首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present 3 yr of timing observations for PSR J1453+1902, a 5.79-ms pulsar discovered during a 430-MHz drift-scan survey with the Arecibo telescope. Our observations show that PSR J1453+1902 is solitary and has a proper motion of  8 ±  2  mas yr−1. At the nominal distance of 1.2 kpc estimated from the pulsar's dispersion measure, this corresponds to a transverse speed of  46 ± 11   km s−1  , typical of the millisecond pulsar population. We analyse the current sample of 55 millisecond pulsars in the Galactic disc and revisit the question of whether the luminosities of isolated millisecond pulsars are different from their binary counterparts. We demonstrate that the apparent differences in the luminosity distributions seen in samples selected from 430-MHz surveys can be explained by small-number statistics and observational selection biases. An examination of the sample from 1400-MHz surveys shows no differences in the distributions. The simplest conclusion from the current data is that the spin, kinematic, spatial and luminosity distributions of isolated and binary millisecond pulsars are consistent with a single homogeneous population.  相似文献   

2.
3.
4.
We present the results of a 430-MHz survey for pulsars conducted during the upgrade to the 305-m Arecibo radio telescope. Our survey covered a total of 1147 deg2 of sky using a drift-scan technique. We detected 33 pulsars, 10 of which were not known prior to the survey observations. The highlight of the new discoveries is PSR J0407+1607, which has a spin period of 25.7 ms, a characteristic age of 1.5 Gyr and is in a 1.8-yr orbit about a low-mass  (>0.2 M)  companion. The long orbital period and small eccentricity  ( e = 0.0009)  make the binary system an important new addition to the ensemble of binary pulsars suitable to test for violations of the strong equivalence principle. We also report on our initially unsuccessful attempts to detect optically the companion to J0407+1607, which imply that its absolute visual magnitude is >12.1. If, as expected on evolutionary grounds, the companion is an He white dwarf, our non-detection implies a cooling age of least 1 Gyr.  相似文献   

5.
In binary radio pulsars with a main-sequence star companion, the spin-induced quadrupole moment of the companion gives rise to a precession of the binary orbit. As a first approximation one can model the secular evolution caused by this classical spin-orbit coupling by linear-in-time changes of the longitude of periastron and the projected semi-major axis of the pulsar orbit. This simple representation of the precession of the orbit neglects two important aspects of the orbital dynamics of a binary pulsar with an oblate companion. First, the quasiperiodic effects along the orbit, owing to the anisotropic 1/ r 3 nature of the quadrupole potential. Secondly, the long-term secular evolution of the binary orbit, which leads to an evolution of the longitude of periastron and the projected semi-major axis, which is non-linear in time.   In this paper a simple timing formula for binary radio pulsars with a main-sequence star companion is presented which models the short-term secular and most of the short-term periodic effects caused by the classical spin-orbit coupling. I also give extensions of the timing formula that account for long-term secular changes in the binary pulsar motion. It is shown that the short-term periodic effects are important for the timing observations of the binary pulsar PSR B1259–63. The long-term secular effects are likely to become important in the next few years of timing observations of the binary pulsar PSR J0045–7319. They could help to restrict or even determine the moments of inertia of the companion star and thus probe its internal structure.   Finally, I reinvestigate the spin-orbit precession of the binary pulsar PSR J0045–7319 since the analysis given in the literature is based on an incorrect expression for the precession of the longitude of periastron. A lower limit of 20° for the inclination of the B star with respect to the orbital plane is derived.  相似文献   

6.
7.
8.
We report on the discovery of three new pulsars in the first blind survey of the north Galactic plane  (45° < l < 135°; | b | < 1°)  with the Giant Meterwave Radio telescope (GMRT) at an intermediate frequency of 610 MHz. The survey covered 106 deg2 with a sensitivity of roughly 1 mJy to long-period pulsars (pulsars with period longer than 1 s). The three new pulsars have periods of 318, 933 and 1056 ms. Their timing parameters and flux densities, obtained in follow-up observations with the Lovell Telescope at Jodrell Bank and the GMRT, are presented. We also report on pulse nulling behaviour in one of the newly discovered pulsars, PSR J2208+5500.  相似文献   

9.
10.
We discuss the formation of pulsars with massive companions in eccentric orbits. We demonstrate that the probability for a non-recycled radio pulsar to have a white dwarf as a companion is comparable to that of having an old neutron star as a companion. Special emphasis is given to PSR B1820−11 and PSR B2303+46. Based on population synthesis calculations we argue that PSR B1820−11 and PSR B2303+46 could very well be accompanied by white dwarfs with mass ≳1.1 M. For PSR B1820−11, however, we cannot exclude the possibility that its companion is a main-sequence star with a mass between ∼0.7 M and ∼5 M.  相似文献   

