首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study compares the Isis II satellite measurements of the electron density and temperature, the integral airglow intensity and volume emission rate at 630 nm in the SAR arc region, observed at dusk on 4 August, 1972, in the Southern Hemisphere, during the main phase of the geomagnetic storm. The model results were obtained using the time dependent one-dimensional mathematical model of the Earth’s ionosphere and plasmasphere (the IZMIRAN model). The major enhancement to the IZMIRAN model developed in this study to explain the two component 630 nm emission observed is the analytical yield spectrum approach to calculate the fluxes of precipitating electrons and the additional production rates of N+2, O+2, O+(4S), O+(2D), O(2P), and O+(2P) ions, and O(1D) in the SAR arc regions in the Northern and Southern Hemispheres. In order to bring the measured and modelled electron temperatures into agreement, the additional heating electron rate of 1.05 eV cm−3 s−1 was added in the energy balance equation of electrons at altitudes above 5000 km during the main phase of the geomagnetic storm. This additional heating electron rate determines the thermally excited 630 nm emission observed. The IZMIRAN model calculates a 630 nm integral intensity above 350 km of 4.1 kR and a total 630 nm integral intensity of 8.1 kR, values which are slightly lower compared to the observed 4.7 kR and 10.6 kR. We conclude that the 630 nm emission observed can be explained considering both the soft energy electron excited component and the thermally excited component. It is found that the inclusion of N2(v > 0) and O2(v > 0) in the calculations of the O+(4S) loss rate improves the agreement between the calculated Ne and the data on 4 August, 1972. The N2(v > 0) and O2(v > 0) effects are enough to explain the electron density depression in the SAR arc F-region and above F2 peak altitude. Our calculations show that the increase in the O+ + N2 rate factor due to the vibrationally excited nitrogen produces the 5–19% reductions in the calculated quiet daytime peak density and the 16–24% decrease in NmF2 in the SAR arc region. The increase in the O+ + N2 loss rate due to vibrationally excited O2 produces the 7–26% decrease in the calculated quiet daytime peak density and the 12–26% decrease in NmF2 in the SAR arc region. We evaluated the role of the electron cooling rates by low-lying electronic excitation of O2(a1δg) and O2(b1σg+), and rotational excitation of O2, and found that the effect of these cooling rates on Te can be considered negligible during the quiet and geomagnetic storm period 3–4 August, 1972. The energy exchange between electron and ion gases, the cooling rate in collisions of O(3P) with thermal electrons with excitation of O(1D), and the electron cooling rates by vibrational excitation of O2 and N2 are the largest cooling rates above 200 km in the SAR arc region on 4 August, 1972. The enhanced IZMIRAN model calculates also number densities of N2(B3πg+), N2(C3πu), and N2(A3σu+) at several vibrational levels, O(1S), and the volume emission rate and integral intensity at 557.7 nm in the region between 120 and 1000 km. We found from the model that the integral integral intensity at 557.7 nm is much less than the integral intensity at 630 nm.  相似文献   

2.
A model of auroral electron deposition processes has been developed using Monte Carlo techniques to simulate electron transport and energy loss. The computed differential electron flux and pitch angle were compared with in situ auroral observations to provide a check on the accuracy of the model. As part of the energy loss process, a tally was kept of electronic excitation and ionization of the important atomic and molecular states. The optical emission rates from these excited states were computed and compared with auroral observations of (3914 Å), (5577 Å), (7620 Å) and (N2VK). In particular, the roles played by energy transfer from N2(A3+u) and by other processes in the excitation of O(1S) and O2(b1+g) were investigated in detail. It is concluded that the N2(A3+u) mechanism is dominant for the production of OI(5577 Å) in the peak emission region of normal aurora, although the production efficiency is much smaller than the measured laboratory value; above 150 km electron impact on atomic oxygen is dominant. Atomic oxygen densities in the range of 0.75±0.25 MSIS-86 [O] were derived from the optical comparisons for auroral latitudes in mid-winter for various levels of solar and magnetic activity.  相似文献   

