首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the ability to refine pyroxene composition and modal abundance from laboratory and remotely acquired spectra. Laboratory data including the martian meteorites, Shergotty, Zagami, MIL03346, and ALH84001 as well as additional pyroxene-rich spectra obtained from the OMEGA (Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité) spectrometer for Mars are characterized using the Modified Gaussian Model (MGM), a spectral deconvolution method developed by Sunshine et al. [Sunshine, J.M., Pieters, C.M., Pratt, S., 1990. J. Geophys. Res. 95, 6955-6966]. We develop two sensitivity tests to assess the extent to which the MGM can consistently predict (1) pyroxene composition and (2) modal abundance for a compositionally diverse suite of pyroxene spectra. Results of the sensitivity tests indicate that the MGM can be appropriately applied to remote spectroscopic measurements of extraterrestrial surfaces and can estimate pyroxene composition and relative abundance within a derived uncertainty. Deconvolved band positions for laboratory spectra of the meteorites Shergotty and Zagami are determined within ±17 nm while remotely acquired OMEGA spectra are defined within ±50 nm. These results suggest that absolute compositions can be uniquely derived from laboratory pyroxene-rich spectra and non-uniquely derived from the remote measurements of OMEGA at this time. While relative pyroxene chemistries are not assessed from OMEGA measurements at this time, relative pyroxene abundances are estimated using a normalized band strength ratio between the low-calcium (LCP) and high-calcium (HCP) endmember components and are constrained to ±10%. The fraction of LCP in a two-pyroxene mixture is the derived value from the normalized band strength ratio, LCP/(LCP + HCP). This calculation for relative abundance is robust in the presence of up to 10-15% olivine. Deconvolution results from the OMEGA spectra indicate that the ancient terrain in the Syrtis Major region is uniquely enriched in LCP (59±10% LCP) relative to HCP while the volcanics of Syrtis Major are uniquely enriched in HCP (39±10% LCP).  相似文献   

2.
Abstract— Our analyses of high quality spectra of several S‐type asteroids (17 Thetis, 847 Agnia, 808 Merxia, and members of the Agnia and Merxia families) reveal that they include both low‐ and high‐calcium pyroxene with minor amounts of olivine (<20%). In addition, we find that these asteroids have ratios of high‐calcium pyroxene to total pyroxene of >~0.4. High‐calcium pyroxene is a spectrally detectable and petrologically important indicator of igneous history and may prove critical in future studies aimed at understanding the history of asteroidal bodies. The silicate mineralogy inferred for Thetis and the Merxia and Agnia family members requires that these asteroids experienced igneous differentiation, producing broadly basaltic surface lithologies. Together with 4 Vesta (and its smaller “Vestoid” family members) and the main‐belt asteroid 1489 Magnya, these new asteroids provide strong evidence for igneous differentiation of at least five asteroid parent bodies. Based on this analysis of a small subset of the near‐infrared asteroid spectra taken to date with SpeX at the NASA IRTF, we expect that the number of known differentiated asteroids will increase, consistent with the large number of parent bodies inferred from studies of iron meteorites.  相似文献   

3.
Except for asteroid sample return missions, measurements of the spectral properties of both meteorites and asteroids offer the best possibility of linking meteorite groups with their parent asteroid(s). Visible plus near‐infrared spectra reveal distinguishing absorption features controlled mainly by the Fe2+ contents and modal abundances of olivine and pyroxene. Meteorite samples provide relationships between spectra and mineralogy. These relationships are useful for estimating the olivine and pyroxene mineralogy of stony (S‐type) asteroid surfaces. Using a suite of 10 samples of the acapulcoite–lodranite clan (ALC), we have developed new correlations between spectral parameters and mafic mineral compositions for partially melted asteroids. A well‐defined relationship exists between Band II center and ferrosilite (Fs) content of orthopyroxene. Furthermore, because Fs in orthopyroxene and fayalite (Fa) content in olivine are well correlated in these meteorites, the derived Fs content can be used to estimate Fa of the coexisting olivine. We derive new equations for determining the mafic silicate compositions of partially melted S‐type asteroid parent bodies. Stony meteorite spectra have previously been used to delineate meteorite analog spectral zones in Band I versus band area ratio (BAR) parameter space for the establishment of asteroid–meteorite connections with S‐type asteroids. However, the spectral parameters of the partially melted ALC overlap with those of ordinary (H) chondrites in this parameter space. We find that Band I versus Band II center parameter space reveals a clear distinction between the ALC and the H chondrites. This work allows the distinction of S‐type asteroids as nebular (ordinary chondrites) or geologically processed (primitive achondrites).  相似文献   

