首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We investigate the nature of bright radio sources with known radio spectra in the direction of the nearby cluster of galaxies A569 (z=0.0193). The optical identifications of the sources show that 45% of these radio sources are associated with compact galaxies. A substantial fraction of these galaxies have active nuclei, with the radio emission concentrated toward the galactic center. Some of the cluster galaxies have radio halos, with appreciably weaker radio powers and spectral indices α=0.95±0.2. We compute the magnetic fields in the nuclei and halos of the galaxies for the adopted distance to A569. As expected, the magnetic fields in the galactic halos make a smooth transition to the intergalactic field, while the magnetic fields in the central regions of the galaxies rise sharply toward the nucleus.  相似文献   

2.
The possibility of selecting extended radio sources that are potential candidates for giant radio galaxies among objects in the Pushchino catalog at 102 MHz is considered. The method used is based on the analysis of objects in a α 1α 2 diagram, where α 1 and α 2 are two-frequency spectral indices (S ν ν ?α ), formally calculated using 102–365 and 365–1400 MHz data, based on the identifications of Pushchino radio sources with objects of the Texas (365 MHz) and Green Bank (1400 MHz) catalogs. The calculated spectra are abnormally steep at 102–365 MHz and flat or even inverted at 365–1400 MHz, due to the fact that the 365-MHz flux densities of extended radio sources measured with the Texas radio interferometer are appreciably underestimated. Ten objects among the fifteen Pushchino radio sources selected using this criterion proved to be already known large radio galaxies. The possibility of improving the efficiency of the method by using larger samples and applying some additional criteria selecting candidate giant radio galaxies is considered.  相似文献   

3.
Radio sources detected at 3.94 GHz in RATAN-600 observations made in 1980–1981 (the KHOLOD Survey) have been identified with objects from the NVSS catalog down to 5 mJy at 1.4 GHz, and their spectral indices have been estimated. Of the 1311 NVSS objects in the KHOLOD survey region, 836 are present in both catalogs. The average flux density of the common objects is 40 mJy, and the median flux density is 14 mJy. The average spectral indices of these objects for four flux-density intervals were calculated. The average spectral index grows with flux density. The fraction of objects with inverted spectra is 2–4%, and the average flux density of these sources is about 10 mJy. Optical identifications of the NVS S objects in the KHOLOD survey region have been carried out to R=20.5m using the Palomar plates. About 20% of the radio sources are identified with optical objects in all the radio flux-density intervals.  相似文献   

4.
The arrival directions of extensive air showers with energies 4×1019<E≤3×1020 eV detected by the AGASA, Yakutsk, Haverah Park, and Fly’s Eye arrays are analyzed in order to identify possible sources of cosmic rays with these energies. We searched for active galactic nuclei, radio galaxies, and X-ray pulsars within 3-error boxes around the shower-arrival directions and calculated the probabilities of objects being in the 3 error boxes by chance. These probabilities are small in the case of Seyfert galaxies with redshifts z<0.01 and BL Lac objects, corresponding to P>3σ (σ is the parameter of Gaussian distribution). The Seyfert galaxies are characterized by moderate luminosities (L<1046 erg/s) and weak radio and X-ray emission. We also analyzed gamma-ray emission at energies E>1014 eV recorded by the Bolivian and Tian Shan arrays. The source identifications suggest that the gamma rays could have been produced in interactions of cosmic rays with the microwave background radiation and subsequent electromagnetic cascades in intergalactic space. We estimate the strength of intergalactic magnetic fields outside galaxy clusters to be B≤8.7×10?10 G.  相似文献   

5.
We present classifications, optical identifications, and radio spectra for 19 radio sources from three complete samples, with declinations 4°–6° (B1950, S 3.9 GHz > 200 mJy), 10°–12°30′ (J2000, S 4.85 GHz > 200 mJy), and 74°–75° (J2000, S 4.85 GHz > 100 mJy). We also present corresponding information for the radio source J0527+0331. The right ascensions are 0–24h and the Galactic latitudes |b| > 15° for all the samples. Our observations were obtained with the 6 m telescope from the Special Astrophysical Observatory in the range 4000–9000 Å or 4000–7500 Å and the RATAN-600 radio telescope at frequencies in the range 0.97–21.7 GHz. We obtained flux densities for the radio sources and optical spectra for their optical counterparts. Nine objects were classified as quasars with redshifts from z = 1.029 to 3.212; nine objects are emission-line galaxies with redshifts from 0.172 to 0.546, and one is a galaxy with burstlike star formation at z = 0.156, and one is a BL Lac object with z = 0.509. The spectra of five radio sources were decomposed into extended and compact components. The radio source J0527+0331, identified with a BL Lac object, displays significant variations of time scales from several days to several years. Data on flux variations are presented for 11 radio sources, as well as their spectra at several epochs.  相似文献   

