首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A comparison was made between the distal ends of twenty-two avalanche and fifteen non-avalanche slopes in the San Juan Mountains of Colorado, U.S.A. All slopes occurred in the subalpine zone. Six characteristics were used for analysis: type of slope, surface material, longitudinal profile, perched debris or debris tails, avalanche impact on opposite valley wall, and transverse profile. Both fan and roadbank avalanche slope types were found along with the non-avalanche slopes. Almost all slopes were turf covered rather than talus since the work was done below treeline. Twenty avalanche slopes had a distinctive concave longitudinal profile. Little debris of any kind was found since the slopes were in an area of insignificant amounts of detritus. Many of the larger and two of the smaller avalanche slopes showed evidence of impact upon the opposite slope. Eighteen of the avalanche slopes had convex transverse profiles.  相似文献   

2.
In identifying controls on rock slope form a distinction is made between: (1) rock slopes with joints which dip steeply out of a cliff and hence are subject to mass failure of the rock mass above a critical joint; and (2) rock slopes with inclinations which are either in equilibrium with the mass strength of their rocks, or have profiles which will develop towards strength equilibrium as cross joints open. In the first class of slope, stability results not just from the basic frictional resistance of the rock but also from the frictional roughness along the critical joint and from the normal stress acting across that joint. Stability may be reduced by weathering and loss of strength of the joint wall rock. As a result of normal stress variations with depth, induced by overburdens, high cliffs which are not undercut have a concave profile. The second group of slopes includes those with inclinations controlled at the scale of individual joint blocks, buttressed slopes and those on unjointed rock masses. Buttressed and unjointed rock masses develop towards a condition of mass strength equilibrium as cross joints open. Strength equilibrium slopes may be recognized by application of a rock mass strength classification proposed for geomorphic purposes. Eleven propositions are formulated which identify controls on rock slope development and some consequences of these controls.  相似文献   

3.
General, parallel and rotational degradation and the effect of bed sills are investigated with the aid of historical field data and laboratory experiments. The case under consideration is a system of two tributaries and a main river in northeast Spain, characterized by its short length, steepness and ephemeral nature. The comparison of bed profiles since 1962 revealed an incision greater than 5·5 m. The main causes of degradation are thought to be channelization (width reduction) and urban growth. The equilibrium slopes with and without sills were obtained in 111 live‐bed flume tests. It is demonstrated that the bed slope is milder with sills than without sills under the same flow and sediment rates. The equations for the calculation of equilibrium slopes, scaled to prototype, are applied to the case‐study, with good agreement. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

4.
A theoretical investigation of plane waves in granular soils is presented. Dynamic equations are derived with the use of the hypoplasticity theory for granular materials. For numerical calculations the material parameters of Karlsruhe sand are used. Wave speeds as slopes of characteristics of the dynamic equations are calculated for various stresses and densities. It is shown that under certain conditions the dynamic equations lose hyperbolicity and the initial boundary value problem thus becomes ill-posed. Two types of ill-posedness are found, known as flutter ill-posedness and stationary discontinuity. The latter is shown to arise at higher shear stress than the former. A comparison is made between dynamic ill-posedness and stability of static equilibrium. With the use of the second-order work stability criterion it is found that the dynamic equations lose hyperbolicity when the static equilibrium under a dead load is still stable. Numerical solutions to the problem of propagation of boundary disturbance in a half-space are obtained. Owing to dilatancy and contractancy of the granular material, a purely transverse disturbance induces a longitudinal component of velocity in the wave, and vice versa.  相似文献   

5.
The evolution of the Yellow River delta is characterized by heavy sediment load,rapid seaward migration,frequent avulsions,and intense anthropogenic disturbances.Evolution of the delta channel following avulsions is very complex and has not yet been thoroughly understood.In the research presented by this paper,we conducted comprehensive analyses of the changes in the water stages,slopes,longitudinal profiles,and the erosion and deposition in the Yellow River delta channels during a time period of over five decades.Results showed that,following each avulsion,channels migrated seaward at decaying rates and the slopes at the downstream of the avulsion point decreased exponentially with time and completed its major adjustment within about four to five years.A generalized geometric model was proposed to describe the changes in the longitudinal profiles of the delta channels.A calculation method to determine the characteristic water stages at the delta was proposed based on the geometric model and the delayed response model for the morphological responses of fluvial rivers to perturbations.Water stages corresponding to a discharge of 3000 m3/s at Lijin and Xihekou during 1954 through 2012 were calculated by using the proposed method.The proposed method may be used to predict the evolution of the delta channels in response to artificial avulsions at the Yellow River delta in the future.  相似文献   

