首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interplanetary scintillation observations of the radio sources 4C 31.04, 3C 67, 4C 34.07, 4C 34.09, OE 131, 3C 93.1, OF 247, 3C 147, 3C 173, OI 407, 4C 68.08, 3C186, 3C 190, 3C 191, 3C 213.1, 3C 216, 3C 237, 3C 241, 4C 14.41, 3C 258, and 3C 266 have been carried out at 102 MHz. Scintillations were detected for nearly all the sources. The integrated flux densities and flux densities of the scintillating components are estimated. Nine of the 21 sources have a low-frequency turnover in their spectra; three of the sources have high-frequency turnovers. The physical parameters are estimated for sources with turnovers in the spectra of their compact components. In most of the quasars, the relativistic-plasma energy exceeds the magnetic-field energy, while the opposite is true of most of the radio galaxies. Empirical relations between the size of the compact radio source and its magnetic field and relativistic-electron density are derived.  相似文献   

2.
Approximately 20% of weak sources in a scintillation survey at 102 MHz were not identified in other, more sensitive, low-frequency surveys. These sources had very high compactness and steep spectra. Since, as shown earlier, these sources are probably quasars, the epoch of the radio birth of quasars should correspond to flux densities of ~0.01 Jy.  相似文献   

3.
The flux densities of a uniform sample of extragalactic radio sources in a narrow strip of sky (1° wide in declination with a total area of about 0.1 sr) were monitored for 105 days at 1420 MHz using the 64-m Kalyazin radio telescope. In total, 32 bright sources with flux densities greater than 0.6 Jy have been studied. The statistical properties of the observed flux-density variations are discussed. We detected variability at the 95% confidence level according to the χ 2 test in 4C +27.15 (0516+2740). The flux density variations in this source show the pattern typical of extreme scattering events. There are reasons to classify this source as a blazar.  相似文献   

4.
We present classifications, optical identifications, and radio spectra for eight radio sources from three flux-density-complete samples in the following declination ranges: 4°–6° (B1950), S 3.9 > 200 mJy; 10°–12°30′ (J2000), S 4.85 > 200 mJy; 74°?75° (J2000), S 4.85 > 100 mJy. For all these samples, the right ascensions are 0h–24h and the Galactic latitudes, |b| > 15°. Our optical observations at 4000–7500 ° were made with the 6-m telescope of the Special Astrophysical Observatory; we also observed at 0.97–21.7 GHz with the RATAN-600 radio telescope of the Special Astrophysical Observatory. We classify four of the objects as quasars and four as galaxies. Five of the radio sources have power-law spectra at 0.97–21.7 GHz, while two objects have flat spectra. The quasar J2358+0430 virtually did not vary during 23 years.  相似文献   

5.
Searches for intraday variability in the flat-spectrum radio sources J0527+0331, J0721+0406, and J1728+0427 have been carried out at 3.5 cm using the 32-m radio telescope of the Zelenchuk Observatory of the Kvazar-KVO complex of the Institute of Applied Astronomy of the Russian Academy of Sciences (located near the Zelenchuk Village, Karachaevo-Cherkesskaya Republic). Intraday variabiility with characteristic time scales from one to five hours was detected in all three sources.  相似文献   

6.
Some features of the low-frequency cut-offs of synchrotron radio spectra are investigated using numerical simulations. It is demonstrated that the interpretation of the radio spectra of compact sources must be based on an exact (numerical) solution of the transfer equation. The need for creating VLBI systems operating at meter wavelengths to study the physical conditions in galactic nuclei is justified.  相似文献   

7.
Optical identifications and an analysis of the radio spectra of eight radio sources from a flux-density-complete sample at declinations 4°–6° (B 1950) are presented. The observations were carried out at 4000–9000 Å on the 6-m telescope of the Special Astrophysical Observatory and at 0.97–21.7 GHz on the RATAN-600 telescope. Five of the eight sources are quasars and three are emission-line radio galaxies.  相似文献   

8.
Weak, compact radio sources (~100 mJy peak flux, L~1–10 pc) with their spectral peaks at about a gigahertz are studied, based on the complete sample of 46 radio sources of Snellen, drawn from high-sensitivity surveys, including the low-frequency Westerbork catalog. The physical parameters have been estimated for 14 sources: the magnetic field (H ), the number density of relativistic particles (n e), the energy of the magnetic field $(E_{H_ \bot } )$ , and the energy of relativistic particles (E e). Ten sources have $E_{H_ \bot } \ll E_e $ , three have approximate equipartition of the energies $(E_{H_ \bot } \sim E_e )$ , and only one has $E_{H_ \bot } \gg E_e $ . The mean magnetic fields in quasars (10?3 G) and galaxies (10?2 G) have been estimated. The magnetic field appears to be related to the sizes of compact features as $H \sim 1/\sqrt L $ .  相似文献   