3.
Alignmentsilkwormsasseismicanimalanomalousbehavior(SAAB)andelectromagneticmodelofafault:atheoryandlaboratoryexperimentMOTO...  相似文献   

4.
The relative rate constants of O2(b1Σ g + , v= 1–4) production at an inelastic interaction between electronically excited N(2D) atoms and O2(X3Σ g ? , v = 0) oxygen molecules have been calculated. It was shown that an increase in equilibrium distances between oxygen atoms in NO2 quasi-molecule, produced during the interaction, substantially increases the calculated relative production rates of O2(b1Σ g + , v > 1). The obtained coefficients are used to calculate the O2(b1Σ g + , v= 1–4) relative populations at 110 km (T = 250 K) and 150 km (T = 500 K) altitudes of the polar ionosphere. The calculated populations have been compared with the results of the published measurements of the Atmospheric system band luminosity intensities, and satisfactory agreement has been obtained for low altitudes.  相似文献   

5.
Photochemistry of Ions at D-region Altitudes of the Ionosphere: A Review   总被引:2,自引:2,他引:0  
The current state of knowledge of the D-region ion photochemistry is reviewed. Equations determining production rates of electrons and positive ions by photoionization of atmospheric neutral species are presented and briefly discussed. Considerable attention is given to the progress in the chemistry of O+(4S), O+(2D), O+(2P), N+, N2 +, O2 +, NO+, N4 +, O4 +, NO+(N2), NO+(CO2), NO+(CO2)2, NO+(H2O) n for n = 1–3, NO+(H2O)(N2), NO+(H2O)2(N2), NO+(H2O)(CO2), NO+(H2O)2(CO2), O2 +(H2O), H3O+(OH), H+(H2O) n for n = 1–8, O?, O2 ?, O3 ?, O4 ?, OH?, CO3 ?, CO4 ?, NO2 ?, NO3 ?, ONOO?, Cl?, Cl?(H2O), Cl?(CO2), HCO3 ?, CO3 ?(H2O), CO3 ?(H2O)2, NO3 ?(H2O), NO3 ?(H2O)2, OH?(H2O), and OH?(H2O)2 ions. The analysis of the D-region rocket ion mass spectrometer measurements shows that, among these ions, O2 +, NO+, NO+(H2O), and H+(H2O) n for n = 1–7 can make the main contribution to the total positive ion number density, and O?, O2 ?, Cl?, OH?(H2O), CO3 ?, HCO3 ?, NO3 ?, ONOO?, CO4 ?, NO3 ?(H2O), NO3 ?(H2O)2, and 35Cl?(CO2) ions can be responsible for the main contribution to the total negative ion number density. Photodetachment of electrons from O?, Cl?, O2 ?, O3 ?, OH?, NO2 ?, and NO3 ?, dissociative electron photodetachment of O4 ? and OH?(H2O), and photodissociation of O3 ?, O4 ?, CO3 ?, CO4 ?, ONOO?, HCO3 ?, CO3 ?(H2O), NO3 ?(H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2–4, NO+(N2), and NO+(CO2) are studied, and the photodetachment and photodissociation rate coefficients are calculated using the current state of knowledge on the cross sections of these processes and fluxes of solar radiation.  相似文献   

6.
Summary The photolysis of ozone in the u.v. Hartley Band produces metastable oxygen atoms and molecules. At wavelengths shorter than 3100 Å the primary quantum yield is probably unity but greater uncertainty exists about its value at longer wavelengths. At 2500 Å, O2(1g) is produced with near unit efficiency and there is some evidence that singlet O2 is also a primary prduct at the short wavelenght end of the Huggins band. O2(1 g + ) is not a primary photolytic product at 2500 Å but is produced as a secondary product from the rapid reaction of O(1D) with ground state O2. O(1D) reacts rapidly with O3 although the nature of the products of this reaction has not been unequivocally established and there is now strong evidence against the occurrence of energy chains in dry ozone. The reaction of O(3P) atoms with O3 has been found to have an activation energy of 4.4 kcal mole–1.  相似文献   