11.
We present a simple method for determination of the orbital parameters of binary pulsars, using data on the pulsar period at multiple observing epochs. This method uses the circular nature of the velocity space orbit of Keplerian motion and produces preliminary values based on two one-dimensional searches. Preliminary orbital parameter values are then refined using a computationally efficient linear least-squares fit. This method works for random and sparse sampling of the binary orbit. We demonstrate the technique on (i) the highly eccentric binary pulsar PSR J0514−4002 (the first known pulsar in the globular cluster NGC 1851) and (ii) 47 Tuc T, a binary pulsar with a nearly circular orbit.  相似文献   

12.
13.
14.
15.
We have carried out a survey for 'giant pulses' in six young, Vela-like pulsars. In no cases did we find single pulses with flux densities more than 10 times the mean flux density. However, in PSR  B1706–44  we have detected giant micro-pulses very similar to those seen in the Vela pulsar. In PSR  B1706–44  these giant micro-pulses appear on the trailing edge of the profile and have an intrinsic width of ∼1 ms. The cumulative probability distribution of their intensities is best described by a power law. If the power law continues to higher intensities, then  3.7×106  rotations are required to obtain a pulse with 20× the mean pulse flux. This number is similar to the giant pulse rate in PSR B1937+21 and PSR  B1821–24  but significantly higher than that for the Crab.  相似文献   

16.
In 2004, McLaughlin et al. discovered a phenomenon in the radio emission of PSR J0737−3039B (B) that resembles drifting subpulses. The repeat rate of the subpulses is equal to the spin frequency of PSR J0737−3039A (A); this led to the suggestion that they are caused by incidence upon B's magnetosphere of electromagnetic radiation from A. Here, we describe a geometrical model which predicts the delay of B's subpulses relative to A's radio pulses. We show that measuring these delays is equivalent to tracking A's rotation from the point of view of a hypothetical observer located near B. This has three main astrophysical applications: (i) to determine the sense of rotation of A relative to its orbital plane, (ii) to estimate where in B's magnetosphere the radio subpulses are modulated and (iii) to provide an independent estimate of the mass ratio of A and B. The latter might improve existing tests of gravitational theories using this system.  相似文献   

17.
We present a detailed calculation of the evolution of low-mass (<0.25 M) helium white dwarfs. These white dwarfs (the optical companions to binary millisecond pulsars) are formed via long-term, low-mass binary evolution. After detachment from the Roche lobe, the hot helium cores have a rather thick hydrogen layer with mass between 0.01 and 0.06 M. As a result of mixing between the core and outer envelope, the surface hydrogen content ( X surf) is 0.5–0.35 , depending on the initial value of the heavy element Z and the initial secondary mass. We found that the majority of our computed models experience one or two hydrogen shell flashes. We found that the mass of the helium dwarf in which the hydrogen shell flash occurs depends on the chemical composition. The minimum helium white dwarf mass in which a hydrogen flash takes place is 0.213 M ( Z =0.003), 0.198 M ( Z =0.01), 0.192 M ( Z =0.02) or 0.183 M ( Z =0.03). The duration of the flashes (independent of chemical composition) is between a few ×106 and a few ×107 yr. In several flashes the white dwarf radius will increase so much that it forces the model to fill its Roche lobe again. Our calculations show that the cooling history of the helium white dwarf depends dramatically on the thickness of the hydrogen layer. We show that the transition from a cooling white dwarf with a temporarily stable hydrogen-burning shell to a cooling white dwarf in which almost all residual hydrogen is lost in a few thermal flashes (via Roche lobe overflow) occurs between 0.183 and 0.213 M (depending on the heavy element value).  相似文献   

18.
We report the discovery of a pulsar with a Galactic longitude of 304° and a dispersion measure (DM) of 875 cm−3 pc. PSR J1302−63 has the second largest DM of any known pulsar. It is also relatively weak, with a flux density of only 0.2 mJy at 1500 MHz. This is the 13th pulsar with a DM greater than 400 cm−3 pc located more than 50° from the Galactic Centre. It provides further evidence for a significant pulsar population and enhanced electron densities within the major spiral arms.  相似文献   

19.
20.
We report on searches of the globular cluster Terzan 5 for low-luminosity and accelerated radio pulsars using the 64-m Parkes radio telescope. One new millisecond pulsar, designated PSR J1748−2446C, was discovered, having a period of 8.44 ms. Timing measurements using the 76-m Lovell radio telescope at Jodrell Bank show that it is a solitary pulsar and lies close to the core of the cluster. We also present the results of timing measurements which show that the longer period pulsar PSR J1748−2444 (formerly known as PSR B1744−24B) lies 10 arcmin from the core of the cluster and is unlikely to be associated with the cluster. We conclude that there are further pulsars to be detected in the cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号