9.
A complete sample of core-dominated radio sources has been studied using the interplanetary-scintillation method. In total, 72 sources were observed, with scintillations detected in 28 of them. The remaining sources have upper limits on their flux densities. Integrated flux densities are estimated for 24 sources. Cut-offs have been observed in the spectra of many sources. The thermal-electron densities have been estimated, assuming that these cut-offs are due to free-free absorption of the synchrotron radio emission.  相似文献   

10.
Classifications of the optical counterparts and radio spectra of nine radio sources are presented. The observations were carried out using the 2.1-m optical telescope in Cananea (Mexico) at 4200–9000 Å and the RATAN-600 radio telescope at 0.97–21.7 GHz. Five objects have been classified as quasars (three have redshifts z>2), two as BL Lac objects, one as an elliptical galaxy, and one as an absorption-line galaxy.  相似文献   

11.
Radio sources detected at 3.94 GHz in RATAN-600 observations made in 1980–1981 (the KHOLOD Survey) have been identified with objects from the NVSS catalog down to 5 mJy at 1.4 GHz, and their spectral indices have been estimated. Of the 1311 NVSS objects in the KHOLOD survey region, 836 are present in both catalogs. The average flux density of the common objects is 40 mJy, and the median flux density is 14 mJy. The average spectral indices of these objects for four flux-density intervals were calculated. The average spectral index grows with flux density. The fraction of objects with inverted spectra is 2–4%, and the average flux density of these sources is about 10 mJy. Optical identifications of the NVS S objects in the KHOLOD survey region have been carried out to R=20.5m using the Palomar plates. About 20% of the radio sources are identified with optical objects in all the radio flux-density intervals.  相似文献   

12.
The physical conditions in the radio sources CTA 21 and OF+247 are studied assuming that the low-frequency spectral turnovers are due to synchrotron self-absorption. The physical parameters of the radio sources are estimated using a technique based on a nonuniform synchrotron source model. It is shown that the magnetic-field distributions in the dominant compact components of these radio sources are strongly inhomogeneous. The magnetic fields at the center of the sources are B ~ 10?1 G, and the fields are two to three orders of magnitude weaker at the periphery. The magnetic field averaged over the compact component is B ~ 10?3 G, and the density of relativistic electrons is n e ~ 10?3 cm?3. Assuming that there is equipartition of the energies of the magnetic field and relativistic particles, averaged over the source, 〈E H 〉 = 〈E e 〉 ~ 10?7–10?6 erg cm?3. The energy density of the magnetic field exceeds that of the relativistic electrons at the centers of the radio sources. The derived parameters of CTA 21 and OF+247 are close to those of the hot spots in the radio galaxy Cygnus A. On this basis, it is suggested that CTA 21 and OF+247 are radio galaxies at an early stage of their evolution, when the hot spots (dominant compact radio components) have appeared, and the radio lobes (weak extended components) are still being formed.  相似文献   

13.
We have used the RATAN-600 radio telescope to study the spectral characteristics of a uniform sample of 504 radio sources from the NVSS catalog near the North Celestial Pole at six frequencies from 1.1 to 21.7 GHz, with the aim of selecting sources possessing inverted spectra near 22 GHz, to be included in the program of the Radio Astron future space VLBI mission. We found 17 radio sources with the desired spectral characteristics. Data from spectral studies over a wide wavelength range testify that the spectral behavior of our sample differs from that for a complete sample of sources with the same initial parameters but selected at 20 GHz. We find a 6% deficit of inverted-spectrum sources, which can be explained as an effect of the spectral characteristics of “sub-threshold” sources that were not included in the initial sample at 1.4 GHz.  相似文献   

14.
Comparing the asymmetry coefficients γ and scintillation indices m for observed time variations of the intensity of the radiation of extragalactic sources and the predictions of theoretical models is a good test of the nature of the observed variations. Such comparisons can be used to determine whether flux density variations are due to scintillation in the interstellar medium or are intrinsic to the source. In the former case, they can be used to estimate the fraction of the total flux contributed by the compact component (core) whose flux density variations are caused by inhomogeneities in the interstellar plasma. Results for the radio sources PKS 0405-385, B0917+624, PKS 1257-336, and J1819+3845 demonstrate that the scintillating component in these objects makes up from 50 to 100% of the total flux, and that the intrinsic angular sizes of the sources at 5 GHz are 10–40 microarcseconds. The characteristics of the medium giving rise to the scintillations are presented.  相似文献   

