首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
广东深圳断裂带活动性的第四纪地质和地貌研究   总被引:4,自引:0,他引:4  
卢演俦  孙建中 《地震地质》1991,13(2):138-146
深圳断裂带分布着一系列第四纪盆地,发育了以晚更新世河流相为主的沉积物,其厚度一般小于10—15米。它们的出现与断裂破碎带、岩溶地层分布及断裂早期活动有关。但是,未见错动了第四纪沉积物的断层。从约180万年以来,断裂带内发育了四级夷平面和三级河流阶地。不同时期地壳相对升降平均速率估计为约0.04毫米/年至0.2毫米/年。 在第四纪地质时期,深圳断裂带总体处于区域性的间歇性抬升过程,断裂活动不明显  相似文献   

2.
珠江三角洲地区新构造运动年代学的研究   总被引:9,自引:3,他引:9  
陈伟光  张虎男 《地震地质》1991,13(3):213-220
本文发表珠江三角洲地区14个不同时代的地貌体的年代数据,并据此初步探讨三角洲地区晚第四纪以来新构造运动的时间、空间序列以及运动的幅度和速率  相似文献   

3.
The SIBERIA landscape evolution model was used to simulate the geomorphic development of the Tin Camp Creek natural catchment over geological time. Measured hydrology, erosion and geomorphic data were used to calibrate the SIBERIA model, which was then used to make independent predictions of the landform geomorphology of the study site. The catchment, located in the Northern Territory, Australia is relatively untouched by Europeans so the hydrological and erosion processes that shaped the area can be assumed to be the same today as they have been in the past, subject to the caveats regarding long‐term climate fluctuation. A qualitative, or visual comparison between the natural and simulated catchments indicates that SIBERIA can match hillslope length and hillslope profile of the natural catchments. A comparison of geomorphic and hydrological statistics such as the hypsometric curve, width function, cumulative area distribution and area–slope relationship indicates that SIBERIA can model the geomorphology of the selected Tin Camp Creek catchments. Copyright 2002 © Environmental Research Institute of the Supervising Scientist, Commonwealth of Australia.  相似文献   

4.
Holocene glaciers have contributed to an abundance of unstable sediments in mountainous environments. In permafrost environments, these sediments can contain ground ice and are subject to rapid geomorphic activity and evolution under condition of a warming climate. To understand the influence of ground ice distribution on this activity since the Little Ice Age (LIA), we have investigated the Pierre Ronde and Rognes proglacial areas, two cirque glacier systems located in the periglacial belt of the Mont Blanc massif. For the first time, electrical resistivity tomography, temperature data loggers and differential global positioning systems (dGPS) are combined with historical documents and glaciological data analysis to produce a complete study of evolution in time and space of these small landsystems since the LIA. This approach allows to explain spatial heterogeneity of current internal structure and dynamics. The studied sites are a complex assemblage of debris‐covered glacier, ice‐rich frozen debris and unfrozen debris. Ground ice distribution is related to former glacier thermal regime, isolating effect of debris cover, water supply to specific zones, and topography. In relation with this internal structure, present dynamics are dominated by rapid ice melt in the debris‐covered upper slopes, slow creep processes in marginal glacigenic rock glaciers, and weak, superficial reworking in deglaciated moraines. Since the LIA, geomorphic activity is mainly spatially restricted within the proglacial areas. Sediment exportation has occurred in a limited part of the former Rognes Glacier and through water pocket outburst flood and debris flows in Pierre Ronde. Both sites contributed little sediment supply to the downslope geomorphic system, rather by episodic events than by constant supply. In that way, during Holocene and even in a paraglacial context as the recent deglaciation, proglacial areas of cirque glaciers act mostly as sediment sinks, when active geomorphic processes are unable to evacuate sediment downslope, especially because of the slope angle weakness. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The modern distribution of monsoonal rainforest in the Australian tropics is patchy and is mainly associated with river corridors and groundwater springs, which indicates a strong dependence on hydrologic and geomorphic conditions. While their present distribution is well known, very little data exists on past spatial and temporal dynamics of these ecosystems, or their medium- to longer-term controls. Factors such as (i) fire frequency and type, and/or (ii) hydroclimatic conditions (e.g. droughts) have been proposed to control riverine corridor rainforest extent. Recent observations, however, also suggest an additional (iii) geomorphic control induced by alluvial knickpoint migration. Sediment sequences provide valuable archives for the reconstruction of longer-term (a) floodplain sedimentary dynamics, (b) local vegetation history, and (c) catchment-wide fire histories. This study investigates such a sediment sequence at Wangi Creek, and shows that a phase of aggradation, lasting ~4000 years, was recently disrupted by channel incision and floodplain erosion. The aggradational phase is characterized by sand deposition with average vertical floodplain accretion rates of 0.8 cm/yr and includes phases of soil development. The recent incisional phase has changed hydro-geomorphic conditions and caused widespread degradation of vegetation, erosion and lowering of the macro-channel surface. While there is no evidence in our data for an erosional event of similar magnitude since the onset of late Holocene floodplain aggradation, Wangi Creek experienced significant erosion and incision immediately before ~4000 years, providing the first evidence for a tropical cut-and-fill river system. We hence argue that phases of aggradation mainly controlled by biotic processes alternate and depend on feedbacks with incision phases controlled mainly by abiotic processes. The results show that eco-hydro-geomorphic feedbacks may play a crucial role in the medium- to longer-term history of tropical fluvial systems and need to be considered when interpreting fluvial archives with regards to climate, fire or human induced change. © 2019 John Wiley & Sons, Ltd.  相似文献   

