首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A set of reinforced concrete structures with gravitational loads and mechanical properties (strength and stiffness) representative of systems designed for earthquake resistance in accordance with current criteria and methods is selected to study the influence of dynamic soil–structure interaction on seismic response, ductility demands and reliability levels. The buildings are considered located at soft soil sites in the Valley of Mexico and subjected to ground motion time histories simulated in accordance with characteristic parameters of the maximum probable earthquake likely to occur during the system's expected life. For the near‐resonance condition the effects of soil–structure interaction on the ductility demands depend mainly on radiation damping. According to the geometry of the structures studied this damping is strongly correlated with the aspect ratio, obtained by dividing the building height by its width. In this way, for structures with aspect ratio greater than 1.4 the storey and global ductility demands increase with respect to those obtained with the same structures but on rigid base, while for structures with aspect ratio less than 1.4 the ductility demands decrease with respect to those for the structures on rigid base. For the cases when the fundamental period of the structure has values very different from the dominant ground period, soil–structure interaction leads in all cases to a reduction of the ductility demands, independently of the aspect ratio. The reliability index β is obtained as a function of the base shear ratio and of the seismic intensity acting on the nonlinear systems subjected to the simulated motions. The resulting reliability functions are very similar for systems on rigid or on flexible foundation, provided that in the latter case the base rotation and the lateral displacement are removed from the total response of the system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The energy approach is used to theoretically verify that the average acceleration method (AAM), which is unconditionally stable for linear dynamic systems, is also unconditionally stable for structures with typical nonlinear damping, including the special case of velocity power type damping with a bilinear restoring force model. Based on the energy approach, the stability of the AAM is proven for SDOF structures using the mathematical features of the velocity power function and for MDOF structures by applying the virtual displacement theorem. Finally, numerical examples are given to demonstrate the accuracy of the theoretical analysis.  相似文献   

3.
The seismic performance of a steel framed structure equipped with (i) friction damping devices and (ii) base isolators is compared. A parametric study based on energy concepts is performed first using time-history dynamic analysis to determine the optimum properties of the two systems when excited by an earthquake whose energy is distributed over a relatively broad frequency band (1940 El Centro, N-S). Using these same properties, the responses of the two structural systems are then examined when excited by earthquakes whose power content essentially is concentrated at the low frequency end of the energy spectrum (1977 Romania, Bucharest, N-S and 1985 Mexico, SCT E-W). The results of the study show that, while both systems similarly reduce the response of conventional structures to the California earthquake, the friction damped structure exhibits a superior performance under the low frequency earthquakes. Very large shear forces and displacements are observed when the Romania and Mexico earthquakes are applied to the base isolated structure, indicating that the performance of a base isolated structure depends on the characteristics of the site earthquake. By comparison, friction damped structures are shown to behave favourably under the three earthquakes studied; this suggests that friction damping devices offer a more consistent way of protecting structures during earthquakes.  相似文献   

4.
Offshore wind turbine (OWT) is a typical example of a slender engineering structure founded on large diameter rigid piles (monopiles). The natural vibration characteristics of these structures are of primary interest since the dominant loading conditions are dynamic. A rigorous analytical solution of the modified SSI eigenfrequency and damping is presented, which accounts for the cross coupling stiffness and damping terms of the soil–pile system and is applicable but not restrictive to OWTs. A parametric study was performed to illustrate the sensitivity of the eigenfrequency and damping on the foundation properties, the latter being expressed using the notion of dimensionless parameters (slenderness ratio and flexibility factor). The application of the approximate solution that disregards the off diagonal terms of the dynamic impedance matrix was found to overestimate the eigenfrequency and underestimate the damping. The modified SSI eigenfrequency and damping was mostly affected by the soil–pile properties, when the structural eigenfrequency was set between the first and second eigenfrequency of the soil layer. Caution is suggested when selecting one of the popular design approaches for OWTs, since the dynamic SSI effects may drive even a conservative design to restrictive frequency ranges, nonetheless along with advantageous – from a designers perspective – increased damping.  相似文献   

5.
Based on energy dissipation and structural control principle, a new structural configuration, called the mega- sub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.  相似文献   