6.
The paper presents a 0-D model of an alluvial watercourse schematized in two connected reaches, evolving at the long time-scale and under the hypothesis of Local Uniform Flow. Each reach is defined by its geometry (constant length and width, time-changing slope) and grain-size composition of the bed, while the sediment transport is computed using a sediment rating curve. The slope evolution is provided by a 0-D mass balance and the evolution of the bed composition is computed by a 0-D Hirano equation. A system of differential equations, solved with a predictor-corrector scheme, is derived and applied to the schematic watercourse to simulate the morphological response to changing initial conditions, and the evolution towards long-term equilibrium conditions. Differently from a single-reach 0-D schematization with uniform grain-size, besides the simplifications adopted, the model proposed here simulates the behaviour of alluvial rivers in a physically-based way, showing a grain-size fining in the downstream direction accompanied by milder slopes, and a tendency to develop concave longitudinal profiles.  相似文献   

7.
Long-term trends in macrobenthic communities of the lower Chesapeake Bay, USA, were examined using data collected quarterly (March, June, September and December) from 1985 to 1991 at 16 stations along a salinity gradient from tidal freshwater regions of the major tributaries (James, York and Rappahannock rivers) to the polyhaline region of the main-stem of Chesapeake Bay. A non-parametric trend analysis procedure was applied to five parameters characterizing macrobenthic community structure: community biomass, species richness, abundance of individuals, proportion of biomass composed of opportunistic species (opportunistic biomass composition) and proportion of biomass composed of equilibrium species (equilibrium biomass composition). For the parameters tested 36 trends were detected. For community biomass, five trends were significant; all had positive slopes and occurred in the James and York rivers. For species richness, six trends were significant; all had positive slopes with three trends in the James River, two trends in the York River and one trend in the main-stem of Chesapeake Bay. For abundance of individuals, 17 trends were detected; all abundance trends were seasonally dependent, had positive slopes and occurred at 12 of the 16 stations. For opportunistic biomass composition, four trends were significant; all had positive slopes with one trend in the lower Rappahannock River and three trends in the main-stem of Chesapeake Bay. For equilibrium biomass composition four trends were significant; two trends had positive slopes (one in the James River and one in the York River) and two trends had negative slopes (one in the Rappahannock River and one in the main-stem of Chesapeake Bay). Trends in the James and York rivers were considered to indicate improving conditions for the benthos, while trends in the lower Rappahannock River and the main-stem of the Chesapeake Bay were considered to indicate deteriorating conditions. Deteriorating conditions for the benthos were associated with regions exposed to summer, low dissolved oxygen events. The trends in the indicators of benthic biological community health were inferentially related to trends observed in water quality conditions in the tributaries and main-stem of Chesapeake Bay. All major water quality and biotic trends appeared to correspond in an ecologically meaningful manner.  相似文献   

8.
Strength equilibrium slopes are rock slopes whose gradient θ and rock mass strength (RMS) are in adjustment. The identification of such slopes depends on the accurate specification of the strength equilibrium envelope. Previous attempts to delimit the envelope are reviewed and modifications are proposed that permit its more rigorous statistical definition. Because θ can be measured much more reliably than RMS, the structural relation between these variables is estimated by regressing RMS on θ, and the strength equilibrium envelope is defined by the 95 per cent confidence limits. The analysis is performed on a data set of 268 rock slopes, representing all the data on RMS and θ hitherto employed in published studies of strength equilibrium slopes.  相似文献   

9.
The assumption of the equilibrium state of gravel surfaces in flume experiments under feeding or recirculating conditions is generally justified by three equilibrium criteria based on sediment transport, slopes, and bed features. When these parameters become stable, an experiment is expected to reach equilibrium. This equilibrium state, however, is based on a one‐dimensional model, the Exner equation, which may not truly reflect the equilibrium state of the system considering the complex flow and sediment processes. In this paper, the evolutionary process of a gravel surface is investigated based on a large‐scale recirculating flume experiment. The performances of the three equilibrium criteria are evaluated first, and then the evolution of the bed morphology is studied. The key findings include the following: (1) the sediment transport rate, slopes of water and bed surfaces, and one‐dimensional morphological features reach equilibrium roughly simultaneously; (2) two‐dimensional morphology continually evolves after these characteristics reach equilibrium, which is confirmed by the characteristics of the sediment transport process; and (3) the results from a numerical simulation suggest that a much longer time is required to reach an equilibrium state. Our results suggest that sufficient experimental time is required to investigate the equilibrium morphological characteristics of gravel surfaces, which is much longer than the equilibrium time reflected by the one‐dimensional equilibrium criteria. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
The long‐term evolution of channel longitudinal profiles within drainage basins is partly determined by the relative balance of hillslope sediment supply to channels and the evacuation of channel sediment. However, the lack of theoretical understanding of the physical processes of hillslope–channel coupling makes it challenging to determine whether hillslope sediment supply or channel sediment evacuation dominates over different timescales and how this balance affects bed elevation locally along the longitudinal profile. In this paper, we develop a framework for inferring the relative dominance of hillslope sediment supply to the channel versus channel sediment evacuation, over a range of temporal and spatial scales. The framework combines distinct local flow distributions on hillslopes and in the channel with surface grain‐size distributions. We use these to compute local hydraulic stresses at various hillslope‐channel coupling locations within the Walnut Gulch Experimental Watershed (WGEW) in southeast Arizona, USA. These stresses are then assessed as a local net balance of geomorphic work between hillslopes and channel for a range of flow conditions generalizing decadal historical records. Our analysis reveals that, although the magnitude of hydraulic stress in the channel is consistently higher than that on hillslopes, the product of stress magnitude and frequency results in a close balance between hillslope supply and channel evacuation for the most frequent flows. Only at less frequent, high‐magnitude flows do channel hydraulic stresses exceed those on hillslopes, and channel evacuation dominates the net balance. This result suggests that WGEW exists mostly (~50% of the time) in an equilibrium condition of sediment balance between hillslopes and channels, which helps to explain the observed straight longitudinal profile. We illustrate how this balance can be upset by climate changes that differentially affect relative flow regimes on slopes and in channels. Such changes can push the long profile into a convex or concave condition. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

