首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Propagation of ion acoustic solitary waves are studied in e-p-i plasmas containing high relativistic ions, Maxwell–Boltzmann distributed positrons and nonthermal electrons. Reductive perturbation method is used and the Korteweg-de Vries (KdV) equation is derived. The effects of high relativistic ions and nonthermal electrons on soliton characters are studied.  相似文献   

2.
In this paper, the ion-acoustic solitons in a weakly relativistic electron-positron-ion plasma have been investigated. Relativistic ions, Maxwell-Boltzmann distributed positrons and nonthermal electrons are considered in collisionless warm plasma. Using a reductive perturbation theory, a Korteweg-de Vries (KdV) equation is derived, and the relativistic effect on the solitons is studied. It is found that the amplitude of solitary waves of the KdV equation diverges at the critical values of plasma parameters. Finally, in this situation, the solitons of a modified KdV (mKdV) equation with finite amplitude is derived.  相似文献   

3.
The electrostatic shocks and solitons are studied in weakly relativistic and collisional electron-positron-ion plasmas occurring in polar regions of pulsar. The plasma system is composed of relativistically streaming electrons, positrons while ions are taken to be stationary. Dissipative effects in the system are due to collision phenomena among the constituents of relativistic plasma. Nonlinear dynamics of the dissipation and dispersion dominated relativistic plasma systems are governed by Korteweg-de Vries Burger (KdVB) and Korteweg-de Vries (KdV) equations respectively. Numerical results, exploring the effects of plasma parameters on the profile of nonlinear waves are expedited graphically for illustration. Positron to electron temperature ratio plays the role of a decisive parameter. It is noticed that compressive shocks and solitons evolve in the system if the positron to electron temperature ratio is less than a critical value. However, there exists a threshold value of positron to electron temperature ratio beyond which the system supports the rarefactive shocks and solitons. The results may have importance in the relativistic plasmas of pulsar magnetosphere.  相似文献   

4.
Small amplitude dust-acoustic solitary waves in an unmagnetized dusty plasma consisting of electrons and two temperature ions obeying the q-nonextensive distribution are investigated. Employing reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived. From the solitonic solutions of KdV equation, the influence of nonextensivity of electrons as well as ions and dust concentration on the amplitude and width of dust-acoustic solitary waves has been studied. It is observed that both positive and negative potential dust acoustic solitary waves occur in this case. The modified KdV (mKdV) equation is derived in order to examine the solitonic solutions for the critical plasma parameters for which KdV theory fails. The parametric regimes for the existence of mKdV solitons and double layers (DLs) have also been determined. Positive potential double layers are found to occur in the present study.  相似文献   

5.
The nonlinear properties of solitary waves structure in a hot dusty plasma consisting of isothermal hot electrons, non isothermal ions and high negatively charged massive dust grains, are reported. A modified Korteweg-de Vries equation (modified KdV), which admits a solitary waves solution for small but finite amplitude, is derived using a reductive perturbation theory. A nonisothermal ions distribution provides the possibility of coexistence of amplitude rarefactive as well as compressive solitary waves. On the other hand, consideration of a critical ions density gives a stationary solution of solitary waves and the dynamics of small but finite amplitude of solitary waves is governed by Korteweg-de Vries equation (KdV). The properties of solitary waves in the two cases are discussed.  相似文献   

6.
Ion acoustic (IA) solitary and rogue waves are studied in an unmagnetized plasma consisting of non-degenerate warm ions, relativistically degenerate electrons and positrons. By using the reductive perturbation technique, the evolution of IA solitary waves is described by the Korteweg-de Vries (KdV) equation. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency then the KdV equation is also used to study the nonlinear evolution of modulationally unstable modified IA wavepackets through the derivation of nonlinear Schrödinger equation. It is found that the characteristics of the IA solitary and rogue waves are substantially influenced by the intrinsic plasma parameters. The relevance of the present investigation involving IA solitary and rogue waves in astrophysical plasma environments is also highlighted.  相似文献   

7.
Using the Quantum hydrodynamic (QHD) model Korteweg-de Vries (KdV) type solitary excitations of electron-acoustic waves (EAWs) have been examined in a two-electron-populated relativistically degenerate super dense plasma. It is shown that relativistic degeneracy parameter significantly influences the conditions of formation and properties of solitary structures.  相似文献   

