首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of calcium-based stabilizers such as lime on the geotechnical properties of tropical soils has been reported by many researchers. However, the amount of literature available on the micro-structural, molecular, and leaching characteristics of lime and in particular phosphoric acid-stabilized lateritic clays has been limited. This research was carried out in an attempt to identify the time-dependent soil-chemical reactions. In addition, the possible mechanisms that contributed to the stabilization process were discussed in the light of various spectroscopic and microscopic techniques such as X-ray diffractometry (XRD), energy-dispersive X-ray spectrometry (EDAX), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR) etc. Based on the results it was found that in lime-treated samples, the coating action of free iron oxides on clay particles imposed inhibitive effects on the dissolution of clay alumina. On the other hand, in phosphoric acid-stabilized soil, due to the increase in solubility of metal oxides and also the subsequent release of clay alumina the formation of cementitious compounds were more feasible. From engineering point of view, the phosphoric acid-stabilized lateritic soil showed the highest degree of improvement with an approximately threefold strength increase in comparison with the natural soil over an 8-month curing period.  相似文献   

2.
Studies on the chemically stabilized soils have shown that the effectiveness of treatment is largely dependent on soil??s natural environment. In this research, the time-dependent changes induced in permanent cation exchange capacity of lime and phosphoric acid treated soils, comprised mainly of montmorillonite and kaolinite minerals, were investigated. Also, in order to study the relationship between the exchange capacity and acidity/alkalinity of pore water, pH measurements were performed on cured samples. Based on the collected data, it was found that the pH of stabilized soils showed a tendency for reaching soil??s natural pH with increasing curing time. In addition, the increase in number of broken bonds around the edges of soil particles and also the formation of cementitious compounds that acquired negative charges contributed to achieving higher CECp values at longer curing periods. Nevertheless, the kaolinite mineral with pH-dependent structural properties, showed a rather limited behavior in the acidic medium. From engineering point of view, the lime treated samples revealed the highest degree of improvement with an approximately ten-fold strength increase in comparison to the natural soil over an 8?months curing period.  相似文献   

3.
The main objective of this research was to investigate the effect of mellowing on the swelling properties of stabilized Lower Oxford Clay (LOC), a sulfate-bearing clay soil that has caused concern in the past due to expansion upon stabilization. Two stabilizers were used, quicklime and a more sustainable stabilizer — wastepaper sludge ash (WSA), an industrial by-product used on its own and in combination with either quicklime (CaO) or ground granulated blastfurnace slag (GGBS). Quicklime was used on its own as a control. Compacted cylinders of LOC stabilized with the various stabilizers were made either mellowed (compacted 3 days after mixing with stabilizer) or unmellowed (compacted immediately after mixing with stabilizer). The linear expansion of the stabilized cylinders during moist curing and subsequent soaking was monitored for a total of 100 days. The results obtained showed that the linear expansion of unmellowed stabilized LOC was significantly reduced, and thus in terms of swelling potential, mellowing was not beneficial in the LOC system investigated. The results observed also suggest that there are technological, economic as well as environmental advantages of utilizing WSA and similar industrial by-products, in the stabilization of sulfate-bearing and other clay soils, as an alternative to the traditional stabilizers of lime and/or Portland Cement.  相似文献   

4.
Although the effects of nontraditional stabilizers on the geotechnical properties of tropical soils has been the issue of investigation in recent years, the micro-structural characteristics of nontraditional soil additives and in particular selected additive (TX-85) have not been fully studied. Nontraditional soil stabilization additives are widely used for stabilizing marginal materials. These additives are low-cost alternatives to traditional construction materials and have different compositions. They also differ from one another while interacting with soil. In line with that, it was the objective of this research to investigate the strength properties and physicochemical mechanisms related to tropical laterite soil mixed with the liquid stabilizer TX-85. Macro-structure study, i.e., compaction, and unconfined compression strength test were used to assess the engineering and shear properties of the stabilized laterite soil. In addition, the possible mechanisms that contributed to the stabilization process were discussed using various spectroscopic and microscopic techniques such as X-ray diffractometry (XRD), energy-dispersive X-ray spectrometry, scanning electron microscopy, and Fourier transform infrared spectroscopy. From engineering point of view, the results indicated that the strength of TX-85 stabilized laterite soil improved significantly. The degree of improvement was approximately four times stronger than natural soil after a 7-day curing period. The XRD showed no crystalline products (gel form). Moreover, weathering effects were obvious in TX-85 treated samples in most of clay minerals’ peak intensities. These effects were reduced especially for kaolinite mineral inside the soil with curing time.  相似文献   