4.
Mineral compositions and abundances derived from visible/near-infrared (VIS/NIR or VNIR) spectra are used to classify asteroids, identify meteorite parent bodies, and understand the structure of the asteroid belt. Using a suite of 48 equilibrated (types 4-6) ordinary (H, L, and LL) chondrites containing orthopyroxene, clinopyroxene, and olivine, new relationships between spectra and mineralogy have been established. Contrary to previous suggestions, no meaningful correlation is observed between band parameters and cpx/(opx + cpx) ratios. We derive new calibrations for determining mineral abundances (ol/(ol + px)) and mafic silicate compositions (Fa in olivine, Fs in pyroxene) from VIS/NIR spectra. These calibrations confirm that band area ratio (BAR) is controlled by mineral abundances, while Band I center is controlled by mafic silicate compositions. Spectrally-derived mineralogical parameters correctly classify H, L and LL chondrites in ∼80% of cases, suggesting that these are robust relationships that can be applied to S(IV) asteroids with ordinary chondrites mineralogies. Comparison of asteroids and meteorites using these new mineralogical parameters has the advantage that H, L and LL chemical groups were originally defined on the basis of mafic silicate compositions.  相似文献   

5.
V-type asteroids in the inner Main Belt (a < 2.5 AU) and the HED meteorites are thought to be genetically related to one another as collisional fragments from the surface of the large basaltic Asteroid 4 Vesta. We investigate this relationship by comparing the near-infrared (0.7-2.5 μm) spectra of 39 V-type asteroids to laboratory spectra of HED meteorites. The central wavelengths and areas spanned by the 1 and 2 μm pyroxene-olivine absorption bands that are characteristic of planetary basalts are measured for both the asteroidal and meteoritic data. The band centers are shown to be well correlated, however the ratio of areas spanned by the 1 and 2 μm absorption bands are much larger for the asteroids than for the meteorites. We argue that this offset in band area ratio is consistent with our currently limited understanding of the effects of space weathering, however we cannot rule out the possibility that this offset is due to compositional differences. Several other possible causes of this offset are discussed.Amongst these inner Main Belt asteroids we do not find evidence for non-Vestoid mineralogies. Instead, these asteroids seem to represent a continuum of compositions, consistent with an origin from a single differentiated parent body. In addition, our analysis shows that V-type asteroids with low inclinations (i < 6°) tend to have band centers slightly shifted towards long wavelengths. This may imply that more than one collision on Vesta’s surface was responsible for producing the observed population of inner belt V-type asteroids. Finally, we offer several predictions that can be tested when the Dawn spacecraft enters into orbit around Vesta in the summer of 2011.  相似文献   

6.
Abstract– Diagnostic mineral absorption features for pyroxene(s), olivine, phyllosilicates, and hydroxides have been detected in the near‐infrared (NIR: approximately 0.75–2.50 μm) spectra for 60% of the Tholen‐classified ( Tholen 1984, 1989 ) M‐/X‐asteroids observed in this study. Nineteen asteroids (42%) exhibit weak Band I (approximately 0.9 μm) ± Band II (approximately 1.9 μm) absorptions, three asteroids (7%) exhibit a weak Band I (approximately 1.05–1.08 μm) olivine absorption, four asteroids (9%) display multiple absorptions suggesting phyllosilicate ± oxide/hydroxide minerals, one (1) asteroid exhibits an S‐asteroid type NIR spectrum, and 18 asteroids (40%) are spectrally featureless in the NIR, but have widely varying slopes. Tholen M‐asteroids are defined as asteroids exhibiting featureless visible‐wavelength (λ) spectra with moderate albedos ( Tholen 1989 ). Tholen X‐asteroids are also defined using the same spectral criterion, but without albedo information. Previous work has suggested spectral and mineralogical diversity in the M‐asteroid population ( Rivkin et al. 1995, 2000 ; Busarev 2002 ; Clark et al. 2004 ; Hardersen et al. 2005 ; Birlan et al. 2007 ; Ockert‐Bell et al. 2008, 2010 ; Shepard et al. 2008, 2010 ; Fornasier et al. 2010 ). The pyroxene‐bearing asteroids are dominated by orthopyroxene with several likely to include higher‐Ca clinopyroxene components. Potential meteorite analogs include mesosiderites, CB/CH chondrites, and silicate‐bearing NiFe meteorites. The Eos family, olivine‐bearing asteroids are most consistent with a CO chondrite analog. The aqueously altered asteroids display multiple, weak absorptions (0.85, 0.92, 0.97, 1.10, 1.40, and 2.30–2.50 μm) indicative of phyllosilicate ± hydroxide minerals. The spectrally featureless asteroids range from metal‐rich to metal‐poor with meteorite analogs including NiFe meteorites, enstatite chondrites, and stony‐iron meteorites.  相似文献   