8.
Bifurcations of nonlinear electron acoustic solitary waves and periodic waves in an unmagnetized quantum plasma with cold and hot electrons and ions has been investigated. The one dimensional quantum hydrodynamic model is used to study electron acoustic waves (EAWs) in quantum plasma. Applying the well known reductive perturbation technique (RPT), we have derived a Korteweg-de Vries (KdV) equation for EAWs in an unmagnetized quantum plasma. By using the bifurcation theory and methods of planar dynamical systems to this KdV equation, we have presented the existence of two types of traveling wave solutions which are solitary wave solutions and periodic traveling wave solutions. Under different parametric conditions, some exact explicit solutions of the above waves are obtained.  相似文献   

9.
Nonlinear ion acoustic solitary waves (IASWs) are addressed in a weakly relativistic plasma consisting of cold ion fluid, q-nonextensive electron velocity distribution and Boltzmann distributed positron. The Korteweg-de Vries- (KdV) equation is derived by reductive perturbation method. We investigate the effect of nonextensive electrons on solitary waves in this medium. It is found that only compressive solitons can be appeared in the existence of nonextensive electrons. It is shown that the structure of soliton depend sensitively on the q-nonextensive parameter.  相似文献   

10.
Electron acoustic blow up solitary waves and periodic waves are studied in a classical unmagnetized plasma containing cold electron fluid, kappa distributed hot electrons and stationary ions. We obtain Korteweg-de Vries (KdV) equation for electron acoustic waves (EAWs) using the reductive perturbation technique (RPT). Applying bifurcation theory of planar dynamical systems to the obtained KdV equation, we prove the existence of electron acoustic blowup solitary and periodic wave solutions. Depending on different physical parameters, two types of exact explicit solutions of the mentioned waves are derived. Our model may be applied to explain blow up solitary and periodic wave features that may occur in the planetary magnetosphere and the plasma sheet boundary layer.  相似文献   

11.
Properties of dust-acoustic solitary waves in a warm dusty plasma are analyzed by using the hydrodynamic model for massive dust grains, electrons, ions, and streaming ion beam. For this purpose, Korteweg-de Vries (KdV) equation for the first-order perturbed potential and linear inhomogeneous KdV-type equation for the second-order perturbed potential have been derived and their analytical solutions are presented. In order to show the characteristics of the dust-acoustic solitary waves are influenced by the plasma parameters, the relevant numerical analysis of the KdV and linear inhomogeneous KdV-type equations are obtained. The dust-acoustic solitary waves, as predicted here, may be associated with the nonlinear structures caused by the interaction of polar jets with the interstellar medium, which is known as Herbig-Haro objects.  相似文献   

12.
The basic features of planar and nonplanar time-dependent dust-ion-acoustic (DIA) solitary waves (SWs) and double layers (DLs) have been studied in an unmagnetized dusty plasma system consisting of positively and negatively charged dust, Boltzmann distributed ions and superthermal electrons (represented by kappa distribution). Using the reductive perturbation technique (RPT) we have derived modified Gardner (MG) equation, which gives information beyond the Korteweg-de Vries (KdV) limits (corresponding to the vanishing of nonlinear coefficient of the KdV equation). It is seen that the properties of nonplanar DIA SWs and DLs are significantly differs as the value of spectral index kappa (κ) changes. The present investigation may have relevance in the study of propagation of DIA waves in space and laboratory plasmas.  相似文献   

13.
The propagation of nonlinear waves in plasmas consisting of cold electron fluid and superthermal hot electrons and stationary ions is studied. The Korteweg-de Vries (KdV) equation is derived using the reductive perturbation theory. It is found that only the rarefractive solitons can be created. Moreover, the linear dispersion relation and energy of solitary waves in the presence of hot superthermal electrons are derived. Our investigation is of wide relevance to astronomers and space scientists working on interstellar space plasmas.  相似文献   

14.
Propagation of nonlinear dust-acoustic waves in a magnetized collisionless plasma having positively, negatively charged dust grains and nonextensive distributed electrons and ions has been investigated. A reductive perturbation method is used to obtain a nonlinear Korteweg-de Vries (KdV) equation describing the model. The dynamics of the modulational instability gives rise to the formation of rogue waves that is described by a nonlinear Schrödinger equation. The dependence of rogue waves profiles on positive and negative charged dust cyclotron frequencies, nonextensive parameters of electrons and ions is investigated numerically. The result of the present investigation may be applicable to some plasma environments, such as cometary tails and upper mesosphere.  相似文献   