5.
Stabilization of lateritic soils with phosphoric acid   总被引:1,自引:0,他引:1  
Summary This paper describes a laboratory study on the stabilization of lateritic soils with phosphoric acid-H3PO4. This method is most promising for road and airport pavement construction in tropical regions where fine textured lateritic soils (red clays and silts) occur over large areas. The iron and aluminum phosphates formed are hard and insoluble. The main source of iron is free iron oxide, and the aluminum sources are free aluminum oxide, exchangeable cations and clay minerals (hydrated aluminum silicates). Four different soil samples were studied, but the most comprehensive study was carried out with a lateritic soil evolved from weathered basaltic bedrock. The variables of the test specimens were: percentage of acid, moulding water content, compaction energy, and curing time. Strength tests performed were the axial or unconfined compression test and the indirect tensile or diametrical compression test. With 5% of phosphoric acid to dry weight of soil, values of compressive strength around 4.0 MPa were obtained after 28 days curing.  相似文献   

6.
Many tropical residual laterites have relatively poor engineering properties due to the significant percentage of fine-grained soil particles that they contain, which are formed by the soil weathering process. The widespread presence of laterite soils in tropical regions often requires that some form of soil improvement be performed to allow for their use in various civil engineering applications, such as for road base or subbase construction. One of the most commonly utilized stabilization techniques for laterite soils is the application of additives that chemically react with the minerals that are present in soil to enhance its overall strength; effective soil stabilization can allow for the use of site-specific soils, and can consequently result in significant cost savings for a given project. With an increasing focus on the use of more environmentally friendly and sustainable materials in the built and natural environments, there is an emerging interest in eco-friendly additives that are an alternative to traditional chemical stabilizers. The current study examines the viability of xanthan gum as an environmentally friendly stabilizer that can improve the engineering properties of tropical residual laterite soil. Unconfined compressive strength (UCS) tests, standard direct shear tests, Brunauer, Emmett, and Teller (N2-BET) surface area analysis tests and field emission scanning electron microscopy (FESEM) tests were used to investigate the effectiveness of xanthan gum for stabilization of a tropical laterite soil. The UCS test results showed that addition of 1.5% xanthan gum by weight yielded optimum stabilization, increasing the unconfined compressive strength of the laterite soil noticeably. Similarly, direct shear testing of 1.5% xanthan gum stabilized laterite specimens showed increasing Mohr–Coulomb shear strength parameters with increases in curing time. From the FESEM results, it was observed that the stabilization process modified the pore-network morphology of the laterite soil, while also forming new white layers on the surface of the clay particles. Analysis of the test results indicated that xanthan gum stabilization was effective for use on a tropical residual laterite soil, providing an eco-friendly and sustainable alternative to traditional soil stabilization additives such as cement or lime.  相似文献   

7.
The main purposes of this study are the textural, chemical and mineralogical characterization of the urban soils of Lisbon and the identification of probable relations between the several soil properties. The results are used to infer which soil properties control the superficial dispersion of potential harmful elements to human health. Soil sampling was carried out in 51 selected sites all through the city, under the criterion that such sites should be spaces usually frequented by children. The concentrations of 42 elements in the >2 mm soil size fraction were determined at a commercial laboratory in Canada (ActLabs, LTD), by ICP-MS/ICP-OES after an acid digestion with aqua regia. The soil mineralogy was determined by X-ray diffraction in the <2 and <62 μm size fractions. The results indicate that the urban soils have mainly a sandy texture and a main mineralogical assemblage of quartz, K-feldspar, plagioclase and calcite. In terms of clay minerals, smectite, illite and kaolinite are the main clays in the soil. Smectite and illite show a dichotomy in their distribution, with the smectites prevailing in the soils of the volcanic complex of Lisbon, which are classified as being residual, and illite prevailing in the remaining soils, which are considered mainly as man-made soils. Smectite seems to exert an important role in the fixation of Ni and Cr. The results of the geochemical study show that Ni and Cr have concentrations above the soil guideline value established to the UK and pose a probable risk to human health.  相似文献   