7.
Anita L Cochran  Faith Vilas 《Icarus》2004,167(2):360-368
We present spectral observations of Minor Planet 4 Vesta, of five V-type asteroids which are physically near Vesta, and of two V-type NEAs. We use these spectra to determine the presence or absence of a weak feature at 506.5 nm which is indicative of the presence of spin-forbidden Fe2+ in sixfold coordination. As with our earlier observations [Cochran and Vilas, Icarus 134 (1998) 207-212], we find this feature at all observed rotational phases of Vesta and again see the trend that spectra at longitudes between 240° and 360° have a smaller 506.5 nm feature equivalent width than spectra obtained at other longitudes. Additionally, we searched for this feature in V-class main-belt and NEA asteroids and positively detected the feature in main-belt Asteroid 2579 Spartacus and possibly in 3376 Armandhammer. The other objects lacked the feature. Our results are compared with previous observations of this feature by Vilas et al. [Icarus 147 (2000) 119-128]. The spatial distribution of the bodies as a function of the presence of this feature was investigated. We discuss the implication of the presence of this feature and the depth of the 0.9 μm pyroxene band for the scenario that pieces of Vesta were transported, via the 3:1 and ν6 resonances, to the NEAs, and thence to inclusion in our meteorite collections as HED meteorites.  相似文献   

8.
Meteorites, generally 1 cm or larger in size that are believed to sample asteroids, and interplanetary dust particles (IDPs), generally 5–50 μm in size that are believed to sample both asteroids and comets, span the size range of the meteors. Thus, the physical properties of the meteorites and the IDPs are likely to constrain the properties of the meteors and their parent bodies. Measurements of the density, porosity, longitudinal and transverse speeds of sound, elastic modulus, and bulk modulus, as well as imaging of the internal structure by Computed Microtomography indicate that unweathered samples of chondritic meteorites are more porous and have lower sound velocities than compact terrestrial rocks. In general, the IDPs are even more porous than the chondritic meteorites. The impact energy per unit target mass required to produce a barely catastrophic disruption (Q * D) for anhydrous ordinary chondrite meteorites is twice that for terrestrial basalt or glass, indicating that collisional disruption of anhydrous meteorites requires more energy than for a compact basalt. These results indicate that most stone meteors are likely to be weak, porous objects, and that the parent bodies of the anhydrous stone meteorites are likely to be more difficult to disrupt than compact terrestrial basalt.  相似文献   

9.
Abstract— Modal mineralogies of individual, equilibrated (petrologic type 4–6 L and LL chondrites have been measured using an electron microprobe mapping technique, and the chemical compositions of coexisting silicate minerals have been analyzed. Progressive changes in the relative abundances and in the molar Fe/Mn and Fe/Mg ratios of olivine, low‐Ca pyroxene, and diopside occur with increasing metamorphic grade. Variations in olivine/low‐Ca pyroxene ratios (Ol/Px) and in metal abundances and compositions with petrologic type support the hypothesis that oxidation of metallic iron accompanied thermal metamorphism in ordinary chondrites. Modal Ol/Px ratios are systematically lower than normative Ol/Px ratios for the same meteorites, suggesting that the commonly used C.I.P.W. norm calculation procedure may not adequately estimate silicate mineral abundances in reduced chondrites. Ol/Px ratios calculated from visible and near‐infrared (VISNIR) reflectance spectra of the same meteorites are not in agreement with other Ol/Px determinations, possibly because of spectral complexities arising from other minerals in chondrites. Characteristic features in VISNIR spectra are sensitive to the proportions and compositions of olivine and pyroxenes, the minerals most affected by oxidative metamorphism. This work may allow spectral calibration for the determination of mineralogy and petrologic type, and thus may be useful for spectroscopic studies of asteroids.  相似文献   