6.
The results of spectroscopic observations of the host galaxies of objects in the RC catalog (the “Big Trio” program) obtained using the new SCORPIO spectrograph of the Special Astrophysical Observatory are presented. The spectroscopic redshifts of the objects are compared with their photometric color redshifts, and the errors in the latter are estimated. Based on BV RI observations obtained on the 6-m telescope of the SAO, the errors for the population of powerful radio galaxies are close to those found previously for radio quiet galaxies (about 10–20%). The detection of Ly α in the B filter in RC 1626+0448 is confirmed. This object is the second spectrally studied FR II radio source from the RC catalog to have a redshift z>2.5. Star formation in its host galaxy began at a redshift z>3.3. This first use of the new SCORPIO spectrograph demonstrates its promise for studies of very distant steep-spectrum radio galaxies brighter than 23m–24m in V.  相似文献   

7.
The properties of giant radio sources (GRS’s) are considered with the aim of identifying conditions contributing to their formation, using data from the literature, the Sloan Digital Sky Survey (SDSS), and the APM catalog. The optical and radio properties of normal-size radio sources, (≤1 Mpc), are compared. The following conclusions are reached. (1) The fraction of objects with broad emission lines among GRS’s with high-excitation spectra is the same as for isotropic samples of radio sources; in the framework of the “unified scheme,” this testifies to an isotropic distribution of angles between the radio jets of GRS’s and the line of sight, i.e., GRS’s do not represent a population of objects whose radio jets are in the plane of the sky. (2) Giant radio sources do not differ from normal radio sources in the distributions of various asymmetry parameters for their extended radio components; in the unified scheme, the similarity of the asymmetry distributions for giant radio galaxies and giant radio quasars suggests that the origin of the asymmetry of their extended radio components is inhomogeneity of the external conditions. (3) The observed powers of the radio jets of giant and normal radio sources do not differ, making it unlikely that the large sizes of the GRS’s are due to this factor. (4) The richness and character of the environments of giant and normal radio sources do not differ: giant host galaxies are found in both isolated fields and in clusters of up to Abell class 1 in richness. This argues against the idea that a low density of the environment is the only origin of GRS’s. (5) The relatively large fraction of radio sources with two pairs of extended radio components (so-called double-double radio sources) among GRS’s testifies that the lifetimes of GRS’s are approximately an order of magnitude longer than those of normal radio sources.Given the equal spatial densities of nearby (z < 0.1) GRS’s and FR II radio sources with powers P 1.4 MHz > 1025 W/Hz, this indicates that ∼10% of FR II radio sources have lifetimes an order of magnitude longer, and evolve into GRS’s. (6) The small (∼0.1) ratio of the number of known GRS’s to the number of normal FR II radio sources, together with the observed spatial density of GRS’s at z ∼ 0.6, which is an order of magnitude lower than the predicted value, suggests that a considerable number of GRS’s were missed by surveys at z > 0.1, possibly due to observational selection effects because of their relatively low radio powers and radio surface brightnesses. (7) The absence of “double-double” giant quasars suggests that these objects have a shorter activity time scale than GRS’s. In an evolutionary scenario that is an alternative to the unified scheme uniting “radio loud” quasars and radio galaxies, radio quasars evolve with time into radio galaxies, and the observed relative number of radio quasars among the GRS’s (∼10%) can be interpreted as reflecting the existence of a long-lived population of “radio loud” quasars comprising ∼10% of all radio quasars, with such a population of long-lived radio quasars being the parent population for giant radio galaxies.  相似文献   

8.
Published data from long-term observations of a strip of sky at declination ?? ?? 5° carried out at 7.6 cm on the RATAN-600 radio telescope are used to estimate some statistical properties of radio sources. Limits on the sensitivity of the survey due to noise imposed by background sources, which dominates the radiometer sensitivity, are refined. The vast majority of noise due to background sources is associated with known radio sources (for example, from the NVSS with a detection threshold of 2.3 mJy) with normal steep spectra (?? = 0.7?C0.8, S ?? ?? ??? ), which have also been detected in new deep surveys at decimeter wavelengths. When all such objects are removed from the observational data, this leaves another noise component that is observed to be roughly identical in independent groups of observations. We suggest this represents a new population of radio sources that are not present in known catalogs at the 0.6 mJy level at 7.6 cm. The studied redshift dependence of the number of steep-spectrum objects shows that the sensitivity of our survey is sufficient to detect powerful FRII radio sources at any redshift, right to the epoch of formation of the first galaxies. The inferred new population is most likely associated with low-luminosity objects at redshifts z < 1. In spite of the appearance of new means of carrying out direct studies of distant galaxies, searches for objects with very high redshifts among steep and ultra-steep spectrum radio sources remains an effective method for studying the early Universe.  相似文献   