6.
临潼-长安断裂带晚第四纪以来的活动性   总被引:1,自引:0,他引:1  
对临潼-长安断裂带进行了详细的野外调查,以期掌握其最新活动年代和第四纪以来的活动特征。该断裂总体走向NE,以张性垂直运动为主,断面明显错断了黄土中的第1层古土壤S1,说明其晚更新世以来仍在活动,并且北段和中段的活动性比南段强,但是错距大多<2m,滑动速率较小,考虑到临潼-长安断裂带由多条次级断层组成,其整体活动性应该比我们计算得到的局部断层滑动速率大得多。断层错距自上而下成递增趋势,并且根据不同地层年代计算出的滑动速率基本一致,因此该断裂带自中更新世晚期以来极可能以垂向蠕滑活动为主  相似文献   

7.
The northeastern margin of Tibetan plateau is an active block controlled by the eastern Kunlun fault zone, the Qilian Shan-Haiyuan fault zone, and the Altyn Tagh fault zone. It is the frontier and the sensitive area of neotectonic activity since the Cenozoic. There are widespread folds, thrust faults and stike-slip faults in the northeastern Tibetan plateau produced by the intensive tectonic deformation, indicating that this area is suffering the crustal shortening, left-lateral shear and vertical uplift. The Riyueshan Fault is one of the major faults in the dextral strike-slip faults systems, which lies between the two major large-scale left-lateral strike-slip faults, the Qilian-Haiyuan Fault and the eastern Kunlun Fault. In the process of growing and expanding of the entire Tibetan plateau, the dextral strike-slip faults play an important role in regulating the deformation and transformation between the secondary blocks. In the early Quaternary, because of the northeastward expansion of the northeastern Tibetan plateau, tectonic deformations such as NE-direction extrusion shortening, clockwise rotation, and SEE-direction extrusion occurred in the northeastern margin of the Tibetan plateau, which lead to the left-lateral slip movement of the NWW-trending major regional boundary faults. As the result, the NNW-trending faults which lie between these NWW direction faults are developed. The main geomorphic units developed within the research area are controlled by the Riyueshan Fault, formed due to the northeastward motion of the Tibet block. These geomorphic units could be classified as:Qinghai Lake Basin, Haiyan Basin, Datonghe Basin, Dezhou Basin, and the mountains developed between the basins such as the Datongshan and the Riyueshan. Paleo basins, alluvial fans, multiple levels of terraces are developed at mountain fronts. The climate variation caused the formation of the geomorphic units during the expansion period of the lakes within the northeastern Tibetan plateau. There are two levels of alluvial fans and three levels of fluvial terrace developed in the study area, the sediments of the alluvial fans and fluvial terraces formed by different sources are developed in the same period. The Riyueshan Fault connects with the NNW-trending left-lateral strike-slip north marginal Tuoleshan fault in the north, and obliquely connects with the Lajishan thrust fault in the south. The fault extends for about 180km from north to south, passing through Datonghe, Reshui coal mine, Chaka River, Tuole, Ketu and Xicha, and connecting with the Lajishan thrusts near the Kesuer Basin. The Riyueshan Fault consists of five discontinuous right-step en-echelon sub-fault segments, with a spacing of 2~3km, and pull-apart basins are formed in the stepovers. The Riyueshan Fault is a secondary fault located in the Qaidam-Qilian active block which is controlled by the major boundary faults, such as the East Kunlun Fault and the Qilian-Haiyuan Fault. Its activity characteristics provide