首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In small streams, the majority of carbon turnover is due to microbial activity in biofilms. Flow velocity is a key factor influencing biofilm function, and nascent biofilms with high energy need for growth might be especially sensitive to hydrodynamics. The major part of carbon supply is allochthonous but algae can provide easily available exudates for biofilm bacteria. In this study, epilithic biofilms were grown for 2 weeks in a third order stream in Thuringia, Germany, and then incubated in replicate flow channels in climate-controlled chambers. Glucose and arbinose were added immediately to all channels, and the effects of flow velocity and light availability on rates of sugar removal were examined. Phosphate addition did not influence sugar decrease rates. Flow velocities of either 0.3 m s−1 or 0.7 m s−1 resulted in 1.3 to 3.1 times higher decrease rates under the higher flow velocity. Light exclusion resulted in a 2.2 to 2.6 times faster sugar decrease but only a 0.5 times dissolved organic carbon increase compared to channels with light input, suggesting a strong internal coupling of primary producers and heterotrophs. Our results indicate that carbon uptake from the water column is fostered at higher flow velocities and that primary production is an important internal carbon source in nascent epilithic biofilms.  相似文献   

2.
The chemistry of bulk precipitation and stream water was monitored in an acidic afforested catchment at Llyn Brianne in upland Wales between 1985 and 1990. Throughfall, stemflow and soil water chemistry were also monitored between 1988 and 1989. Marine-derived solutes dominated the ionic composition of precipitation and stream water, which had mean Cl concentrations of 113 μequiv. 1?1 and 245 μequiv. 1?1, respectively. The higher concentrations in stream water reflect occult and dry deposition on the forest canopy and the effect of interception and transpiration losses. Chloride variations in stream water (112-454μequiv. 1?1) were damped compared with bulk precipitation (28-762μequiv. 1?1) due to the mixing of event (‘new’) water with pre-event (‘old’) water in the catchment soils. A storm episode monitored in the catchment in April 1989 was associated with high sea salt inputs and Cl concentrations in throughfall (1466μequiv. 1?1) and storm runoff were exceptionally high (392μequiv. 1?1). The Cl signal in stream water during the episode was consistent with an event (‘new’) water contribution to the storm response. However, a short-term hydrochemical budget estimated that although Cl outputs from the catchment during the event (1.17 kg ha?1) were equivalent to 8% of inputs in throughfall and stemflow, the storm runoff was equivalent to 32% of effective precipitation. This indicates that pre-event (‘old’) water was the dominant source (> 75%) of storm runoff. Although sea salt inputs during the event had a marked impact on stream water chemistry, the anomalously high levels of acidity sometimes associated with sea salt events were not observed in this particular study.  相似文献   

3.
太湖流域河流鱼类群落的时空分布   总被引:1,自引:1,他引:1  
确定河流鱼类群落的时空分布格局及其形成机制是开展鱼类物种多样性保护与管理的科学基础.基于2013年10月和2014年5月共2次对太湖流域57个河道样点的调查数据,初步研究太湖流域河流鱼类群落结构及其多样性的季节动态和空间分布特点.共采集鱼类5051尾,计46种,其中鲤科鱼类26种,占全部物种数的57%.10月份的鱼类多样性显著高于5月份,且2个季度的鱼类群落结构存在显著性差异.5个主要水系间的鱼类多样性差异显著,总体上,沿江水系和洮滆水系鱼类多样性较低,黄浦江水系居中,而南河水系和苕溪水系较高;鱼类群落结构也随水系而显著变化,主要表现为黄浦江水系与洮滆、苕溪和沿江水系呈显著差异.在2个一级生态分区之间,鱼类多样性无显著差异但群落结构显著不同,主要因、鲫、似鳊等优势种及宽鳍鱲、尖头鱥、中华青鳉、食蚊鱼等偶见种的空间分布差异所引起;在4个二级生态分区之间,鱼类多样性和群落结构均存在显著的空间变化.  相似文献   

4.
With the introduction of Distributed Temperature Sensing (DTS) into the field of hydrology, temperature has become a powerful tracer in both space and time. However, the interpretation of the observed temperature signal is often not straightforward due to its non-conservative behavior. The objective of this research is to explore and quantify the retardation of heat along a small first order stream, with the long-term objective of identifying different runoff mechanisms by using heat as a tracer.  相似文献   