7.
We present a comparison of the observed behavior of the F-region ionosphere over Millstone Hill during the geomagnetically quiet and storm periods of 6–12 April 1990 with numerical model calculations from the IZMIRAN time-dependent mathematical model of the Earths ionosphere and plasmasphere. The major enhancement to the IZMIRAN model developed in this study is the use of a new loss rate of O+(4S) ions as a result of new high-temperature flowing afterglow measurements of the rate coefficients K1 and K2 for the reactions of O+(4S) with N2 and O2. The deviations from the Boltzmann distribution for the first five vibrational levels of O2(v) were calculated, and the present study suggests that these deviations are not significant. It was found that the difference between the non-Boltzmann and Boltzmann distribution assumptions of O2(v) and the difference between ion and neutral temperature can lead to an increase of up to about 3% or a decrease of up to about 4% of the calculated NmF2 as a result of a respective increase or a decrease in K2. The IZMIRAN model reproduces major features of the data. We found that the inclusion of vibrationally excited N2(v > 0) and O2(v > 0) in the calculations improves the agreement between the calculated NmF2 and the data on 6, 9, and 10 April. However, both the daytime and nighttime densities are reproduced by the IZMIRAN model without the vibrationally excited nitrogen and oxygen on 8 and 11 April better than the IZMIRAN model with N2(v > 0) and O2(v > 0). This could be due to possible uncertainties in model neutral temperature and densities, EUV fluxes, rate coefficients, and the flow of ionization between the ionosphere and plasmasphere, and possible horizontal divergence of the flux of ionization above the station. Our calculations show that the increase in the O+ + N2 rate factor due to N2(v > 0) produces a 5–36% decrease in the calculated daytime peak density. The increase in the O+ + O2 loss rate due to vibrationally excited O2 produces 8–46% reductions in NmF2. The effects of vibrationally excited O2 and N2 on Ne and Te are most pronounced during the daytime.  相似文献   

8.
Based on the daily turbulent heat fluxes and related meteorological variables datasets (1985–2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea humidity gradient (Δq′) as well as mean air-sea humidity gradient (), while the distribution of low-frequency oscillation intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (ΔT′). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of Δq′, low-frequency oscillation intensity of anomalous wind speed (U′), and mean wind speed (Ū), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation intensity of ΔT′ and Ū. 3) Over the tropical west Pacific and sea areas north of 20°N, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables q a ′ (T a ′) and U′, indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, q s ′ (T s ′) also greatly influences the low-frequency oscillation of LHF (SHF). Supported by National Natural Science Foundation of China (Grant No. 40675028) and National Basic Research Program of China (Grant No. 2006CB403600)  相似文献   

9.
EstimationofseismicstresdropfromthepeakvelocityofgroundmotionJIAZHENGQIN(秦嘉政)ZUYINLIU(刘祖荫)XIAODONGQIAN(钱晓东)QINGYINXIE(谢庆...  相似文献   

10.
The influence of atmospheric solar radiation absorption on the photodetachment, dissociative photodetachment, and photodissociation rate coefficients (photodestruction rate coefficients) of O?, Cl?, O2 ?, O3 ?, OH?, NO2 ?, NO3 ?, O4 ?, OH?(H2O), CO3 ?, CO4 ?, ONOO?, HCO3 ?, CO3 ?(H2O), NO3 ?(H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2–4, NO+(N2), and NO+(CO2) at D-region altitudes of the ionosphere is studied. A numerical one-dimensional time-dependent neutral atmospheric composition model has been developed to estimate this influence. The model simulations are carried out for the geomagnetically quiet time period of 15 October 1998 at moderate solar activity over the Boulder ozonesonde. If the solar zenith angle is not more than 90° then the strongest influence of atmospheric solar radiation absorption on photodestruction of ions is found for photodissociation of CO4 ? ions when CO3 ? ions are formed. It follows from the calculations that decreases in the photodestruction rate coefficients of ions under consideration caused by this influence are less than 2 % at 70 km altitude and above this altitude if the solar zenith angle does not exceed 90°.  相似文献   