10.
We present reflectance spectra of 19 V-type asteroids obtained at the 3.6 m Telescopio Nazionale Galileo covering 0.8 to 2.5 μm. For 8 of these asteroids we obtained also visible spectra in the same observational run. The range from 0.8 to 2.5 μm, encompassing the 1 and 2 μm pyroxene features, allows a precise mineralogical characterization of these asteroids. The obtained data suggests the possible coexistence of distinct mineralogical groups among the V-type asteroids, either probing different layers of (4) Vesta or coming from different bodies. No clear correlation was found between mineralogies and the objects being, or not, member of the Vesta dynamical family.  相似文献   

11.
The primary objectives of this paper are to determine the modal mineralogy of selected low albedo terrains of different ages ranging from Noachian to Amazonian exposed on the surface of Mars. This analysis is conducted using the spectral modeling of the Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) reflectance data. Results from this work are consistent with the major results of previous spectroscopic studies: plagioclase (40-60% in volume) and high calcium pyroxene (20-40%, HCP) are the dominant minerals of the most regions. Low calcium pyroxene (10-15%, LCP) and minor amounts of olivine are also present. The oldest terrains are characterized by the largest amount of LCP and the lowest concentration of plagioclase. These overall compositions are consistent with two-pyroxene basalts. The particle sizes are in the range of a few hundreds of micrometers, which is in good agreement with the thermal inertia of the martian low albedo regions. In the region around the Nili Fossae, localized concentrations of olivine up to 40% with millimeter particle size similar to picritic basalts observed in situ by the Spirit rover in the Gusev crater are inferred. Chemical compositions are calculated for the first time from OMEGA spectra. They are quite consistent with Gusev rocks and shergottite compositions but they appear to be significantly SiO2-poorer than Thermal Emission Spectrometer data. A decreasing low calcium pyroxene abundance with the decreasing age of the low albedo regions is reported. This may be indicative of decreasing degree of partial melting as thermal flux decreases with time. We propose that the ancient Noachian-aged, LCP-rich terrains could have been formed from H2O-bearing melts. Then, dry, basaltic volcanism occurred leading to decreasing LCP abundance with time due to decreasing degree of partial melting. The olivine-bearing material modeled in Nili Fossae resembles the composition of ALH77005 and Chassigny meteorites consistent with prior studies. Implications on the formation of the basaltic Shergottites are discussed.  相似文献   

12.
We present new irradiation experiments performed on the enstatite chondrite Eagle (EL6) and the mesosiderite Vaca Muerta. These experiments were performed with the aims of (a) quantifying the spectral effect of the solar wind on their parent asteroid surfaces and (b) identifying their parent bodies within the asteroid belt. For Vaca Muerta we observe a reddening and darkening of the reflectance spectrum with progressive irradiation, consistent with what is observed in the cases of silicates and silicate-rich meteorites such as OCs and HEDs. For Eagle we observe little spectral variation, and therefore we do not expect to observe a significant spectral difference between EC meteorites and their parent bodies. We evaluated possible parent bodies for both meteorites by comparing their VNIR spectra (before and after irradiation) with those of ∼400 main-belt asteroids. We found that 21 Lutetia (Rosetta's forthcoming fly-by target) and 97 Klotho (both Xc types in the new Bus-DeMeo taxonomy) have physical properties compatible with those of enstatite chondrite meteorites while 201 Penelope, 250 Bettina and 337 Devosa (all three are Xk types in the Bus-DeMeo taxonomy) are compatible with the properties of mesosiderites.  相似文献   

13.
A review is given of the mineralogical and chemical composition of iron meteorites and the problems associated with their origin. A detailed discussion is presented of the physical and mechanical properties of iron meteorites and their dependence on the structure, chemical composition, and temperature. Iron meteorites are shown to characterize, with no distortions, the physical and mechanical properties of their parent bodies (metallic asteroids). The population of M-type asteroids and the main characteristics of the identified metallic asteroids are examined. Compared with iron meteorites, metallic asteroids have a different shape and are not fragments of larger metallic parent bodies. The estimates for the current deviatoric stress in metallic asteroids show that, since their formation, asteroids have not been heated to over 600°C and certainly have not been subjected to partial or complete melting. An empirical dependence is found of the critical dimensions of small metallic objects (which allow for gravitational deformation) on the yield strength at temperatures below 300 K. It is shown that the physical and mechanical data are also a strong argument against the hypothesis of the origin of iron meteorites and metallic asteroids from the iron core of a differentiated parent body.  相似文献   