5.
Large wood (LW) is an ecosystem engineer and keystone structure in river ecosystems, influencing a range of hydromorphological and ecological processes and contributing to habitat heterogeneity and ecosystem condition. LW is increasingly being used in catchment restoration, but restored LW jams have been observed to differ in physical structure to naturally occurring jams, with potential implications for restoration outcomes. This article examines the structural complexity and ecosystem engineering effects of LW jams at four sites with varying management intensity incorporating natural and restored wood. Our results reveal: (i) structural complexity and volume of jams was highest in the site with natural jams and low intensity riparian management, and lowest in the suburban site with simple restored jams; and (ii) that structural complexity influences the ecosystem engineering role of LW, with more complex jams generating the greatest effects on flow hydraulics (flow concentration, into bed flows) and sediment characteristics (D50, organic content, fine sediment retention) and the simplest flow deflector-style restored jams having the least pronounced effects. We present a conceptual model describing a continuum of increasing jam structural complexity and associated hydromorphological effects that can be used as a basis for positioning and evaluating other sites along the management intensity spectrum to help inform restoration design and best practice.  相似文献   

6.
This study uses 2 years of data from a detailed weekly water sampling programme in a 11·4 km2 upland peat catchment in the Northern Pennines, UK. The sampling comprised precipitation, soil‐water samples and a number of streams, including the basin outlet. Samples were analysed for: pH, conductivity, alkalinity, Na, K, Ca, Mg, Fe, Al, Total N, SO4, Cl and colour. Principal component analysis (PCA) was used to identify end‐members and compositional trends in order to identify controls on the development of water composition. The study showed that the direct use of PCA had several advantages over the use of end‐member mixing analysis (EMMA) as it combines an analysis of mixing and evolving waters without the assumption of having to know the compositional sources of the water. In its application to an upland peat catchment, the study supports the view that shallow throughflow at the catotelm/acrotelm boundary is responsible for storm runoff generation and shows that baseflow is controlled by cation exchange in the catotelm and mixing with a base‐rich groundwater. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Upland gravel-bedded streams in the U.K. have received only scant attention from both hydrologists and sedimentologists, but are worthy of further investigation. The sedimentology of three small streams in Teesdale in the Pennines has been examined in detail. Grain-size characteristics, bedforms, structure, composition and packing characteristics of these deposits are described, and compared where appropriate with published information. It is argued that a fuller appreciation of gravel bed composition and morphology should eventually contribute to an improved understanding of sediment transport and deposition mechanisms, and, hence, to improved accuracy in sediment transport and deposition estimates.  相似文献   

9.
Stream temperature is a critical water quality parameter that is not fully understood, particularly in urban areas. This study explores drivers contributing to stream temperature variability within an urban system, at 21 sites within the Philadelphia region, Pennsylvania, USA. A comprehensive set of temperature metrics were evaluated, including temperature sensitivity, daily maximum temperatures, time >20°C, and temperature surges during storms. Wastewater treatment plants (WWTPs) were the strongest driver of downstream temperature variability along 32 km in Wissahickon Creek. WWTP effluent temperature controlled local (1–3 km downstream) temperatures year-round, but the impacts varied seasonally: during winter, local warming of 2–7°C was consistently observed, while local cooling up to 1°C occurred during summer. Summer cooling and winter warming were detected up to 12 km downstream of a WWTP. Comparing effects from different WWTPs provided guidelines for mitigating their thermal impact; WWTPs that discharged into larger streams, had cooler effluent, or had lower discharge had less effect on stream temperatures. Comparing thermal regimes in four urban headwater streams, sites with more local riparian canopy had cooler maximum temperatures by up to 1.5°C, had lower temperature sensitivity, and spent less time at high temperatures, although mean temperatures were unaffected. Watershed-scale impervious area was associated with increased surge frequency and magnitude at headwater sites, but most storms did not result in a surge and most surges had a low magnitude. These results suggest that maintaining or restoring riparian canopy in urban settings will have a larger impact on stream temperatures than stormwater management that treats impervious area. Mitigation efforts may be most impactful at urban headwater sites, which are particularly vulnerable to stream temperature disruptions. It is vital that stream temperature impacts are considered when planning stormwater management or stream restoration projects, and the appropriate metrics need to be considered when assessing impacts.  相似文献   