8.
Expansive soils undergo alternate swelling and shrinkage due to cyclic wetting and drying when left to nature. This property of Expansive soil affects its strength and stiffness characteristics thereby causing damage and distress to structures built on them. Industrial wastes can be added scientifically to these soils in modifying and reducing their swelling and shrinkage behaviour and increasing their strength and stiffness. In this technical article, an attempt has been made to study the compressibility and drainage characteristics of these soils using economic and ecofriendly industrial wastes such as Fly Ash and Dolochar as stabilizers. This paper also focuses on many other improved engineering properties of base soil like liquid limit, plasticity index, differential free swell, compaction and consolidation characteristics of Expansive (BC) soil stabilized with Fly Ash and Dolochar in different proportions. The virgin Expansive soil has been collected from eastern part of India (Odisha) and different percentages of Fly Ash (5, 10, 15, 20, 25 and 30 %) and Dolochar (5, 10, 15, 20, 25 and 30 %) were added to it, to predict the influence of these additives on compaction and consolidation characteristics of Expansive soil. Addition of both Fly Ash and Dolochar were found to decrease the index properties such as liquid limit, plastic limit, plasticity index, swelling index and enhancing the consolidation as well as drainage characteristics of Expansive soil. However, the maximum dry density of soil was found to decrease with addition of Fly Ash and increase with addition of Dolochar.  相似文献   

9.
Bian  Xia  Zhang  Wei  Li  Xiaozhao  Shi  Xiusong  Deng  Yongfeng  Peng  Jie 《Acta Geotechnica》2022,17(11):5043-5057
Acta Geotechnica - Superabsorbent polymers (SAPs) are environmentally friendly stabilizers to improve the engineering properties of excavated soils with high water contents. The present study aims...  相似文献   

10.
With rapid advancements in technology globally, the use of plastics such as polyethylene bags, bottles etc. is also increasing. The disposal of thrown away wastes pose a serious challenge since most of the plastic wastes are non-biodegradable and unfit for incineration as they emit harmful gases. Soil stabilization improves the engineering properties of weak soils by controlled compaction or adding stabilizers like cement, lime etc. but these additives also have become expensive in recent years. This paper presents a detailed study on the behavior and use of waste plastic in soil improvement. Experimental investigation on reinforced plastic soil results showed that, plastic can be used as an effective stabilizer so as to encounter waste disposal problem as well as an economical solution for stabilizing weak soils. Plastic reinforced soil behaves like a fiber reinforced soil. This study involves the investigation of the effect of plastic bottle strips on silty sand for which a series of compaction, direct shear and California bearing ratio (CBR) tests have been performed with varying percentages of plastic strips and also with different aspect ratios in terms of size. The results reflect that there is significant increment in maximum dry unit weight, Shear Strength Parameters and CBR value with plastic reinforcement in soil. The quantum of improvement in the soil properties depends on type of soil, plastic content and size of strip. It is observed from the study that, improvement in engineering properties of silty sand is achieved at 0.4% plastic content with strip size of (15 mm?×?15 mm).  相似文献   

11.
Citrate and other organic acids play an important role in the rhizosphere and pedogenic processes. Although secreting citrate from roots in response to Al and heavy metal stress has been recognized as a central mechanism for plants to avoid toxicity, the efficiency of root citrate on metal detoxification is still contradictory in acid soil with abundant oxide minerals that serve as a potential sorption site for citrate. The objective of this study was to investigate sorption and biodegradation of citrate in subtropical acid soils with different mineralogical properties. A batch experiment was conducted to assess the possible fates (adsorption and biodegradation) of citrate in the three acid soils (Cecil, Creedmoor and Norfolk) under microbial-active and inactive conditions. Citrate adsorption isotherms for all soils were adequately described by the Freundlich equation with the R2 value being over 0.90. The Cecil soil had the highest affinity for citrate adsorption among the soils with 99% adsorption observed throughout the citrate concentration range, which was due primarily to the abundant Al and Fe oxides. Citrate sorption to the mineral phase significantly reduced its biodegradation by 56%, 65% and 99% for the Creedmoor, Norfolk and Cecil soils, respectively. The results suggest the efficiency of rhizosphere processes for Al detoxification by root-secreted citrate would be significantly reduced in acid soil with abundant Al and Fe oxides.  相似文献   