11.
南海北部陆坡稳定性定量分析   总被引:3,自引:0,他引:3  
随着海洋工程的发展,海底滑坡作为一种潜在的地质灾害逐渐成为人们关注的热点.本文采用二维极限平衡法计算并分析了海底斜坡稳定性问题.通过对斜坡模型在各种条件下安全系数的计算,定量分析了斜坡内在因素(如斜坡角度、主要土力学参数)和主要触发机制(地震、快速堆积等)对安全系数的影响.理论计算表明,静态条件下,均质斜坡角度小于20°时,均处于稳定状态;对于含软弱层的斜坡,快速堆积等引起的不排水状态下斜坡安全系数明显降低,斜坡角度大于14°时就会发生失稳.拟静态条件下,当地震动峰值加速度(PGA)小于0.15g时,对于角度小于20°的均质斜坡处于稳定状态,但PGA大于0.25g时,角度大于13°的斜坡即处于失稳状态;对于含软弱层斜坡,PGA为0.1g时,角度大于10°的斜坡即处于不稳定状态;当PGA大于0.3g时,3°以上的海底斜坡即处于失稳状态,发生海底滑坡.结合南海北部陆坡海底地形、地貌特征,在静态条件下,均处于稳定状态;但在地震加载的拟静态下,根据南海北部地震动峰值加速度分布,台湾浅滩段则处于不稳定状态.这解释了该区域大陆坡折带处海底滑坡广泛发育的原因,也表明了地震是引发南海北部滑坡最主要的触发机制之一.  相似文献   

12.
The morphological consequences of paraglacial modification of valley-side drift slopes are investigated at six sites in Norway. Here, paraglacial slope adjustment operates primarily through the development of gully systems, whereby glacigenic sediment is stripped from the upper drift slope and redeposited in debris cones downslope. This results in an overall lowering of average gradient by up to 4·5° along gully axes. In general, slope profile adjustment appears to be characterized by a convergence of slope profiles towards an ‘equilibrium form’ with an upper rectilinear slope gradient at 29°± 4° and a range of concavities of approximately 0·0 to 0·4. After initial rapid incision, further gully deepening is limited, but gullies become progressively wider as sidewall gradients decline to c. 25°, after which parallel retreat appears to predominate. The final form of mature paraglacial gully systems consists of an upper bedrock-floored source area, a mid-slope area of broad gullies whose sidewalls rest at stable, moderate gradients, and a lower slope zone where gullies discharge onto the surfaces of debris cones and fans. Some gullies appear to have attained this final form and have stabilized following exhaustion of readily entrainable sediment within decades of gully initiation. At most sites, paraglacial activity has transformed steep drift-mantled valley sides into gullied slopes where an average of c. 2–3 m of surface lowering has taken place. At the most active sites, these average amounts imply minimum erosion rates averaging c. 90 mm a−1 since gully initiation, which highlights the extreme rapidity of paraglacial erosion of deglaciated drift-mantled slopes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
The main purpose of this study is to evaluate the potential of simulating the profiles of the mean velocity and turbulence intensities for the steep open channel flows over a smooth boundary using artificial neural networks. In a laboratory flume, turbulent flow conditions were measured using a fibre‐optic laser doppler velocimeter (FLDV). One thousand and sixty‐four data sets were collected for different slopes and aspect ratios at different locations. These data sets were randomly split into two subsets, i.e. training and validation sets. The multi‐layer functional link network (MFLN) was used to construct the simulation model based on the training data. The constructed MFLN models can almost perfectly simulate the velocity profile and turbulence intensity. The values of correlation coefficient (γ) are close to one and the values of root mean square error (RMSE) are close to zero in all conditions. The results demonstrate that the MFLN can precisely simulate the velocity profiles, while the log law and Reynolds stress model (RSM) are less effective when used to simulate the velocity profiles close to the side wall. The simulated longitudinal turbulence intensities yielded by the MFLN were also fairly consistent with the measured data, while the simulated vertical turbulence intensities by the RSM were not consistent with the measured data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
岩土边坡地震崩滑的三级评判预测   总被引:10,自引:0,他引:10  
孙进忠  陈祥  王余庆 《地震研究》2004,27(3):256-264
岩土边坡地震崩滑是最为严重的地质灾害之一,对岩土边坡地震崩滑的可能性提出及时有效的评价预测至关重要。本文提出并讨论了岩土边坡地震崩滑三级评判的思想及其实施方案,由主要考虑地震影响的初判,到以考虑控制地震崩滑的岩土边坡内、外因素为主的再判,最后是研究岩土边坡力学稳定性的详判,构成了一套由粗到细、分级筛选的有效方法。继续深入研究扩展该套方法的功能,使之适应多种灾害的评判预测工作,对于地质灾害防治手段和技术的发展具有战略意义。  相似文献   