14.
Abstract Reflectance spectra were collected from chondritic interplanetary dust particles (IDPs), a polar micrometeorite, Allende (CV3) meteorite matrix, and mineral standards using a microscope spectrophotometer. Data were acquired over the 380–1100 nm wavelength range in darkfield mode using a halogen light source, particle aperturing diaphrams, and photomultiplier tube (PMT) detectors. Spectra collected from titanium oxide (Ti4O7), magnetite (Fe3O4), and Allende matrix establish that it is possible to measure indigenous reflectivities of micrometer-sized (>5 μm in diameter) particles over the visible (VIS) wavelength range 450–800 nm. Below 450 nm, small particle effects cause a fall-off in signal into the ultraviolet (UV). Near-infrared (IR) spectra collected from olivine and pyroxene standards suggest that the ~1 μm absorption features of Fe-bearing silicates in IDPs can be detected using microscope spectrophotometry. Chondritic IDPs are dark objects (<15% reflectivity) over the VIS 450–800 nm range. Large (>1 μm in diameter) embedded and adhering single mineral grains make IDPs significantly brighter, while surficial magnetite formed by frictional heating during atmospheric entry makes them darker. Most chondritic smooth (CS) IDPs, dominated by hydrated layer silicates, exhibit generally flat spectra with slight fall-off towards 800 nm, which is similar to type CI and CM meteorites and main-belt C-type asteroids. Most chondritic porous (CP) IDPs, dominated by anhydrous silicates (pyroxene and olivine), exhibit generally flat spectra with a slight rise towards 800 nm, which is similar to outer P and D asteroids. The most C-rich CP IDPs rise steeply towards 800 nm with a redness comparable to that of the outer asteroid object Pholus (Binzel, 1992). Chondritic porous IDPs are the first identified class of meteoritic materials exhibiting spectral reflectivities (between 450 and 800 nm) similar to those of P and D asteroids. Although large mineral grains, secondary magnetite, and small particle effects complicate interpretation of IDP reflectance spectra, microscope spectrophotometry appears to offer a rapid, nondestructive technique for probing the mineralogy of IDPs, comparing them with meteorites, investigating their parent body origins, and identifying IDPs that may have been strongly heated during atmospheric entry.  相似文献   

15.
Abstract— We studied crystallization trends of pyroxene and spinel in four Antarctic meteorites known to be derived from mare regions of the Moon: Y-793169 and A-881757 (YA meteorites) are unbrecciated igneous basalts, EET 87521 is a fragmental breccia, and Y-793274 is a regolith breccia. All have relatively low bulkrock TiO2 content, and the YA meteorites are uncommonly ancient. Our electron probe microanalysis (EPMA) data indicate that the YA meteorites and the dominant mare components of Y-793274 and EET 87521 conform to a general trend for Ti-poor (low-Ti and very low-Ti) mare basalts. Their pyroxenes show a strong correlation between Fe/(Fe + Mg) (Fe#) and Ti/(Ti + Cr) (Ti#), both ratios typically increasing from core to rim. These trends presumably reflect local crystallization differentiation of interstitial melt. Previous studies (M. J. Drake and coworkers) have suggested that the detailed configurations of such Fe# vs. Ti# trends may reflect the bulk TiO2 contents of the parent magmas (basalts). As a more systematic approach to this problem, we plot bulk-rock TiO2 as a function of the Fe# = 0.50 intercept of each rock's pyroxene Fe# vs. Ti# trend. We call this intercept the Fe#-normalized Ti#. Based on our data for EET 87521, the YA meteorites, and Apollo 12 basalts 12031 and 12064, plus literature data for several other Ti-poor mare basalts, we find a strong correlation between Fe#-normalized Ti# and the bulk TiO2 content of the parent basalt. This correlation confirms that fragmental breccia EET 87521 is nearly pure very low-Ti (VLT) basalt and that the YA meteorites, for which bulk-rock TiO2 results scatter due to unusually coarse grain size (A-881757) or scarcity of available sample (Y-793169), are pieces of an uncommonly Ti-poor, but not quite VLT, variety of low-Ti mare basalt. Extrapolating from this correlation, the dominant mare component of regolith breccia Y-793274 is probably of VLT affinity. Besides the normal mare pyroxene trend of strong correlation between Fe# and Ti#, Y-793274 includes two additional pyroxene compositional trends, both showing a wide range of Ti# despite relatively constant (and low, by mare standards) Fe#. The most magnesian of these trends consists of a single clast with a mode of orthopyroxene + MgO-rich ilmenite. These two trends are of uncertain origin. Possibly one or both represents the highland component of this regolith breccia, although, unlike most highland pyroxenes, these appear relatively unaltered by impact brecciation and metamorphism. Compositions of spinels in the coarse-grained A-881757 show an extraordinary distribution: chromite and ulvöspinel components vary among grains but are nearly constant within grains. Despite its old age and unusually coarse grain sizes, mineralogical evidence (i.e., heterogeneity within both pyroxene and spinel; typical pyroxene exsolution scale very coarse by mare standards but exceeded by the pyroxenes of EET 87521 and Y-793274) indicates that A-881757 was cooled only slightly more slowly than typical mare basalts and may have formed near the center of an uncommonly thick lava flow. Both of the VLT basaltic lunar meteorite breccias, EET 87521 and Y-793274, are composed dominantly of pyroxenes with exsolution coarser than normal for mare basalts. Possibly VLT basalt flows tend to be systematically thicker, and thus more slowly cooled, than more Ti-rich flows.  相似文献   