12.
Pozzolanic-based stabilization/solidification (S/S) is an effective, yet economic remediation technology to immobilize heavy metals in contaminated soils and sludges. In the present study, fly ash waste materials were used along with quicklime (CaO) to immobilize lead, trivalent and hexavalent chromium present in artificially contaminated clayey sand soils. The degree of heavy metal immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as controlled extraction experiments. These leaching test results along with X-ray diffraction (XRD), scanning electron microscope and energy dispersive X-ray (SEM–EDX) analyses were also implemented to elucidate the mechanisms responsible for immobilization of the heavy metals under study. Finally, the reusability of the stabilized waste forms in construction applications was also investigated by performing unconfined compressive strength and swell tests. The experimental results suggest that the controlling mechanism for both lead and hexavalent chromium immobilization is surface adsorption, whereas for trivalent chromium it is hydroxide precipitation. Addition of quicklime and fly ash to the contaminated soils effectively reduced heavy metal leachability well below the nonhazardous regulatory limits. Overall, fly ash addition increases the immobilization pH region for all heavy metals tested, and significantly improves the stress-strain properties of the treated solids, thus allowing their reuse as readily available construction materials. The only potential problem associated with this quicklime–fly ash treatment is the excessive formation of the pozzolanic product ettringite in the presence of sulfates. Ettringite, when brought in contact with water, may cause significant swelling and subsequent deterioration of the stabilized matrix. Addition of minimum amounts of barium hydroxide was shown to effectively eliminate ettringite formation. Overall, due to the presence of very high levels of heavy metal contamination along with sulfates in the solid matrices under study, the results presented herein can be applied to the management of incinerator and coal fly ash, boiler slag and flue gas desulfurization wastes.  相似文献   

13.
The porosity and permeability of core rocks were studied by X-ray tomography. This method has a high potential for studying petrophysical properties of rocks, because it permits not only a general quantitative estimation of the void volume but also visualization of the rock texture, including pores, cavities, cracks, and zones of different densities in the matrix. X-ray tomography permits detailed studies of rock inhomogeneity, which are necessary for the elaboration of reliable porosity-permeability models for hydrocarbon pools. The investigations at Perm State National Research Polytechnic University have shown that X-ray tomography of core samples has a wide spectrum of applications in petroleum geology. Nikon Metrology XT H 225 X-ray computed tomography makes it possible to examine samples with a standard diameter (30 mm) and whole core samples (100 mm). The structure of voids in carbonate and terrigenous rocks was studied on samples with standard and full diameters; the results of hydrochloric acid treatment of carbonate reservoir rocks were visualized; and the mechanical properties of rock salts were studied. Three-dimensional models for the structure of voids and mineral matrix of the core samples have been constructed with the use of the Avizo Fire software.  相似文献   

14.
Soils from many industrial sites in southeastern USA are contaminated with As because of the application of herbicide containing As2O3. Among those contaminated sites, two industrial sites, FW and BH, which are currently active and of most serious environmental concerns, were selected to characterize the occurrence of As in the contaminated soils and to evaluate its environmental leachability. The soils are both sandy loams with varying mineralogical and organic matter contents. Microwave-assisted acid digestion (EPA method 3051) of the contaminated soils indicated As levels of up to 325 mg/kg and 900 mg/kg (dry weight basis) for FW and BH soils, respectively. However, bulk X-ray powder diffraction (XRD) analysis failed to find any detectable As-bearing phases in either of the studied soil samples. Most of the soil As was observed by scanning electron microscopy, coupled with energy dispersive X-ray spectroscopy (SEM/EDX), to be disseminated on the surfaces of fine-grained soil particles in close association with Al and Fe. A few As-bearing particles were detected in BH soil using electron microprobe analysis (EMPA). Synchrotron micro-XRD and X-ray absorption near-edge structure (XANES) analyses indicated that these As-rich particles were possibly phaunouxite, a mineral similar to calcium arsenate, which could have been formed by natural weathering after the application of As2O3. However, the scarcity of those particles eliminated them from playing any important role in As sequestration.  相似文献   

15.
Two major cohesionless soil series of the central Coast Ranges of Oregon were examined for soil and hydrologic properties. Although derived from different parent material, the Bohannon and Klickitat series exhibited nearly identical values of soil and hydrologic properties. Aggregation in both soils was found to be the most important property, for it influences shear strength and subsurface water movement, prime components of slope stability. The unusually high angle of internal friction of both cohesionless soils was 40° to 41°. The angle of internal friction was affected significantly by the mode of wetting. Subsurface water movement was predominantly by unsaturated flow. The influence of soil aggregation on pore-size distribution and arrangement created conditions where unsaturated flow was an effective means for water dispersal in both soils during most observed storm events. Considering the large area covered by these two soil series, aggregation appears to be an important slope-stability property with regional significance.  相似文献   