15.
1INTRODUCTIONFrom14toearly20century,thatisintheMingandQingDynastiesinChina,thereexistedapointofviewthatthecontinuoussiltation...  相似文献   

16.
This paper develops a symmetrized framework for the analysis of the anisotropic advection–diffusion Lattice Boltzmann schemes. Two main approaches build the anisotropic diffusion coefficients either from the anisotropic anti-symmetric collision matrix or from the anisotropic symmetric equilibrium distribution. We combine and extend existing approaches for all commonly used velocity sets, prescribe most general equilibrium and build the diffusion and numerical-diffusion forms, then derive and compare solvability conditions, examine available anisotropy and stable velocity magnitudes in the presence of advection. Besides the deterioration of accuracy, the numerical diffusion dictates the stable velocity range. Three techniques are proposed for its elimination: (i) velocity-dependent relaxation entries; (ii) their combination with the coordinate-link equilibrium correction; and (iii) equilibrium correction for all links. Two first techniques are also available for the minimal (coordinate) velocity sets. Even then, the two-relaxation-times model with the isotropic rates often gains in effective stability and accuracy. The key point is that the symmetric collision mode does not modify the modeled diffusion tensor but it controls the effective accuracy and stability, via eigenvalue combinations of the opposite parity eigenmodes. We propose to reduce the eigenvalue spectrum by properly combining different anisotropic collision elements. The stability role of the symmetric, multiple-relaxation-times component, is further investigated with the exact von Neumann stability analysis developed in diffusion-dominant limit.  相似文献   

17.
18.
With the exception of intermittency and waves, a brief review of the observed and modeled mean structure of the nocturnal boundary layer (NBL) is presented. The effect of gentle slopes on strong and weak wind NBL was investigated here using a one-dimensional model, with a simple correction term to account for the slope effects, identical to the one used by Brost and Wyngaard (1978). The study indicates that the wind profiles, temperature profiles and surface layer turbulence characteristics are extremely sensitive to the imposed geostrophic wind when small slopes are present especially for light winds. This is due to the complex interaction between the buoyancy driven slope flow and the imposed geostrophic wind that in turn influence the shear generation of turbulence. Finally, the current issues in the modeling of weak wind boundary layer are discussed.  相似文献   

19.
基于地震作用下黏性土坡失稳滑动特点,以土体应力状态及其变化分析边坡失稳过程。通过分析地震作用下边坡不同部位土体应力状态和剪应力变化,结合实际地震边坡失稳破坏特征,提出黏性土坡地震三段式滑动失稳机制。在分析该滑动失稳机制与有限元强度折减法之间应力关联的基础上,将两者结合应用于实际黄土地震滑坡动力稳定性分析。依据此考虑得到的动力安全系数相比较其他方法,与极限平衡法得到的结果更为接近。  相似文献   

20.
Abstract

The static equilibrium of a thin vertical magnetic tube embedded in the solar atmosphere is shown to be dynamically unstable against the fundamental mode of perturbation having no nodes in the vertical displacement. The instability has its origin in the convection zone, and the eigenfunction is extended further up in the stable upper layers by the magnetic field which guides the displacement mainly in the longitudinal direction. It is suggested that the downdraft observed in the solar network structure is a finite amplitude consequence of this instability. The overtone modes are found to be stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号