9.
BV RI data are presented for the majority of steep-spectrum objects in the RC catalog with m R <23.5m. Previously developed programs are applied to these data to estimate the redshifts and ages of the stellar systems of the host galaxies. Applying this program to the color data (BV RI JHK) for distant radio galaxies with spectroscopic redshifts indicates that this approach provides accurate estimates of the redshifts of such radio galaxies, close to those obtained using field galaxies (~20%). The age estimates are much less trustworthy, but a lower limit to the ages of objects that are not very distant (z<1.5) can be determined with certainty. We have identi fied several galaxies whose formal ages exceed the age of the Universe at the corresponding z in simple Cold Dark Matter models for the Universe. The possibility of using such objects to elucidate the role of “dark energy” is discussed. This paradox disappears in models with cosmological constants (Λ terms) equal to 0.6–0.8.  相似文献   

10.
We present the results of twenty-year observations of a complete sample of 68 flat-spectrum radio sources with flux densities S 3.9 GHz > 200 mJy carried out at centimeter wavelengths with the RATAN-600 radio telescope. Since 1995, we have observed simultaneously at six frequencies between 0.97 and 21.7 GHz. Of the 56 sources identified with optical objects, 41 are quasars with redshifts between 0.293 and 3.263. Based on our analysis of the spectral shapes, we divide the sources into four classes. Changes of spectral class for individual sources are fairly rare. Based on the light curves and spectra, in most cases, a flare’s evolution is in accordance with a model in which the variations result from the evolution of a shock in the radio jet. The main result of our study is that there is no redshift dependence for the true linear sizes of the radiating regions, the variability indices derived for all 20 years of data or for individual flares, or the peak frequencies of the spectra of the compact radio emission. We suggest that this testifies to an absence of cosmological evolution of the sample quasars, at least to z ≈ 3.  相似文献   

11.
A new method for distinguishing candidate giant radio galaxies is proposed and applied. The method is based on comparing the axes of the extended components of NVSS radio sources with separations exceeding 4′, described in a catalog of presumably independent objects. Objects detected using the proposed algorithm include 16 new weak giant-radio-galaxy candidates, for which optical and radio identifications have been obtained using the CATS, NED, SDSS, and SkyView databases.  相似文献   

12.

Results of reducing and selecting data from the Ratan Zenith Field (RZF) are presented. A deep survey in the region 0h ≤ R.A. ≤ 24h, 40.5° ≤ DEC ≤ 42.5° carried out on the RATAN-600 radio telescope was used. Within +2′ of the center of the survey region, 448 objects were detected, 69 of them with ultra-steep spectra (USS). The SDSS digital optical survey (DR12), NVSS radio maps, and the FIRST catalogs have been used to cross-identify 208 radio sources from the RZF catalog, obtained as part of the “Genetic Code of the Universe” project. The characteristics of these objects are studied, and the distribution of the SDSS galaxies in a two-color diagram is obtained. Photometric redshifts and radio luminosities at 3940 and 1400 MHz are determined for 27 objects with spectral indices α < −1.1 (Sνα) for which magnitudes in various filters are presented in the SDSS. In the sample of USS objects, 12 galaxies have redshifts z < 0.5, are detected at wavelength λ = 7.6 cm, and have relatively high radio luminosities (type FR II or intermediate type FR I–FR II). Only one radio galaxy proved to be a rare nearby galaxy with relatively low radio luminosity L1400 MHz = 1.51 × 1024 W/Hz (type FR I). Two objects are candidate GHz-Peaked Spectrum objects.

  相似文献   

13.
The physical conditions in the radio sources CTA 21 and OF+247 are studied assuming that the low-frequency spectral turnovers are due to synchrotron self-absorption. The physical parameters of the radio sources are estimated using a technique based on a nonuniform synchrotron source model. It is shown that the magnetic-field distributions in the dominant compact components of these radio sources are strongly inhomogeneous. The magnetic fields at the center of the sources are B ~ 10?1 G, and the fields are two to three orders of magnitude weaker at the periphery. The magnetic field averaged over the compact component is B ~ 10?3 G, and the density of relativistic electrons is n e ~ 10?3 cm?3. Assuming that there is equipartition of the energies of the magnetic field and relativistic particles, averaged over the source, 〈E H 〉 = 〈E e 〉 ~ 10?7–10?6 erg cm?3. The energy density of the magnetic field exceeds that of the relativistic electrons at the centers of the radio sources. The derived parameters of CTA 21 and OF+247 are close to those of the hot spots in the radio galaxy Cygnus A. On this basis, it is suggested that CTA 21 and OF+247 are radio galaxies at an early stage of their evolution, when the hot spots (dominant compact radio components) have appeared, and the radio lobes (weak extended components) are still being formed.  相似文献   