16.
Sugar beet pulp is an abundant, renewable and low-cost precursor for production of activated carbon. In the present study, sugar beet pulp based activated carbon was prepared by using phosphoric acid as activating agent for adsorption of methylene blue. The conditions of preparation process had a significant influence on the adsorption of methylene blue, and the optimal preparation conditions were obtained as follows: liquid-to-solid ratio of 5, temperature of 450 °C and phosphoric acid concentration of 3 mol/L. The properties of sugar beet pulp based activated carbon were characterized by nitrogen adsorption isotherm. The adsorption increases as the increase of contact time, adsorption temperature and pH, and initial concentration of methylene blue. Batch kinetic studies showed that an equilibrium time of 100 min was needed for the adsorption, and the adsorbance of methylene blue is 244.76 mg/g at equilibration. Kinetic models, Weber’s pore diffusion model and Boyd’s equation were applied to the experimental data to study the mechanism of adsorption and the controlled step. The results showed that the adsorption kinetics followed the pseudo-second-order type kinetic model, intraparticle diffusion was not the rate-limiting mechanism and adsorption process was controlled by film diffusion.  相似文献   

17.
In the present study, stabilization treatment using waste resource stabilizers was performed for soil contaminated with As and heavy metals (Pb and Cu). Calcined oyster shell (COS) and coal mine drainage sludge (CMDS) were used as a mixed stabilizing agent for a wet-curing duration of 28 days. After the stabilization treatment, the treatment process efficiency was evaluated by the results of various batch- and column-leaching tests. Neutral and weak acid extraction methods, such as water-soluble extraction and SPLP, did not exhibit satisfactory results for heavy metal stabilization, even if they showed very low leachability. On the other hand, TCLP and 0.1 M HCl extraction showed that the stabilizers significantly reduced the amount of heavy metals leached from the soil, which strongly supports the thesis that the stabilization treatment is efficient in the acidic leaching conditions that were explored. Specifically, in the 0.1 M HCl extraction, the reduction efficiencies of As, Pb, and Cu leachings were more than 90 %, compared with control experiments. This study demonstrates that the application of waste resources for the stabilization of As and heavy metals is feasible. However, some limitations observed in the experiments should be considered in future studies, such as the mobilization of alkali-soluble elements, and in particular, exchangeable fractions of Cu. In addition, the treatment efficiency can be evaluated by different leaching methods, which suggests that multidirectional approaches are required for the proper evaluation of stabilization treatment.  相似文献   

18.
We report results from an extensive study on the speciation of zinc (Zn) and its relation to the mobility and bioavailablity of this element in a smelter contaminated soil and an in situ remediated area of this soil 12 yr after the application of cyclonic ash and compost. Emphasis was placed on the role of neoformed precipitates in controlling Zn speciation, mobility and bioavailability under different environmental conditions. Twelve years after remediation, the pH of the treated and non-treated soil differed by only 0.5 pH unit. Using state-of-the-art electron and X-ray microscopies in combination with micro-focused extended X-ray absorption fine structure (μ-EXAFS) spectroscopy, no major differences in Zn speciation were found between samples of the treated and non-treated soil. In both soils, 30% to 50% of Zn was present in smelter related minerals (willemite, hemimorphite or gahnite), while 50% to 70% of Zn was incorporated into newly formed Zn precipitates. Contrary to the non-treated soil, the treated soil did not contain gahnite or sphalerite; it is possible that these minerals were dissolved under the higher pH conditions at the time of treatment. Desorption experiments, using a stirred flow technique with a 0.1 mol/L CaCl2 (pH 6.5) and a HNO3 (pH 4.0) solution were employed to determine the exchangeable Zn fraction and the Zn fraction which will be mobilized under more extreme weathering conditions, respectively. No significant differences were found in desorption behavior between the treated vs. non-treated soil. Bioavailability tests, using the R. metallidurans AE1433 biosensor showed that ∼8% of total Zn was bioavailable in both the treated and non-treated soils. It was concluded that the incorporation of Zn into newly formed precipitates in both the treated and non treated soils leads to a significant natural attenuation of the exchangeable/bioavailable Zn fraction at near neutral pH conditions. At lower pHs, conditions not favorable to the formation of Zn precipitates, the pool of Zn associated with the secondary Zn precipitates is potentially more bioavailable.  相似文献   