information of the outward expansion of the northeastern margin of Tibet. Tectonic landforms are developed along the Riyueshan Fault. Focusing on the distinct geomorphic deformation since late Pleistocene, the paper obtains the vertical displacement along the fault strike by RTK measurement method. Based on the fault growth-linkage theory, the evolution of the Riyueshan Fault and the related kinetic background are discussed. The following three conclusions are obtained:1)According to the characteristics of development of the three-stage 200km-long steep fault scarp developed in the landforms of the late Pleistocene alluvial fans and terraces, the Riyueshan Fault is divided into five segments, with the most important segment located in the third stepover(CD-3); 2)The three-stage displacement distribution pattern of the Riyueshan Fault reveals that the fault was formed by the growths and connections of multiple secondary faults and is in the second stage of fault growth and connection. With CD-3 as the boundary, the faults on the NW side continue to grow and connect; the fault activity time on the SE side is shorter, and the activity intensity is weaker; 3)The extreme value of the fault displacement distribution curve indicates the location of strain concentration and stress accumulation. With the stepover CD-3 as the boundary, the stress and strain on NW side are mainly concentrated in the middle and fault stepovers. The long-term accumulation range of stress on the SE side is relatively dispersed. The stress state may be related to the counterclockwise rotation inside the block under the compression of regional tectonic stress.  相似文献   

8.
The Mill Run watershed is a structurally-controlled synclinal basin on the eastern limb of the Massanutten Mountain complex of northwestern Virginia. Bedrock contacts are obscured by coarse sandstone debris from exposures near basin divides. Colluvium blankets more than half the basin, masking geomorphic surfaces, affecting vegetation patterns, and contributing to the convexity of the alluvial, terrace, pediment and erosion surfaces. Examination of the bedrock geology, geomorphology, soils and vegetation shows distinct distributional correspondences. Vegetation is strongly interdependent with geomorphology, bedrock geology, and soils. On convex colluvial slopes, mixed hardwood forests are most common. In concave coves and deep gorges, mixed hardwoods are replaced by conifers. In thin colluvium, in poorly developed soils, and on blockfields, chestnut oak is singularly prevalent. Conifers dominate shaley bedrock areas. Soils and surficial sediments have a major effect on near-surface hydrology. During wet seasons, cemented horizons in the subsurface cause temporary saturation in the superjacent horizons; lateral movement of soil-water effectively eliminates a vertical component of ground-water recharge. Vegetation is strongly dependent on water availability and thus reflects the distribution of subsurface barriers and sediment-soil fades changes.  相似文献   

9.
阿尔金北缘断裂带东北段第四纪构造活动与地震   总被引:2,自引:0,他引:2       下载免费PDF全文
本文概述了阿尔金北缘断裂带东北段(甘肃境内)的地质背景和新构造运动,讨论了断层特性、断层几何学、形变图象及一些特殊走滑运动地貌等问题。根据第四纪后期不同时代的地貌单元被水平左旋错移的幅度,结合C~(14)年代测定,求出5个不同时代至今的平均滑动速率,并分析了断层活动的一些时空特点。文章还探讨了古地震现象,现代地震活动与断裂的关系及地震危险性,较详细地研究了新发现的芦草沟古地震形变带。  相似文献   