16.
Abstract— The complete (or near complete) differentiation of a chondritic parent body is believed to result in an object with an Fe-Ni core, a thick olivine-dominated mantle and a thin plagioclase/pyroxene crust. Compositional groupings of iron meteorites give direct evidence that at least 60 chondritic parent bodies have been differentiated and subsequently destroyed. A long standing problem has been that our meteorite collections, and apparently our asteroid observations as well, show a great absence of olivine-dominated metal-free mantle material. While the basaltic achondrites (HED meteorites) represent metal-free pyroxene-dominated crustal samples, the isotopic and geochemical evidence implies that this class is derived from only one parent body (perhaps Vesta). Thus the meteoritic (and perhaps astronomical) evidence also suggests a great absence of crustal material resulting from the collisional disruption of numerous parent bodies. One explanation for the rarity of olivine-dominated metal-free and basaltic asteroids that fits all the available evidence is that all differentiated parent bodies, with the exception of Vesta, were either disrupted or had their crusts and mantles stripped very early in the age of the solar system. The resulting basaltic and olivine-dominated metal-free fragments were continually broken down until their sizes dropped at least below our current astronomical measurement limit (~5–10 km for inner-belt objects) and perhaps completely comminuted such that meteorite samples are no longer delivered. Because of their greater strengths and longer survival time in interplanetary space, only the iron and the stony-iron meteorites remain as the final tracers of this differentiation and collisional history. However, other scenarios remain plausible such as those which invoke “space weathering” processes that effectively disguise the distinctive basaltic and olivine spectra of possible remnant crustal and mantle material within the main asteroid belt.  相似文献   

17.
Near-Earth asteroid surface roughness depends on compositional class   总被引:1,自引:0,他引:1  
Radar observations of 214 near-Earth asteroids (NEAs) reveal a very strong correlation of circular polarization ratio with visible-infrared taxonomic class, establishing distinct differences in the centimeter-to-several-decimeter structural complexity of objects in different spectral classes. The correlation may be due to the intrinsic mechanical properties of different mineralogical assemblages but also may reflect very different formation ages and collisional histories. The highest ratios are measured for groups associated with achondritic igneous rocky meteorites: the E class, whose parent body may be 3103 Eger, and the V class, derived from the mainbelt asteroid (and Dawn mission target) 4 Vesta.  相似文献   