6.
A retrofit procedure for existing buildings called the "weakening and damping technique" (WED) is presented in this paper. Weakening of structures can limit the maximum response accelerations during severe ground motions, but leads to an increase in the displacements or inter-story drifts. Added damping by using viscous dampers, on the other hand, reduces the inter-story drifts and has no significant effect on total accelerations, when structures behave inelastically. The weakening and damping technique addresses the two main causes for both structural and nonstructural damage in structures. The weakening retrofit is particularly suitable for structures that have overstressed components and weak brittle components. In this paper, the advantages of the WeD are verified by nonlinear dynamic analysis and simplified spectral approach that has been modified to fit structures with additional damping devices. A hospital structure located in the San Femando Valley in California is selected as a case study. The results from both analyses show that the retrofit solution is feasible to reduce both structural acceleration and displacement. A sensitivity analysis is also carried out to evaluate the effectiveness of the retrofitting method using different combinations of performance thresholds in accelerations and displacements through fragility analysis.  相似文献   

7.
A computational method of energy evaluation is derived to study the elastic responses and energy distribution of actively controlled single‐degree‐of‐freedom (SDOF) structures during earthquakes. Contrary to the common perception that applying active control force pumps energy into the structure, the applied control force can actually reduce the energy in the structure by reducing the input energy from earthquakes to the structure. In addition, applying control force can dissipate a large amount of energy in the structure when this control force is applied in the direction opposite to the displacement and velocity responses. To demonstrate this energy mechanism in active controlled structures, the two most popular control algorithms, optimal linear control (OLC) and instantaneous optimal control (IOC) algorithms, are used to calculate the control response and energy spectra. One‐step time delay is incorporated into the algorithms to take into consideration the practical aspect of active control. The effects of different earthquakes and damping ratios on control energy and response spectra are studied. These studies show that both OLC and IOC are very effective in reducing the structural displacement and velocity responses by reducing the input earthquake energy as well as dissipating a large amount of energy in the structure. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
基于环境激励下结构动力响应信号分析与处理识别结构的模态参数,是结构健康监测和损伤诊断的一个重要环节,目前为止,要得到较为可靠的识别结果仍有一定困难,尤其是模态阻尼比。基于自然激励技术和傅里叶变换的时移特性,提出了一种新的结构模态阻尼比估算方法,通过理论推导和仿真算例验证了该方法的可行性,进而利用一刚构-连续组合梁桥在环境激励下的动力测试数据,通过该方法对其阻尼比进行了识别,并将识别结果与数据驱动随机子空间法的识别结果进行了对比。结果表明:提出的方法可以减轻噪声影响,得到可接受的识别结果,可为大型工程结构阻尼比的识别提供一个方便和有效的途径。  相似文献   

9.
刘宗成    韩建平   《世界地震工程》2022,38(2):141-150
消能减震结构中主体结构和附加消能减震装置通常是单独设计的,由于主体结构和附加消能减震装置之间的耦合特性,为实现期望的性能目标需要进行迭代计算。本文提出一种基于位移的主体结构与附加消能减震装置一体化设计方法,首先,基于所选地震动记录和预期性能目标,得出结构阻尼比需求曲面;其次,推导了阻尼器-支撑部件参数计算公式,在已知主体结构基本信息及预期性能目标时,根据阻尼比需求曲面及所提出公式即可获得所需附加消能减震装置的支撑刚度及粘滞系数;再次,引入无量纲成本指数,以成本指数最小为目标函数,在可实现目标性能的附加消能减震装置参数中识别最优设计参数;最后,基于所提出的设计方法,分别以等效SDOF体系、MDOF体系及SAP2000设计的6层RC框架结构为例,对所提出的设计方法的有效性进行了验证,结果表明:经一体化设计的结构体系均可实现性能目标。  相似文献   