10.
Taking the Chagelebulu Stratigraphic Profile as a typical example, a comprehensive study has been conducted to elucidate the palaeoclimatic and geomorphic evolution patterns in the southern fringe of the Badain Jaran Desert, which were found to be complex and polycyclic in the past 130 ka. However, the fluctuating magnitude is not as remarkable as that in the eastern China sandy region. The shift in climate from interglacial to glacial and the uplift process of the Qinghai–Xizang Plateau are the two leading forces driving the evolution of the climate and desert landforms in this area. Seventeen cycles of cold, dry and warm, humid climatic stages were recognized in the Upper Pleistocene Series of the profile. The sharp uplift of the Qinghai–Xizang Plateau superimposed a cool and arid climatic trend in this area. As a result of the climatic changes, the desert in this area has undergone multiple stages of expansion and contraction since 130 ka bp . The middle Holocene Epoch and the early stage of the Late Pleistocene Period were the main periods when the sand dunes became stabilized, and the early and late phases of the Holocene Epoch and late phase of the Pleistocene Epoch were the main periods when the previously stabilized sand dunes became mobile. The late phase of the Pleistocene Epoch was the most mobile stage, when the aeolian sand activities formed the essential geomorphic pattern of the Badain Jaran Desert. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
方正断陷是位于依兰-伊通断裂中北部的一级负向构造单元,依兰-伊通断裂构成盆地边界的控堑断裂,在盆地中部发育走滑断裂(伊汉通断裂),与边界断裂一起构成统一的断裂系统。该中部断裂的最新活动在地貌上具有明显的表现,在卫星影像上显示出清晰的线性。笔者在高分辨率卫星影像解译的基础上,通过野外地质地貌观察测量等手段,分析认为此断裂为一长期活动断裂,普遍错断河流一级阶地,并有连续的断层陡坎展布,最新的活动时代为全新世,应该曾发生过7级以上地表破裂型地震。现今以右旋走滑运动为主,兼具垂向滑动分量,并且垂向上表现为枢纽断层的运动特征。这些结果与前人认为的依兰-伊通断裂晚第四纪以来活动性极弱,东北地区是我国构造最稳定的地区的结论似乎不甚相符。笔者认为还需要更深入的工作,以分析该断裂与盆地边界断裂的关系,并以科学的态度认识依兰-伊通断裂活动特征,充分认识其地震危险性。  相似文献   

12.
Travertine deposits overlie the highest Number 2 surfaces in central Montana and clasts of travertine occur in gravels on lower Number 2 surfaces. Dating these travertine deposits may provide limits on the ages of surfaces that record intervals of extensive erosion during Pleistocene time. Analysis of three travertine samples from the southeast side of The Park yield an average uranium-thorium age of 73 000 ±+M 7 000 years. Another sample from the west side of The Park is 320 000 (+ 160 000, ? 70 000) years old. These results indicate that travertine deposits may have formed at several intervals. The surface beneath The Park travertine is older than about 320 000 years. Number 2 pediment gravels that contain travertine downslope from the oldest dated sample may be younger than about 320 000 years.  相似文献   

13.
Particle-size analyses have been made on surface soils and a thin, overlying sandy pavement at 16 sites along a gently sloping transect at Torrens Creek in North Queensland. The transect is 1590 m long and has a maximum gradient of 0.018 (less than 1°). The sandy pavement is enriched in coarse components due to the sorting and differential downslope transport of the finer soil fractions. Particle movement is ascribed to the action of raindrops impacting very shallow, flowing water. The process, referred to as ‘rain-flow transportation’, is active wherever overland flow is too weak to generate rills and channels and occurs in areas of very low slope with permeable surface soils that allow rapid infiltration during storms. Rain-flow transportation is discussed with particular reference to the development of soil profiles in an old, subdued landscape of semi-arid tropical Australia.  相似文献   