10.
11.
The resilience of alpine/subalpine watersheds may be viewed as the resistance of streamflow or stream chemistry to change under varying climatic conditions, which is governed by the relative size (volume) and transit time of surface and subsurface water sources. Here, we use end‐member mixing analysis in Andrews Creek, an alpine stream in Rocky Mountain National Park, Colorado, from water year 1994 to 2015, to explore how the partitioning of water sources and associated hydrologic resilience change in response to climate. Our results indicate that four water sources are significant contributors to Andrews Creek, including snow, rain, soil water, and talus groundwater. Seasonal patterns in source‐water contributions reflected the seasonal hydrologic cycle, which is driven by the accumulation and melting of seasonal snowpack. Flushing of soil water had a large effect on stream chemistry during spring snowmelt, despite making only a small contribution to streamflow volume. Snow had a large influence on stream chemistry as well, contributing large amounts of water with low concentrations of weathering products. Interannual patterns in end‐member contributions reflected responses to drought and wet periods. Moderate and significant correlations exist between annual end‐member contributions and regional‐scale climate indices (the Palmer Drought Severity Index, the Palmer Hydrologic Drought Index, and the Modified Palmer Drought Severity Index). From water year 1994 to 2015, the percent contribution from the talus‐groundwater end member to Andrews Creek increased an average of 0.5% per year (p < 0.0001), whereas the percent contributions from snow plus rain decreased by a similar amount (p = 0.001). Our results show how water and solute sources in alpine environments shift in response to climate variability and highlight the role of talus groundwater and soil water in providing hydrologic resilience to the system.  相似文献   

12.
湖光岩玛珥湖水体中营养盐的时空分布特征及其影响因素   总被引:1,自引:0,他引:1  
湖光岩玛珥湖是世界上最大的玛珥湖,它几乎是封闭的,受外界的干扰小.目前有关玛珥湖的研究主要集中在古气候及生态环境研究方面,而有关玛珥湖营养盐在一年中的生物地球化学循环的研究较少,因此研究湖光岩玛珥湖营养盐的生物地球化学过程具有重要意义.于2015年10月-2016年9月对湖光岩玛珥湖全水柱的营养盐及其他相关参数进行逐月调查,分析营养盐的结构特征、垂直分布特征和时间变化情况,并讨论营养盐时空变化的影响因素.结果表明,湖光岩玛珥湖水中的无机氮(DIN)以铵态氮(NH4+-N)为主(>60%),其次是硝态氧(NO3--N),亚硝态氮(NO2--N)所占比利最低.湖光岩玛珥湖水中的硅酸盐(SiO32--Si)浓度较高,水体浮游植物生长受磷限制.冬季风期间,水体垂直混合较均匀,导致营养盐的垂直分布比较均匀;夏季风期间,水体层化,营养盐浓度在浅层水体较低,在深层水体较高.湖光岩玛珥湖表层水中的NO3--N、NH4+-N和SiO32--Si具有明显的时间变化规律:NO3--N浓度从10月-次年3月升高,从3-9月降低;NH4+-N浓度从10月-次年5月降低;SiO32--Si浓度从11月-次年5月降低,从5-9月持续升高.营养盐浓度的时间变化受有机质的矿化分解、水体的季节性混合、浮游植物的吸收、降雨的输入等多种因素的综合影响.  相似文献   

13.
ABSTRACT

This paper presents hydrochemical data of an AMD stream, Poderosa Creek, in the Iberian Pyrite Belt, obtained between its source, in the Poderosa Mine portal, and its confluence with the Odiel River. The main objective is to establish potential interdependent relationships between sulphate and metal loads and the following physico-chemical variables: pH, electrical conductivity (EC), redox potential (EH) and dissolved oxygen (DO). All the parameters show an overall increasing tendency from the tunnel exit to the confluence at the Odiel River. The TDS and EC are two relevant exceptions. They behave similarly, showing a decreasing trend and a strong inflection that describes a minimum immediately after the discharging point. Spatial analysis combined with statistical tools reveal typical AMD processes and the respective physico-chemical implications. Inputs with distinctive hydrochemical signatures impose relevant modifications in the Poderosa Creek waters. This indicates low hydrochemical inertia and high vulnerability to external stimuli.
Editor D. Koutsoyiannis; Associate editor not assigned  相似文献   

14.
Samples of snowpack leachate were collected over a 60 day period of the spring melt season in 1988 and 1989 at a 10 km2 upland catchment in the Cairngorm mountains of Scotland. These were analysed for major ions to assess snowpack chemistry dynamics through the spring and to assess the melt water influence on stream water chemistry. The data clearly show preferential elution of sulphate and nitrate over chloride and hydrogen over the other cations during the early melt of 1988. Following the addition of ions to the snow surface, either as snow or later in the season as rain, the elution sequence is reproduced. Comparison of leachate chemistry with stream chemistry samples taken at the basin outlet indicate that snow pack melt water contributes directly to stream water. The stream water chemistry signal is, however, noisy and the stream concentrations are considerably damped relative to the snowpack leachate. This is thought to be a consequence of differential melting within the catchment as the snowpack at lower altitudes is at a more advanced stage of melt and so holds fewer solutes and mixing with groundwater contributions. Temperature observations at different altitudes within the catchment support this interpretation.  相似文献   