10.
In the inelastic time history analyses of structures in seismic motion, part of the seismic energy that is imparted to the structure is absorbed by the inelastic structural model, and Rayleigh damping is commonly used in practice as an additional energy dissipation source. It has been acknowledged that Rayleigh damping models lack physical consistency and that, in turn, it must be carefully used to avoid encountering unintended consequences as the appearance of artificial damping. There are concerns raised by the mass proportional part of Rayleigh damping, but they are not considered in this paper. As far as the stiffness proportional part of Rayleigh damping is concerned, either the initial structural stiffness or the updated tangent stiffness can be used. The objective of this paper is to provide a comprehensive comparison of these two types of Rayleigh damping models so that a practitioner (i) can objectively choose the type of Rayleigh damping model that best fits her/his needs and (ii) is provided with useful analytical tools to design Rayleigh damping model with good control on the damping ratios throughout inelastic analysis. To that end, a review of the literature dedicated to Rayleigh damping within these last two decades is first presented; then, practical tools to control the modal damping ratios throughout the time history analysis are developed; a simple example is finally used to illustrate the differences resulting from the use of either initial or tangent stiffness‐based Rayleigh damping model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents experimental and analytical results on the seismic response of a rigid structure supported on isolation systems that consist of either lead rubber or sliding bearings. Shake table tests are conducted with various levels of isolation damping that is provided from the bearings and supplemental viscous fluid dampers. The table motions originated from recorded strong ground motions that have been compressed to the extent that the mass of the model structure corresponds to the mass of a typical freeway overcrossing. Experimental data are used to validate mechanical idealizations and numerical procedures. The study concludes that supplemental damping is most effective in suppressing displacements of rigid structures with moderately long isolation periods (TI≤3 sec) without affecting base shears. Friction damping is most effective in suppressing displacement amplifications triggered by long duration pulses—in particular, pulses that have duration close to the isolation period. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents the results of an experimental study on the determination of damping characteristics of bare, masonry infilled, and carbon fiber reinforced polymer retrofitted infilled reinforced concrete (RC) frames. It is well known that the masonry infills are used as partitioning walls having significant effect on the damping characteristics of structures as well as contribution to the lateral stiffness and strength. The main portion of the input energy imparted to the structure during earthquakes is dissipated through hysteretic and damping energies. The equivalent damping definition is used to reflect various damping mechanisms globally. In this study, the equivalent damping ratio of carbon fiber reinforced polymer retrofitted infilled RC systems is quantified through a series of 1/3‐scaled, one‐bay, one‐story frames. Quasi‐static tests are carried out on eight specimens with two different loading patterns: one‐cycled and three‐cycled displacement histories and the pseudo‐dynamic tests performed on eight specimens for selected acceleration record scaled at three different PGA levels with two inertia mass conditions. The results of the experimental studies are evaluated in two phases: (i) equivalent damping is determined for experimentally obtained cycles from quasi‐static and pseudo‐dynamic tests; and (ii) an iterative procedure is developed on the basis of the energy balance formulation to determine the equivalent damping ratio. On the basis of the results of these evaluations, equivalent damping of levels of 5%, 12%, and 14% can be used for bare, infilled, and retrofitted infilled RC frames, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In the seismic analysis and design of structures, the true velocity and absolute acceleration are usually approximated by their corresponding pseudo-values. This approach is simple and works well for structures with small damping (say, less than 15%). When the damping of a structure is enhanced for the purpose of response reduction, it may result in large analysis and design errors. Based on theory of random vibration and the established mechanism of seismic response spectra analysis, a method is developed (1) to predict the relative velocity spectra with any damping ratio level directly from the 5% standard pseudo-acceleration spectrum; and (2) to estimate the peak absolute acceleration. The accuracy of both is validated by using two selected ensembles of ground motion records.  相似文献   

14.
The primary purpose of this research is to improve the seismic response of a complex asymmetric tall structure using viscoelastic(VE) dampers. Asymmetric structures have detrimental effects on the seismic performance because such structures create abrupt changes in the stiffness or strength that may lead to undesirable stress concentrations at weak locations. Structural control devices are one of the effective ways to reduce seismic impacts, particularly in asymmetric structures. For passive vibration control of structures, VE dampers are considered among the most preferred devices for energy dissipation. Therefore, in this research, VE dampers are implemented at strategic locations in a realistic case study structure to increase the level of distributed damping without occupying significant architectural space and reducing earthquake vibrations in terms of story displacements(drifts) and other design forces. It has been concluded that the seismic response of the considered structure retrofitted with supplemental VE dampers corresponded well in controlling the displacement demands. Moreover, it has been demonstrated that seismic response in terms of interstory drifts was effectively mitigated with supplemental damping when added up to a certain level. Exceeding the supplemental damping from this level did not contribute to additional mitigation of the seismic response of the considered structure. In addition, it was found that the supplemental damping increased the total acceleration of the considered structure at all floor levels, which indicates that for irregular tall structures of this type, VE dampers were only a good retrofitting measure for earthquake induced interstory deformations and their use may not be suitable for acceleration sensitive structures. Overall, the research findings demonstrate how seismic hazards to these types of structures can be reduced by introducing additional damping into the structure.  相似文献   