14.
地貌陡坎的成因有许多种, 其中之一是由断层在新构造时期的活动造成。 因此, 地貌陡坎的存在可能指示了断层在新生代的活动性, 然而在运用地貌线性方法判定新生代以来断层活动的时候还需要有其他资料的相互验证, 否则可能得到相反的结论。 该文以邙山东侧陡坎与老鸦陈断层为例, 通过遥感影像解释、 中浅层地震探测、 联合钻孔对比、 地貌测量等方法, 得到了老鸦陈断层是一条倾向NE向的前第四纪正断层, 同时将陡坎分为三段, 陡坎总体走向NW—NWW向, 由北而南, 高差逐渐降低, 出郑州东南后消失。 分析两者之间的关系, 认为古黄河改道或其支流侵蚀切割形成邙山东侧陡坎, 与老鸦陈断层没有直接关系, 陡坎的形成时间不应早于晚更新世。  相似文献   

15.
A bank and floodplain sediment budget was created for three Piedmont streams tributary to the Chesapeake Bay. The watersheds of each stream varied in land use from urban (Difficult Run) to urbanizing (Little Conestoga Creek) to agricultural (Linganore Creek). The purpose of the study was to determine the relation between geomorphic parameters and sediment dynamics and to develop a floodplain trapping metric for comparing streams with variable characteristics. Net site sediment budgets were best explained by gradient at Difficult Run, floodplain width at Little Conestoga Creek, and the relation of channel cross‐sectional area to floodplain width at Linganore Creek. A correlation for all streams indicated that net site sediment budget was best explained by relative floodplain width (ratio of channel width to floodplain width). A new geomorphic metric, the floodplain trapping factor, was used to compare sediment budgets between streams with differing suspended sediment yields. Site sediment budgets were normalized by floodplain area and divided by the stream's sediment yield to provide a unitless measure of floodplain sediment trapping. A floodplain trapping factor represents the amount of upland sediment that a particular floodplain site can trap (e.g. a factor of 5 would indicate that a particular floodplain site traps the equivalent of 5 times that area in upland erosional source area). Using this factor we determined that Linganore Creek had the highest gross and net (floodplain deposition minus bank erosion) floodplain trapping factor (107 and 46, respectively) that Difficult Run the lowest gross floodplain trapping factor (29) and Little Conestoga Creek had the lowest net floodplain trapping factor (–14, indicating that study sites were net contributors to the suspended sediment load). The trapping factor is a robust metric for comparing three streams of varied watershed and geomorphic character, it promises to be a useful tool for future stream assessments. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

16.
This Commentary draws together recently published work relating to the relationship between climate change and geomorphology to address the surprising observation that geomorphic work seems to have had little impact upon the work of the Intergovernmental Panel for Climate Change. However, recent papers show that methodological innovation has allowed geomorphological reconstruction over timescales highly relevant to late 20th century and 21st century climate change. In turn, these and other developments are allowing links to be made between climatic variability and geomorphology, to begin to predict ‘geomorphic futures’ and also to appreciate the role that geomorphic processes play in the flux of carbon and the carbon cycle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The grass-covered slopes on the southern flank of Mt Thomas, an upfaulted block of highly sheared sandstone and argillite 40 km NW of Christchurch, New Zealand, are presently undergoing severe erosion by a combination of mass-wasting processes. Gully erosion, soil slips, and debris flows have carved out a number of steep, deeply incised ravines, from which coarse debris is transported (primarily by debris flows) to alluvial fans below. Geologic and historical evidence indicates that debris flows have been episodically active here for at least the last 20,000 years and have been the dominant process in fan building. This demonstrates that catastrophic geomorphic processes, rather than processes acting at relatively uniform rates, can be dominant in humid-temperate areas as well as in arid and semi-arid regions. In April 1978, debris flows were triggered in one of two unstable ravines in the Bullock Creek catchment by a moderate intensity, long duration rainstorm with a return period in excess of 20 years. Surges of fluid debris, moving at velocities up to 5 m/s, transported a dense slurry of gravel, sand, and mud up to 3·5 km over a vertical fall of 600 m. Deposition on the alluvial fan occurred when the flows left the confines of an entrenched fan-head channel and spread out as a 0·16 km2 sheet averaging 1·2 m thick. In all, 195,000 m3 were deposited, roughly a third of that being reworked sediments from the head of the fan. Sediment yield from this one event would be equivalent to several thousand years worth of erosion at average sediment discharge rates for small South Island mountain catchments. Samples of viscous fluid debris during surges contained up to 84 per cent solids, composed of 70 per cent gravel, 20 per cent silt, and 4 per cent clay. Fluid density of the material ranged between 1·95 and 2·13 g/cm3, and it was extremely poorly sorted. Between surges the fluid was less viscous, less dense, and unable to carry gravel in suspension. Severe fan-head entrenchment of the stream channel (approximately 10 m in less than 24 hours) was accomplished by the erosive action of the surges. Tectonic uplift of the Mt Thomas block and the weak, crushed condition of the bedrock appear to be ultimately responsible for the catastropic erosion of slopes in the Bullock Creek catchment. However, forest clearing within the last few centuries appears to have greatly increased the rate of mass wasting and gully erosion on these slopes.  相似文献   