11.
The amination water (AW) effluent stream from the industrial production of the trifluraline herbicide was submitted to an oxidation‐coagulation treatment with potassium ferrate, combined with advanced oxidation processes. The experimental results obtained by analysis of variance (ANOVA) for the oxidation‐coagulation‐Fenton process, evaluating the variables pH (A), Fe(VI) concentration (B), and H2O2 concentration (C), demonstrated that the regression equation resulting from the Response Surface Methodology (RSM) experimental design, for the quadratic model, was ηAbs (%) = 36.9– 21.58A + 8.37A2 + 1.36B + 0.92B2 + 1.08C + 1.52C2 + 1.27AB – 1.34AC + 1.33BC. The maximum absorptiometric color reduction occurred at pH 3, with corresponding maximum amounts of iron and hydrogen peroxide. The absorptiometric color and COD reduction were 96% and 57%, respectively. For the oxidation‐coagulation‐photo‐Fenton process, the analyzed variables were pH (A), Fe(VI) concentration (B), H2O2 concentration (C), and temperature (D). The regression equation resulting from the quadratic model was ηAbs (%) = 38.3 – 20.2A + 8.12A2 – 0.27B + 3.73B2 + 0.3C + 3.6C2 + 1.67D + 3.1D2 + 1.72AB + 0.51AC – 1.82AD + 0.74BC – 1.11BD + 0.03CD. The ANOVA response showed that the highest absorptiometric color reduction occurred at pH 3, with respective maximum amounts of iron and hydrogen peroxide at 60°C. The maximum efficiencies achieved by the proposed treatment process for the trifluraline effluent stream were 95% and 85%, for absorptiometric color and COD reduction, respectively.  相似文献   

12.
The microstructure charateristics of illite from the Chuanlinggou Formation of Changcheng System (Chch) in Jixian County, Tianjin City has been studied by means of high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), X-ray energy dispersive spectrum (EDS) and X-ray powder diffraction (XRD). The Kübler index of "illite crystallinity" is 0.505°△2θ, which indicates that the host rock is in a middle diagenetic stage. The chemical analyses of EDS for illite studied indicate a heavily absent in interlayer cation and an average chemical formula of K0.57(Al1.80Mg0.42Fe2 0.12)∑=2.34 (Si2.92Al1.08)∑=4O10(OH)2. It is found, from one-dimensional lattice images, that the layers of illite not only stack in a flat way but also in a curving way. A "matting fabric" illite structure results from stacking faults. Combined with SAED analysis the illite studied can be affirmed as 1M illite. The two-dimensional lattice images are obtained from [100] and [110] incidences, whose lattice images have the same d-values but different intersecting angles. The two-dimensional lattice image with [100] incidence is orthogonal to each other, whilst that with [110] incidence is oblique. This paper provides some important structure information of authigenic clay minerals for the well-known mesoproterozoic section of Jixian County.  相似文献   

13.
The high-speed correction factor to the O+-O collision frequency, resulting from drift velocities between ions and neutrals, is calculated by solving the integral expression in this factor both numerically and analytically. Although the analytic solution is valid for either small or large drift velocities between ions and neutrals, for temperatures of interest and all drift velocities considered, agreement is found between analytic and detailed numerical integration results within less than 1% error. Let T r designate the average of the ion and neutral temperatures in K, and u=v d /<alpha>, where v d is the relative drift velocity in cm s?1, and <alpha>=4.56×103\sqrtT r cm s?1 is the thermal velocity of the O+-O system. Then, as u ranges from 0 to 2, the correction factor multiplying the collision frequency increases monotonically from 1 to about 1.5. An interesting result emerging from this calculation is that the correction factor for temperatures of aeronomical interest is to a good approximation independent of the temperature, depending only on the scaled velocity u.  相似文献   