14.
A cross-identification of objects in the low-frequency (365 MHz) Texas radio catalog and in IRAS catalogs at four infrared wavelengths has yielded a list of 715 objects for further studies. Objects with steep spectra for which the difference in the centers of gravity of the radio and infrared sources was less than 3″ were selected from this list. Seventeen of the objects have been observed at six wavelengths using the RATAN-600 radio telescope. Spectra of nine objects from the initial list for which there were candidate optical counterparts were obtained using the 2.1-m telescope of the INAOE. The results of these observations are discussed. The presence of steep spectral indices for the radio sources is confirmed. The possible optical counterparts include interacting galaxies, an infrared galaxy, two emission-line galaxies, and a candidate BL Lac object. Optical images of the optical counterparts are presented together with radio and optical spectra.  相似文献   

15.
We present the results of spectroscopy of 71 objects with steep and ultra-steep spectra (α < −0.9, Sν α) from the “Big Trio” (RATAN-600-VLA-BTA) project, performed with the “Scorpio” spectrograph on the 6-m telescope of the Special Astrophysical Observatory (Russian Academy of Sciences). Redshifts were determined for these objects. We also present several other parameters of the sources, such as their R magnitudes, maximum radio sizes in seconds of arc, flux densities at 500, 1425, and 3940 MHz, radio luminosities at 500 and 3940 MHz, and morphology. Of the total number of radio galaxies studied, four have redshifts 1 ≤ z < 2, three have 2 ≤ z < 3, one has 3 ≤ z < 4, and one has z = 4.51. Thirteen sources have redshifts 0.7 < z < 1 and 15 have 0.2 < z < 0.7.Of all the quasars studied, five have redshifts 0.7 < z < 1, seven have 1 ≤ z < 2, four have 2 ≤ z < 3, and one has z = 3.57. We did not detect any spectral lines for 17 objects.  相似文献   

16.
The paper describes a method for the radio identification of decameter-wavelength sources based on their continuum spectra and analysis of their coordinates in relatively large error boxes surrounding a specified position on the sky. The distribution of continuum spectra and identifications in other wavelength ranges are analyzed for the resulting radio catalog. Using identifications with the FIRST and NVSS surveys, the statistics of the spectral index-size and spectral index-flux density distributions for steep-spectrum sources have been studied, and a catalog of ultrasteep-spectrum (α相似文献   

17.
We study a compact group of 18 galaxies in the cluster A1367 with redshifts z = 0.0208–0.025. The group’s center of activity in the radio is the galaxy NGC 3862, whose radio flux is an order of magnitude stronger than for the other members of the group. We present coordinates derived from the Palomar plate archive together with recessional velocities, and analyze other characteristics of the group’s galaxies. The results of 1400 MHz observations of NGC 3862 with the RATAN-600 radio telescope are presented. These observations indicate that the galaxy’s radio emission is variable.  相似文献   

18.
We present classifications, optical identifications, and radio spectra for eight radio sources from three flux-density-complete samples in the following declination ranges: 4°–6° (B1950), S 3.9 > 200 mJy; 10°–12°30′ (J2000), S 4.85 > 200 mJy; 74°?75° (J2000), S 4.85 > 100 mJy. For all these samples, the right ascensions are 0h–24h and the Galactic latitudes, |b| > 15°. Our optical observations at 4000–7500 ° were made with the 6-m telescope of the Special Astrophysical Observatory; we also observed at 0.97–21.7 GHz with the RATAN-600 radio telescope of the Special Astrophysical Observatory. We classify four of the objects as quasars and four as galaxies. Five of the radio sources have power-law spectra at 0.97–21.7 GHz, while two objects have flat spectra. The quasar J2358+0430 virtually did not vary during 23 years.  相似文献   

19.
The results of 0.97, 2.3, 3.9, 7.7, 11.1, and 21.7 GHz observations of a complete sample of radio sources obtained on the RATAN-600 radio telescope are presented. The sample is comprised of sources from the 4.85-GHz MGB survey, and contains all sources at declinations 10°–12°30′ (J2000) with Galactic latitudes |b|>15° and flux densities S4.85>200 mJy. Optical identifications have been obtained for about 86% of the radio sources with flat spectra and 59% of those with steep spectra. The spectra of the flat-spectrum sources have been decomposed into extended and compact components.  相似文献   

20.
We present the results of observations of a complete sample of radio sources with the RATAN-600 radio telescope at 0.97, 2.3, 3.9, 7.7, 11.1, and 21.7 GHz. The sample was extracted from the GB6 catalog at 4.85 GHz, and contains all the sources at declinations 74°–75° (J2000) with flux densities S 4.85 > 100 mJy. We have obtained optical identifications for 67% of the radio sources with flat spectra and 30% of those with steep spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号