19.
《Applied Geochemistry》2002,17(9):1209-1218
Acid sulphate soils, common in the coastal areas of Finland, contribute strongly to high acid, S and metal loadings on adjacent surface waters. This, in turn, is causing significant harm to the aquatic ecology. There is, however, limited knowledge on the total amounts of acidity and chemical elements leached from these soils. The overall objective of this study was to determine geochemical patterns in acid sulphate soils and their parent sediments and, based on the identified patterns assess the extent, mechanisms and present state of leaching of major and trace elements from these soils. The distribution of pH, aqua regia extractable concentrations of P and metals (Al, Ba, Ca, Co, Cr, Cu, Fe, K, La, Mg, Mn, Na, Ni, Sr, Th, Ti, V, Zn) and total concentrations of S and C were determined in 30 vertical profiles collected in the 23 km2 large Rintala agricultural area (mid-western Finland) underlain largely with S-rich sediments. It was found that approximately 70% of the area consists of acid sulphate soils with a minimum pH<4.0, an average depth of 1.8 m, and S concentrations in the parent sediments varying from 0.24 to 1.04%. Acid sulphate soils have not developed where the S concentrations in the sediments are ⩽0.10% or where the concentrations of organic C in the soil zones are >4%. Four different methods were used to estimate the losses of chemical elements from the acid sulphate soils: (1) the concentrations in the soil were compared with those in the parent sediments, (2) due to indicated heterogeneities in several profiles, the vertical changes of the immobile Ti was used to re-calculate element losses, (3) element depletions in the acid sulphate soils (as compared to those in the parent sediments) were compared to the corresponding depletions in the non acid sulphate soils, (4) element concentrations in drainage waters were compared with those in the parent sediments. Based on these calculations, it was assessed that the percentual leaching of the aqua regia extractable fraction (total for S) has been as follows: S (40–50%), Na (30–50%), Mn (25–35%), Sr (15–20%), Ca–Ni–Co (approximately 10%), Mg–K–Zn (5–10%), Th–La–Cu–Al–P–Ti–Fe (<5%), and Ba–Cr–V (<1%). While it was possible to quite accurately estimate the percentages and thus the amounts of elements lost, it was not possible to estimate the rate of leaching as there is no available detailed information on dates when ditching activities and thus oxidation-acidification processes started. Other calculations indicated that the mobile S reservoir is still some 15 ton/hectare, which is huge but still smaller than the losses that have occurred since the area was drained (23–28 ton/hectare).  相似文献   

20.
Reactivity of iodide in volcanic soils and noncrystalline soil constituents   总被引:1,自引:0,他引:1  
Reaction of iodide [I(aq)] with a series of volcanic-ash soils was compared with reaction onto noncrystalline materials that constitute much of the inorganic fraction of these soils, Our hypothesis is that these high-surface-area materials account for iodide retention by providing sites for anion exchange. Iodide sorption onto imogolite and ferrihydrite is rapid (<30 min) but not particularly extensive; imogolite has a threefold to fourfold greater affinity for iodide compared to ferrihydrite on a mass basis. In contrast, rates of iodide retention by volcanic-ash soils were slow and did not attain a steady-state after 300 h. The extent of this largely irreversible reaction can be attenuated by sterilization, but it cannot be suppressed. The iodide retained by the soils can only be completely recovered by treatment with boiling 2 M sodium hydroxide. The amount of iodide retention by soils was inversely correlated with pH, but showed no relationship with organic matter concentration, surface area, or imogolite and ferrihydrite concentrations.

The reaction of iodide with the volcanic-ash soils is consistent with a rapid initial uptake by soil mineral surfaces, followed by a slower reaction of soil organic matter with oxidized forms of iodide. Under our experimental conditions, iodide is likely slowly oxidized by dissolved oxygen to molecular iodine. Solutions of molecular iodine [I2(aq)] react relatively quickly with laboratory-grade humic acid solutions and the rate increases with increasing pH. The slow rate of iodination is consistent with the continual formation and reaction of I2(aq)] or HOI(aq) by titration with soil organic matter.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号