplitudes reach 1.296′′ in longitude (after correction of two close forcing terms), 0.032′′ in latitude and 8.183′′ × 3.306′′ for the wobble, with the respective periods of 1056.13 days, 8822.88 days (referred to the moving node), and 27257.27 days. The presence of such terms despite damping suggests the existence of some source of stimulation acting in geologically recent times.  相似文献   

18.
The nature of the ancient magnetic field of the Moon, in which lunar rocks acquired their remanent magnetism, has emerged as an important potential source of evidence, if somewhat controversial, for a lunar core which at a period in the Moon's history was the source of the magnetic field. Many of the lunar rocks possess a stable, primary remanence (NRM) with characteristics consistent with and indicative of thermo-remanent magnetization, acquired when the rocks cooled in an ambient magnetic field. Also present are secondary components of magnetization, one type of which appears to have been acquired between collection on the Moon and reception in the laboratory and others which were apparently acquired on the Moon.An important question to be answered is whether meteorite impacts play any part in lunar magnetism, either in modifying pre-existing magnetizations or by imparting a shock remanent magnetism (SRM) in a transient magnetic field associated with the impact. With current knowledge, SRM, in either a global lunar magnetic field of a transient field, and TRM cannot be distinguished, and in the paper the secondary magnetization characteristic of lunar rocks are examined to investigate whether their nature favours the presence of a permanent lunar magnetic field or whether they are consistent with an origin as a transient field-generated SRM.Besides terrestrial processes of secondary magnetization, such as viscous, chemical and partial thermoremanent magnetization, possible processes peculiar to the Moon are discussed and their likely importance assessed in relation to lunar sample history. The nature of the secondary magnetizations appear to be best explained on the assumption that they are due to one or more of the processes that require an ambient lunar field, namely viscous, partial thermoremanent and shock magnetization. When associated with other types of evidence obtained from lunar magnetism studies, investigations of lunar sample remanent magnetism now favours the existence of an ancient lunar magnetic field.  相似文献   

19.
In the present study an investigation of the collision orbits of natural satellites of the Moon (considered to be of finite dimensions) is developed, and the tendency of natural satellites of the Moon to collide on the visible or the far side of the Moon is studied. The collision course of the satellite is studied up to its impact on the lunar surface for perturbations of its initial orbit arbitrarily induced, for example, by the explosion of a meteorite. Several initial conditions regarding the position of the satellite to collide with the Moon on its near (visible) or far (invisible) side is examined in connection to the initial conditions and the direction of the motion of the satellite. The distribution of the lunar craters-originating impact of lunar satellites or celestial bodies which followed a course around the Moon and lost their stability - is examined. First, we consider the planar motion of the natural satellite and its collision on the Moon's surface without the presence of the Earth and Sun. The initial velocities of the satellite are determined in such a way so its impact on the lunar surface takes place on the visible side of the Moon. Then, we continue imparting these velocities to the satellite, but now in the presence of the Earth and Sun; and study the forementioned impacts of the satellites but now in the Earth-Moon-Satellite system influenced also by the Sun. The initial distances of the satellite are taken as the distances which have been used to compute periodic orbits in the planar restricted three-body problem (cf. Gousidou-Koutita, 1980) and its direction takes different angles with the x-axis (Earth-Moon axis). Finally, we summarise the tendency of the satellite's impact on the visible or invisible side of the Moon.  相似文献   

20.
In VLBI observations of Vstar, a subsatellite of the Japanese lunar mission SELENE, there were opportunities for lunar grazing occultation when Vstar was very close to the limb of the Moon. This kind of chance made it possible to probe the thin plasma layer above the Moon's surface as a meaningful by-product of VLBI,by using the radio occultation method with coherent radio waves from the S/X bands.The dual-frequency measurements were carried out at Earth-based VLBI stations. In the line-of-sight direction between the satellite and the ground-based tracking station where VLBI measurements were made, the effects of the terrestrial ionosphere, interplanetary plasma and the thin lunar ionosphere mixed together in the combined observables of dual-frequency Doppler shift and phase shift. To separate the variation of the ionospheric total electron content(TEC) near the surface of the Moon from the mixed signal, the influences of the terrestrial ionosphere and interplanetary plasma have been removed by using an extrapolation method based on a short-term trend. The lunar TEC is estimated from the dual-frequency observation for Vstar from UT 22:18to UT 22:20 on 2008 June 28 at several tracking stations. The TEC results obtained from VLBI sites are identical, however, they are not as remarkable as the result obtained at the Usuda deep space tracking station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号