15.
This paper presents a formulation for estimation of the frequency and damping of a soil‐structure interaction system based on the classical modal analysis and solving the system eigenvalue problem. Without loss of generality, the structure is represented by a single degree of freedom oscillator, while the soil effects are included through impedance functions for in‐plane motion of a 2D rigid foundation. For the results presented in this paper, the impedance functions were computed by the indirect boundary element method for a rectangular foundation embedded in a soil layer over elastic bedrock. The study shows that the classical modal‐analysis approach works well, with the exception of squat, stiff structures, even though the impedance functions are frequency‐dependent and the soil‐structure interaction system does not possess normal modes. The study also shows that system frequency and damping are independent of the wave passage effects, contrary to findings of some previous studies, and that the site conditions, represented by the soil‐layer thickness and stiffness contrast between bedrock and soil layer, have significant influences on both system frequency and system damping. Finally, the paper examines the accuracy of some of the simple methods for estimation of these two system parameters and comments on some conflicting conclusions of previous studies about the effects of foundation embedment.  相似文献   

16.
The feasibility of using viscoelastic (VE) dampers to mitigate earthquake-induced structural response is studied in this paper. The properties of VE dampers are briefly described. A procedure for evaluating the VE damping effect when added to a structure is proposed in which the damping effect of VE dampers is incorporated into modal damping ratios through an energy approach. Computer simulation of the damped response of a multi-storey steel frame structure shows significant reduction in floor displacement levels.  相似文献   

17.
The purpose of this paper is to investigate the effects of liquefaction on modal parameters (frequency and damping) of pile‐supported structures. Four physical models, consisting of two single piles and two 2 × 2 pile groups, were tested in a shaking table where the soil surrounding the pile liquefied because of seismic shaking. The experimental results showed that the natural frequency of pile‐supported structures may decrease considerably owing to the loss of lateral support offered by the soil to the pile. On the other hand, the damping ratio of structure may increase to values in excess of 20%. These findings have important design consequences: (a) for low‐period structures, substantial reduction of spectral acceleration is expected; (b) during and after liquefaction, the response of the system may be dictated by the interactions of multiple loadings, that is, horizontal, axial and overturning moment, which were negligible prior to liquefaction; and (c) with the onset of liquefaction due to increased flexibility of pile‐supported structure, larger spectral displacement may be expected, which in turn may enhance P‐delta effects and consequently amplification of overturning moment. Practical implications for pile design are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The effects of transient foundation uplift on the earthquake response of flexible structures are investigated. The structural idealization chosen in this study is relatively simple but it incorporates the most important features of foundation uplift. In its fixed base condition the structure itself is idealized as a single-degree-of-freedom system attached to a rigid foundation mat which is flexibly supported. The flexibility and damping of the supporting soil are represented by a Winkler foundation with spring-damper elements distributed over the entire width of the foundation. Based on the response spectra presented for several sets of system parameters, the effects of foundation-mat uplift on the maximum response of structures are identified. The influence of earthquake intensity, structural slenderness ratio, ratio of foundation mass to structural mass, foundation flexibility and p-δ effects on the response of uplifting structures is also investigated.  相似文献   

19.
For a class of civil engineering structures, that can be accurately represented by ‘coupled shear walls’ (CSWs), a discrete model for the analysis of the dynamic interaction with the underlying soil is proposed. The CSWs, with one or more rows of openings, rest on a rigid foundation embedded in the elastic or viscoelastic half-space. A hierarchical finite element model based on an equivalent continuum approach is adopted for the structure. A frequency-domain boundary element method is used to represent the half-space. Finally, the set of equations governing the response of the coupled soil-structure system to harmonic lateral loads acting on the structure is also given. The frequency deviation effect with respect to the fixed-base structure and the effects of radiation and material damping in the soil are presented for different characteristics of the structure and different soil properties.  相似文献   

20.
A tuned-mass damper is a small damped spring-mass system which vibrates in resonance with the main structure to which it is attached so as to be able to dissipate vibration energy and reduce the structural response. In this paper, explicit forms of Green's function for the transient response of main structures equipped with the tuned-mass damper and subjected to support excitation are derived by perturbation techniques and provide an insight into the characteristics of the damper. It is found that there exists a critical damping level for the tuned-mass damper. If the damper damping is higher than this critical damping level, increasing the damper damping will enhance the structural response. When the damper damping is below this critical value, something called ‘beat phenomenon’ occurs where the structure will have a smaller response in the first beat cycle, but have a higher rebound in the following beat cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号