15.
How soil erosion rates evolved over the last about 100 ka and how they relate to environmental and climate variability is largely unknown. This is due to a lack of suitable archives that help to trace this evolution. We determined in situ cosmogenic beryllium-10 (10Be) along vertical landforms (tors, boulders and scarps) on the Sila Massif to unravel their local exhumation patterns to develop a surface denudation model over millennia. Due to the physical resistance of tors, their rate of exhumation may be used to derive surface and, thus, soil denudation rates over time. We derived soil denudation rates that varied in the range 0–0.40 mm yr-1. The investigated boulders, however, appear to have experienced repositioning processes about ~20–25 ka bp and were therefore a less reliable archive. The scarps of the Sila upland showed a rapid bedrock exposure within the last 8–15 ka. Overall, the denudation rates increased steadily after 75 ka bp but remained low until about 17 ka bp . The exhumation rates indicate a denudation pulse that occurred about 17–5 ka bp . Since then the rates have continuously decreased. We identify three key factors for these developments – climate, topography and vegetation. Between 75 and 17 ka bp , climate was colder and drier than today. The rapid changes towards warmer and humid conditions at the Pleistocene–Holocene transition apparently increased denudation rates. A denser vegetation cover with time counteracted denudation. Topography also determined the extent of denudation rates in the upland regime. On slopes, denudation rates were generally higher than on planar surfaces. By determining the exhumation rates of tors and scarps, soil erosion rates could be determined over long timescales and be related to topography and particularly to climate. This is key for understanding geomorphic dynamics under current environmental settings and future climate change. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

16.
千岛湖叶绿素a的时空分布及其与影响因子的相关分析   总被引:5,自引:6,他引:5  
为了解千岛湖在大量放养鲢鳙鱼后叶绿素a的时空分布格局及其与主要环境因子的相关性,本文于2007年1月至2009年12月对千岛湖叶绿素a及其他10个水质理化指标进行了每月定期采样及监测.结果表明:上游河流区和过渡区叶绿素a含量存在明显的季节变化,其共同特点是每年会形成春季和夏末秋初的双高峰.叶绿素a含量在空间分布上具有一...  相似文献   

17.
Spatial and temporal variations of heavy metal contamination in sediments of a small mangrove stand in Hong Kong were examined by laying two transects perpendicular across the shore. Surface sediment samples were taken along the two transects running landward to seaward at intervals of 5 or 10 m during December 1989, and March, July and September 1990. Total concentrations of Cu, Zn, Mn and Pb did not show any specific trend along each transect, although the maximum concentration of heavy metals tended to occur at the landward edge. There was a high level of variability among locations within each transect; for instance, the Cu concentrations fluctuated from 1 to 42 μg g−1. Certain sites contained exceptionally high levels of total metals. Total concentrations of Cu, Zn, Mn and Pb as high as 42, 150, 640 and 650 μg g−1, respectively, were recorded, implying contaminated sediment. A comparison of the two transects indicated that the sediments of Transect B seemed to contain higher total Zn but lower Cu and Mn concentrations than those of Transect A. Most of the heavy metals accumulated in the sediments were not extractable with ammonium acetate and no Cu or Pb was detected in these extracts. The concentrations of extractable Zn and Mn were low, less than 10% of the total metal concentration in the sediment, and appeared to decrease from the landward to seaward samples. For both total and extractable metals, there were significant seasonal fluctuations for both transects, but no specific trends could be identified. These spatial and temporal variations suggest that the scale and representativeness of sampling require careful planning, and a single sample might not give a satisfactory evaluation of the levels of heavy metal contamination in mangrove ecosystems.  相似文献   