14.
The influence of the four different methods of measuring Lg amplitude, and the selection of different geometrical attenuation coefficient ζ-values (=5/6 or 1) on the determination ofγ value of Lg wave are discussed.γ=0.0034±0.0001km−1 (when ζ=5/6) for six eastern provinces is redetermined. The revised magnitude calibration function ofm Lg (mxh),q E (Δ)=(5/6)logΔ+0.00147Δ+1.81 is deduced. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 171–178, 1991. Projects sponsored by the Chinese Joint Seismological Science Foundation.  相似文献   

15.
We present a comparison of the observed behavior of the F region ionosphere over Millstone Hill during the geomagnetically quiet and storm period on 16/23 March, 1990, with numerical model calculations from the time-dependent mathematical model of the Earths ionosphere and plasmasphere. The effects of vibrationally excited N2(v) and O2(v) on the electron density and temperature are studied using the N2(v) and O2(v) Boltzmann and non-Boltzmann distribution assumptions. The deviations from the Boltzmann distribution for the first five vibrational levels of N2(v) and O2(v) were calculated. The present study suggests that these deviations are not significant at vibrational levels v = 1 and 2, and the calculated distributions of N2(v) and O2(v) are highly non-Boltzmann at vibrational levels v > 2. The N2(v) and O2(v) non-Boltzmann distribution assumption leads to the decrease of the calculated daytime NmF2 up to a factor of 1.44 (maximum value) in comparison with the N2(v) and O2(v) Boltzmann distribution assumption. The resulting effects of N2(v > 0) and O2(v) > 0) on the NmF2 is the decrease of the calculated daytime NmF2 up to a factor of 2.8 (maximum value) for Boltzmann populations of N2(v) and O2(v) and up to a factor of 3.5 (maximum value) for non-Boltzmann populations of N2(v) and O2(v). This decrease in electron density results in the increase of the calculated daytime electron temperature up to about 1040/1410 K (maximum value) at the F2 peak altitude giving closer agreement between the measured and modeled electron temperatures. Both the daytime and nighttime densities are not reproduced by the model without N2(v > 0) and O2(v > 0), and inclusion of vibrationally excited N2 and O2 brings the model and data into better agreement. The effects of vibrationally excited O2 and N2 on the electron density and temperature are most pronounced during daytime.  相似文献   

16.
We compare measurements of the ionospheric F region at Millstone Hillduring the severe geomagnetic disturbances of 5–11 June 1991 with results from the IZMIRANand FLIP time-dependent mathematical models of the Earths ionosphere and plasmasphere. Somecomparisons are also made with the Millstone Hill semi-empirical model which was previouslyused to model this storm. New rate coefficients from recent laboratory measurements of the O++N2 and O++O2 loss rates are included in theIZMIRAN and Millstone Hill models. The laboratory measurements show that vibrationallyexcited N2 and O2 (N2(v) and O2(v)) are both important at high temperatures such as found in the thermosphere during disturbedconditions at summer solar maximum. Increases in the O++N2 loss ratedue to N2(v) result in a factor ∼2 reduction in the daytime F2 peak electron density. On some days inclusion of N2(v) improves theagreement between the models and the data, and on other days it worsens it. In the present workwe show for the first time the significant effect that the increase in the O+recombination rate due to O2(v) may have on the calculated NmF2. There are considerable uncertainties in the model calculations during the unusual,extremely disturbed conditions found during the daytime on 6 June. The results illustratedifficulties involved and the current state of the art in modelling severe disturbances, and thusprovide a benchmark against which future progress can be gauged.  相似文献   