15.
Using the Irkutsk Incoherent Scattering Radar, it is demonstrated that the high sensitivity of such radars, which are usually used for studies of the Earth’s ionosphere, also enables their use in a passive mode for observations of astronomical radio sources. Observations of solar flares accompanied by coronal mass ejections and of quasi-stationary radio sources on the Sun have been carried out. In addition, scintillations of several of the brightest discrete radio sources (Cygnus A, Cassiopeia A, and the Crab Nebula) have been studied over several months. These data can also be useful for studies of the ionosphere and interplanetary space.  相似文献   

16.
Observations of a sample of gigahertz-peaked spectrum sources have been carried out using the interplanetary-scintillation method. Scintillations were recorded in six of 53 observed sources; upper estimates for the flux density of the compact emission were obtained for the remaining sources. The contribution of a halo to the integrated flux at low frequencies is considered. Three sources with spectral indices close to ?2.5 below the spectral cutoff have been found. The synchrotron self-absorption of emission in the studied sources is discussed.  相似文献   

17.
A method for studying the physical conditions in compact components of extragalactic radio sources displaying variability on time scales of hundreds of days is proposed. The method can be used to estimate the relative variations of the magnetic-field strength and number density of relativistic electrons in superluminal jets from the cores of quasars and radio galaxies. Results are presented for the jets of the quasars 3C 120, 3C 273, 3C 279, and 3C 345. The energies of the magnetic field and relativistic particles in these objects are not in equipartition. As a rule, the magnetic-field strength decreases appreciably during the evolution of an expanding jet, while the number of relativistic electrons grows.  相似文献   

18.
Using literature data on approximately 400 compact radio sources detected with the Very Large Array and located in the direction of the Galactic center within 2° of the compact source Sgr A*, 69 sources whose angular sizes are determined by scattering on electron density inhomogeneities were distinguished. Fifty-five of these are extragalactic, two are supercompact HII regions, ten are sources of maser emission, and two are variable Galactic sources. The excess of the apparent angular sizes of maser sources within 2° of the Galactic center above the mean size of objects of this class in other parts of the Galaxy found in many studies cannot be explained purely by the effect of scattering of their radio emission on interstellar plasma inhomogeneities. The angular sizes of these objects are increased due to scattering only within Galactic longitudes of about 0.4° and Galactic latitudes less than 0.1°. The turbulent medium responsible for scattering of radio emission of compact sources in the immediate vicinity of the Galactic center is strongly concentrated toward the compact source Sgr A* at the Galactic center. No extragalactic sources are observed within 0.4° in longitude and 0.2° in latitude of the Galactic center, because of their low brightness due to the superstrong scattering in this region. Data on scatter broadening can be used to study the distribution of turbulent plasma near the Galactic center.  相似文献   

19.
We present the results of a study of the sources PKS 0405-385, B0917+624, PKS 1257-326, and J1819+3845, which display variability on time scales from 1–7 h (at 5 GHz). Estimates of the physical parameters (magnetic-field intensity, density of relativistic particles, energies of the magnetic field and relativistic particles) are given for B0917+624 and J1819+3845. It is shown that these sources are not in a state of energy equipartition. A number of indirect arguments indicate that the shortest flares in sources with long-time-scale variability have the same parameters as flares in the studied sources.  相似文献   

20.
A catalog of radio sources detected in a deep RATAN-600 survey is presented. The catalog was obtained in the region 0h ≤ RA2000.0 ≤ 24h, Dec2000.0 = 41°30′42″ ± 2′, at the declination of the bright radio source 3C 84. There were nine sessions of multi-wavelength observations at wavelengths λ = 1–55 cm, and more than 300 daily scans were accumulated at each wavelength. This is the first stage in the reduction of an extensive database accumulated by the Cosmological Gene Project. The RATAN-600 Zenith Field (RZF) catalog was obtained at the central wavelength of 7.6 cm, and contains 437 radio sources, virtually all of which have been identified with NVSS objects. Most of the flux densities for the catalog sources are above the 5σ level. Noise from faint (mainly new) background sources at a level of about 0.8 mJy has been detected. The minimum flux density of the catalog, 2.5 mJy, is comparable to the flux-density linit of the NVSS catalog. The catalog is more than 80% complete for sources with flux densities >3 mJy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号