18.
Climate change, manifested by an increase in mean, minimum, and maximum temperatures and by more intense rainstorms, is becoming more evident in many regions. An important consequence of these changes may be an increase in landslides in high mountains. More research, however, is necessary to detect changes in landslide magnitude and frequency related to contemporary climate, particularly in alpine regions hosting glaciers, permafrost, and snow. These regions not only are sensitive to changes in both temperature and precipitation, but are also areas in which landslides are ubiquitous even under a stable climate. We analyze a series of catastrophic slope failures that occurred in the mountains of Europe, the Americas, and the Caucasus since the end of the 1990s. We distinguish between rock and ice avalanches, debris flows from de‐glaciated areas, and landslides that involve dynamic interactions with glacial and river processes. Analysis of these events indicates several important controls on slope stability in high mountains, including: the non‐linear response of firn and ice to warming; three‐dimensional warming of subsurface bedrock and its relation to site geology; de‐glaciation accompanied by exposure of new sediment; and combined short‐term effects of precipitation and temperature. Based on several case studies, we propose that the following mechanisms can significantly alter landslide magnitude and frequency, and thus hazard, under warming conditions: (1) positive feedbacks acting on mass movement processes that after an initial climatic stimulus may evolve independently of climate change; (2) threshold behavior and tipping points in geomorphic systems; (3) storage of sediment and ice involving important lag‐time effects. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
—Sidescan sonar observations show that mass wasting plays an important role in the geologic development of the Savaii Island edifice. Observations on the south and west flanks indicate that debris movement on the submarine slopes between rift zones is characterized by large sheets of unchannelized debris. Farther downslope these sheets have slumped into folded although still relatively coherent slump sheets. Closer to the rift zones, more chaotic slumps are found. The presence of large detached landslide blocks, without obvious upslope headwall scarps, suggests that earlier slumps are covered by subsequent veneers of debris moving downslope.¶In contrast, on Stearns Bank west of the island of Savaii most of the features are of constructional origin, formed during the building of this volcanic edifice of unknown age. Two prominentsubmarine platforms are evident, the shallower one with a summit cone. Sea cliffs and subdued terraces record platforms cut by sea-level oscillations late in the history of the volcanic edifice. Fractures and fissures are present on the bank, however there is little evidence of landslides in this area. The absence of landslides may reflect differing ages of the bank and the island or the edifice could have remained submarine during its construction with few or no subaerially derived ashes and clays present to facilitate mass wasting.¶We conclude that mass wasting is an important influence on the evolution of the Savaii volcanic edifice. It appears that sediment and debris cover most of the slope outside the submarine rift zones. The sonar images indicate that mass wasting is a common process in the submarine environment. Unlike the giant landslides documented by GLORIA imagery around the Hawaiian Islands, the southern margin of Samoa is characterized by numerous small slumps and slides. Although we have little information at present regarding the recurrence interval for submarine landslides, their ubiquitous presence in these sidescan sonar records indicates that they are an important component of the geologic record of the Samoan Islands.  相似文献   

20.
李长安 《内陆地震》1992,6(3):240-245
从沉积地层、地貌和构造等方面概述了矾山盆地的基本地质特征。提出矾山盆地是延——怀盆地中的一个相对独立的构造盆地。根据新发现的活动断裂剖面,论述了矾山盆地的构造活动性,指出矾山盆地形成于中更新世初,各主要断裂在晚更新世有强烈活动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号