17.
Volume emission rate profiles of the O(1D-1S) 5577 Å dayglow measured by the WIND imaging interferometer on the Upper Atmosphere Research Satellite are analyzed to examine the O(1S) excitation mechanisms in the sunlit lower thermosphere and upper mesosphere. The observed emission profiles are compared with theoretical profiles calculated using a model which takes into account all of the known daytime sources of O(1S). These include photoelectron impact on atomic oxygen, dissociative recombination of O+2, photodissociation of molecular oxygen, energy transfer from metastable N2(A3+u) and three body recombination of atomic oxygen. Throughout most of the thermosphere the measured and modelled emission rates are in reasonably good agreement, given the limitations of the model, but in the region below 100 km, where the oxygen atom recombination source is likely to dominate, the measured emission rates are considerably larger than those modelled using the MSIS-90 oxygen atom densities. This discrepancy is discussed in terms of possible inadequacies in the MSIS-90 model atmosphere and/or additional sources of O(1S) at low altitude.  相似文献   

18.
This paper presents a numerical model and results for the mid-latitude ionospheric profile below the peak of the F2-layer. The basis of the model is the solving of equations for four ionic species O+, NO+, O+2 and N+2, as well as the meta-stable O+(2D) and O+(2P). Diffusion and wind-induced drifts and 21 photo-chemical reactions are also taken into account. Neutral atmospheric density and temperature are derived from the MSIS86 model and solar extreme ultraviolate irradiance from the EUV91 model. In an effort to obtain a more realistic ionospheric profile, the key point at foF2 and hmF2 is fitted from the simulation to observations. The model also utilizes the vertical drifts derived from ionosonde data with the help of the Servo model. It is shown that the ionospheric height of peak can be reproduced more accurately under the derived vertical drifts from the Servo theory than with the HWM90 model. Results from the simulation are given for Wuchang (30.5°N, 114.4°E) and Wakkanai (45.6°N, 141.7°E), showing the profile changes with season and solar activity, and the E-F valley structure (the depth and the width). This simulation also reveals the importance of meta-stable ions and dynamical transport processes on the formation of the F1-ledge and F1-F2 valley.  相似文献   

19.
Ion Chemistry of the Ionosphere at E- and F-Region Altitudes: A Review   总被引:2,自引:2,他引:0  
The current state of knowledge of E- and F-region ion chemistry is reviewed. Considerable attention is given to the progress in the chemistry of unexcited N2 +, O2 +, NO+, O+(4S), N+, H+, He+, Fe+, Mg+, Na+, Ca+, and K+ ions and electronically excited O+(2D), O+(2P), O+(4P), and $ {\text{O}}^{ + } (^{2} {\text{P}}^{*} ) $ ions. Achievements in our understanding of the role of vibrationally excited N2 +, O2 +, and NO+ ions in the ionosphere are discussed.  相似文献   

20.
Structure refinement of astrophyllite   总被引:1,自引:0,他引:1  
The crystal structure of astrophyllite K2Na(Fe, Mn, Mg,□)7[Ti2(Si4O12)2|O3](OH, F)4 has been refined. The dimensions of the triclinic unit cell are: a = 0.5359(2) nm,b = 1.1614(4) nm, c = 1.1861(4) nm, α= 113.16(2)°, β= 103.04(2)°,γ= 94.56(2)°,V = 0.6495(5) nm3, Z= 1, space group P1, R=0.057 for 5308 reflections |Fo|>3σ|Fo|. According to structural and compositional differences the monoclinic astrophyllite K2NaNa(Fe, Mn)4Mg2Ti2[Si4O12]2(OH)4(OH, F)2 and astrophyllite should be considered as two different mineral species. Astrophyllite, monoclinic astrophyllite, bafertisite and lamprophyllite contain heteropolyhedral sheets which topologically are related with Si, O sheets of mica where one or several SiO4 tetrahedra are replaced by TiO n polyhedra. Therefore this heterophyllotitanosilicate series represents a kind of functional substitution in inorganic crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号