18.
As a contribution to the long-term emergence studies carried out as part of the “Breitenbach ecosystem project”, this paper presents the results obtained on emergence patterns and population dynamics of blackflies from 1984 to 1988. The Breitenbach is a small first order stream near Schlitz/Hesse, running into the Fulda river. Adult blackflies were caught in 4 greenhouse emergence traps, each spanning the whole width of the stream for a length of 6 m. A manual and then a partly automated method for collecting trapped insects was applied for three years and one year, respectively. Sixteen blackfly-species of different origin were found in the traps: a) autochthonous species: Prosimulium tomosvaryi, Simulium vernum s.l., S. cryophilum s.l., S. ornatum s.l. (common); S. costatum, S. trifasciatum, S. monticola, S. argyreatum (rare); b) species of doubtful origin: S. lundstromi, S. angustitarse, S. angustipes, S. aureum (very rare); c) allochthonous species: S. lineatum, S. equinum, S. erythrocephalum, S. noelleri. It was shown that the last 4 species had not emerged from the Breitenbach but had flown into the traps as adults. In addition, females of autochthonous species with blood or with mature eggs were trapped, which were also considered to have flown in. Besides revealing a limitation of the trap construction, they supported the detailed interpretation of some intricated patterns of appearance. Variations in emergence patterns and specimen numbers between years and traps were pronounced, but only in a few cases could they be attributed to changes in abiotic factors such as water temperature or discharge. P. tomosvaryi had the most simple and regular life cycle, with one well synchronised emergence peak annually from April to May (or even to June). No gradient of specimen numbers along the stream was evident. The two closely related species S. vernum and S. cryophilum had quite similar emergence patterns: There were two broad peaks per year, extending mainly from March to June and from July to October or November. In some cases the number and separation of consecutive generations was not clear. The abundance of both species clearly decreased downstream, more so for S. cryophilum than for S. vernum. In a trap closest to a tributary spring, S. cryophilum was the dominant species during three of the four years examined. The adults of S. ornatum displayed an intricate pattern of appearance, with very low specimen numbers in spring and medium to very high numbers in July/August and September/October. S. ornatum is the only blackfly species that inhabits both the Breitenbach and the adjacent section of the Fulda river. It was shown that females emerging from the Fulda river regularly invade the Breitenbach valley in greatly varying numbers and oviposit there. This leads to overlapping larval cohorts with corresponding emergence peaks. Although S. ornatum was the most abundant species in one year in the lower traps (60 to 80% of all individuals), it remains uncertain whether it is a long-term, permanent member of the autochthonous blackfly fauna of the Breitenbach. Estimates of total numbers of flown-in adults, actual emergence, dry weight biomass, the ecological separation of the species and their life cycle strategies are discussed.  相似文献   

19.
洱海硅藻群落结构的时空分布及其与环境因子间的关系   总被引:2,自引:2,他引:2  
于2004-2005年间对洱海水体的硅藻群落进行逐月监测及研究,共发现71个种,分属于18个属.硅藻群落结构的季节变化显著,主要优势种为耐营养的属种.不同季节的硅藻优势种类有明显区别,冬季的主要优势种为Fragilaria crotonensis,春季Aulacoseira ambigua与F.crotonensis的组合占优势地位,夏季以Cyclotella ocellata为主,秋季则A.ambigua与Cyclostephanos dubius组合为优势种.空间上除1#点外,硅藻分布虽然在相对丰度上存在一定的南北差异,但优势属种在全湖具有较好的一致性.说明洱海全湖的水质都已处于中富营养状态.对除1#点外的11个采样点的硅藻及水化学数据进行平均,得到逐月数据,通过数理统计分析的手段,探讨硅藻群落变化与环境因子之间的关系,结果表明影响季节尺度硅藻群落发生变化的最主要因子是气象条件,其次是营养盐.  相似文献   

20.
Ground deformation of reclaimed land is a key issue for reclamation design, construction and sustainable development in coastal areas as this consolidation process of the underlying compressible marine sediment sequences over very long‐time periods could lead to damage of both ground constructions and underground facilities. In this case study, we have investigated the spatial and temporal characteristics of residual reclamation settlement of Chek Lap Kok Airport, Hong Kong, one of the largest land reclamation projects worldwide. A total of 25 time series ENVISAT ASAR datasets, acquired between December 2003 and October 2008, were used to retrieve settlement rates and deformation history at high resolution and accuracy by means of advanced Synthetic Aperture Radar Interferometry (InSAR). The InSAR‐derived results show a fairly homogenous and stable pattern in the sectors of the airport site corresponding to the two original islands of Chek Lap Kok and Lam Chau. In contrast, a relatively high spatial settlement variability, ranging from moderate (3–7?mm/yr) to strong (>10?mm/yr) settlement rates, was discovered within the majority of the reclaimed portion of the airport. A joint analysis of InSAR observations and geological materials indicates that the variability of the recorded residual settlement was highly correlated with the variations of thickness and pre‐consolidation state of alluvial deposits below the reclamation. A quantitative comparison analysis also has been carried out between time series InSAR observations and theoretical estimates of residual settlement modelled by geotechnical investigations. The results imply that a primary consolidation process in alluvial deposits below the reclamation might be delayed with respect to the predicted results and may still have been occurring in most reclaimed areas during the investigation period (2003–2008); the time to complete it could stretch to decades depending on hydraulic conductivity and natural drainage conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号