15.
The formation and propagation of dust-acoustic (DA) solitary and rogue waves are studied in a non-relativistic degenerate Thomas-Fermi thermal dusty plasma incorporating transverse velocity perturbation effects. The electrons and ions are described by the Thomas-Fermi density distributions, whereas the dust grains are taken as dynamic and classical. By using the reductive perturbation technique, the cylindrical Kadomtsev-Petviashvili (CKP) equation is derived, which is then transformed into a Korteweg-deVries (KdV) equation by using appropriate variable transformations. The latter admits a solitary wave solution. However, when the carrier waves frequency is much smaller than the dust plasma frequency, the DA waves evolve into the nonlinear modulation instability, generating modulated wave packets in the form of Rogue waves. For the study of DA-rogue waves, the KdV equation is transformed into a self-focusing nonlinear Schrödinger equation. The variation of dust temperature and the electron density affects the nonlinearity and dispersion coefficients which suppress the amplitudes of the DA solitary and rogue waves. The present results aim to describe the nonlinear electrostatic excitations in astrophysical degenerate dense plasma.  相似文献   

16.
A theoretical investigation is carried out to analyse the propagation of ion acoustic (IA) waves in a magnetized bi-ion plasma having two populations of fluid ions and kappa-distributed electrons. The propagation properties of all possible modes (in the linear regime) are investigated. The nonlinear evolution of the IA solitary waves is governed by a Korteweg-de Vries (KdV)-like equation. The influence of obliqueness, magnitude of the magnetic field, ion polarity and electron superthermality on the IA waves is then examined. Our findings should aid in understanding the nonlinear electrostatic excitations that may propagate in spatial magnetized plasmas.  相似文献   

17.
Initially, inhomogeneous plasma jets, ejected by active galactic nuclei and associated with gamma-ray bursts, are thermalized by the formation of internal shocks. Jet subpopulations can hereby collide at Lorentz factors of a few. As the resulting relativistic shock expands into the upstream plasma, a significant fraction of the upstream ions is reflected. These ions, together with downstream ions that leak through the shock, form relativistic beams of ions that outrun the shock. The thermalization of these beams via the two-stream instability is thought to contribute significantly to plasma heating and particle acceleration by the shock. Here, the capability of a two-stream instability to generate relativistic field-aligned and cross-field electron flow, is examined for a magnetized plasma by means of a particle-in-cell (PIC) simulation. The electrons interact with the developing quasi-electrostatic waves and oblique magnetic fields. The simulation results bring forward evidence that such waves, by their non-linear interactions with the plasma, produce a highly relativistic field-aligned electron flow and electron energies, which could contribute to the radio synchrotron emissions from astrophysical jets, to ultrarelativistic leptonic subpopulations propagating with the jet and to the halo particles surrounding the accretion disc of the black hole.  相似文献   

18.
In the new investigation of dust-ion acoustic (DIA) waves with negative dust charges and weakly relativistic ions and electrons in the plasma, compressive and rarefactive DIA solitons of interesting characters are established through the Korteweg-de Vries (KdV) equation. Eventually, the amplitudes of the compressive DIA solitons are found to be constant at some critical temperature ratio α c (electron to ion temperature ratio) identifying some critical dust charge Z dc . It is predicted, that the reception of dust charges by the plasma particles at the variation of temperature starts functioning to the growth of compressive soliton’s constant stage of amplitude after the state of critical α c . The identification of critical dust charge (Z dc ) which is found to be very great for solitons of constant amplitudes becomes feasible for very small dust to ion density ratio (σ). But it can be achieved, we observe, due to the relativistic increase in ion-density as in mass, which is also a salient feature of this investigation.  相似文献   

19.
In the two component relativistic plasmas subject to pressure variation of adiabatic electrons and isothermal ions, both compressive and rarefactive KdV solitons are established in a quite different physical plasma model. It is desirable to define c s in a new way to substantiate the validity of the model under relativistic effects. The corresponding mathematical condition is also determined, which is a new report of this kind. It is also interesting to report that the relativistic rarefactive solitons cease to exist below some critical ion initial streaming speed v i0 for a fixed temperature α and electron streaming speed v e0. Besides, higher initial flux v i0 of ions under constant temperature is observed to generate higher speed v i at the passage of time which causes to increase (in relativistic sense) its mass diminishing thereby the growth of soliton amplitudes.  相似文献   

20.
The time fractional KdV equation is derived for small but finite amplitude electron-acoustic solitary waves in plasma of cold electron fluid with two different temperature isothermal ions. The effects of the time fractional parameter on the electrostatic solitary structures are presented. It is shown that the effect of time fractional parameter can be used to modify the amplitude of the electrostatic waves (viz. the amplitude, width and electric field) of the electron-acoustic solitary waves. The model may provide a possible explanation for the low-frequency component of the broadband electrostatic noise in the plasma sheet boundary layer of the Earth’s magnetotail where the electron beams are not present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号