18.
Near-infrared spectra (∼0.90 to ∼1.65 μm) are presented for 181 main-belt asteroids, more than half having diameters less than 20 km. These spectra were measured using a specialized grism at the NASA Infrared Telescope Facility, where the near-infrared wavelength coverage is designed to complement visible wavelength CCD measurements for enhanced mineralogic interpretation. We have focused our analysis on asteroids that appear to have surfaces dominated by olivine or pyroxene since these objects can be best characterized with spectral coverage only out to 1.65 μm. Olivine-dominated A-type asteroids have distinctly redder slopes than olivine found in meteorites, possibly due to surface alteration effects such as micro-meteoroid bombardment simulated by laser irradiation laboratory experiments. K-type asteroids observed within the Eos family tend to be well matched by laboratory spectra of CO3 chondrites, while those independent of the Eos family have a variety of spectral properties. The revealed structure of the 1-μm band for 3628 Bo?němcová appears to refute its previously proposed match to ordinary chondrite meteorites. Bo?němcová displays a 1-μm band that is unlike that for any currently measured meteorite; however, spectra out to 2.5 μm are needed to conclusively argue that Bo?němcová has a surface mineralogy different from that of ordinary chondrites. Extending the spectral coverage of Vestoids out to ∼1.65 μm continues to be consistent with the “genetic” relationship of almost all observed Vestoids with Vesta and the howardites, eucrites, and diogenites. Eucrites/howardites provide the best spectral matches to the observed Vestoids.  相似文献   

19.
The reflectance spectra of asteroids 10 Hygiea (C-type), 135 Hertha (M-type), and 196 Philomela (S-type) are obtained in a range of 0.40–0.91 μm with different time intervals. In this paper, the technique of the spectral measurements of asteroids is analyzed and the reflectance spectra of Hygiea, Hertha, and Philomela are interpreted. The main physical and chemical factors and processes influencing the spectral characteristics of asteroids are considered. It is determined that the spectra of Hertha and Hygiea contain variations exceeding the measurement errors several times at different relative rotation phases, whereas spectral variations of Philomela caused by its rotation hardly exceed the error limits. Most probably, these variations are caused by local manifestations of the impact metamorphism of the material of asteroids in serious impact events. Results show that, to determine the prevailing spectral type and the corresponding mineralogy of each asteroid, one should estimate and take into account the changes in its spectral characteristics for a time interval comparable to the rotation period.  相似文献   

20.
M-type asteroids, as defined in the Tholen taxonomy (Tholen, D.J. [1984]. Asteroid Taxonomy from Cluster Analysis of Photometry. Ph.D. Dissertation, University of Arizona, Tucson), are medium albedo bodies supposed to have a metallic composition and to be the progenitors both of differentiated iron–nickel meteorites and enstatite chondrites. We carried out a spectroscopic survey in the visible and near infrared wavelength range (0.4–2.5 μm) of 30 asteroids chosen from the population of asteroids initially classified as Tholen M-types, aiming to investigate their surface composition. The data were obtained during several observing runs during the years 2004–2007 at the TNG, NTT, and IRTF telescopes. We computed the spectral slopes in several wavelength ranges for each observed asteroid, and we searched for diagnostic spectral features. We confirm a large variety of spectral behaviors for these objects as their spectra are extended into the near infrared, including the identification of weak absorption bands, mainly of the 0.9 μm band tentatively attributed to orthopyroxene, and of the 0.43 μm band that may be associated to chlorites and Mg-rich serpentines or pyroxene minerals such us pigeonite or augite. A comparison with previously published data indicates that the surfaces of several asteroids belonging to the M-class may vary significantly.We attempt to constrain the asteroid surface compositions of our sample by looking for meteorite spectral analogs in the RELAB database and by modeling with geographical mixtures of selected meteorites/minerals. We confirm that iron meteorites, pallasites, and enstatite chondrites are the best matches to most objects in our sample, as suggested for M-type asteroids. For 22 Kalliope, we demonstrate that a synthetic mixture obtained enriching a pallasite meteorite with small amounts (1–2%) of silicates well reproduce the spectral behavior including the observed 0.9 μm feature.The presence of subtle absorption features on several asteroids confirms that not all objects defined by the Tholen M-class have a pure metallic composition.A statistical analysis of spectral slope distribution vs. orbital parameters shows that our sample originally defined as Tholen M-types tend to be dark in albedo and red in slope for increasing value of the semi-major axis. However, we note that our sample is statistically limited by our number of objects (30) and slightly varying results are found for different subsets. If confirmed, the albedo and slope trends could be due to a difference in composition of objects belonging to the outer main belt, or alternatively to a combination of surface composition, grain size and space weathering effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号