首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However,the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap,combined with variable grid-size and time-step,this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.  相似文献   

2.
利用低阶偏微分方程组的大倾角差分偏移   总被引:14,自引:4,他引:14       下载免费PDF全文
利用Claerbout方程进行地震资料偏移,只适用于小倾角的情况。为了克服这一限制,R.Stolt和A.Berkhout等人导出了高阶近似的单程波方程,它们是比较复杂的高阶偏微分方程,在数值求解上存在一定的困难。本文讨论了低阶方程组形式的高阶近似,对它们构造了一些合适的差分格式。提出了求解这些差分方程的具体算法,并与15°差分偏移算法相比较,分析了此算法的计算工作量。本文提出的大倾角差分偏移方法十分有效且容易实现。  相似文献   

3.
压制数值频散,提高正演模拟精度,一直是有限差分正演模拟研究的重要内容.基于时空域频散关系的有限差分法,比基于空间域频散关系的传统有限差分法,模拟精度更高.时空域声波方程数值模拟,普遍采用常规十字交叉型高阶有限差分格式.而在频率-空间域,普遍采用旋转网格和常规网格混合的有限差分格式,有效提高了模拟精度和计算效率.本文将频率-空间域混合网格有限差分的思想引入到时空域,提出了时空域混合网格2 M+N型声波方程有限差分方法.首先推导出基于时空域频散关系的混合网格差分系数计算方法,然后进行频散分析、稳定性分析,并和传统高阶、时空域高阶有限差分法对比,结果表明:计算量相同时,新方法能有效压制数值频散,显著提高模拟精度;新方法相比传统2 M阶有限差分法,稳定性增强,与时空域2 M阶有限差分法稳定性基本相当.最后利用新方法进行均匀介质、层状介质、盐丘模型的数值模拟和盐丘模型的逆时偏移,模拟效果和成像质量进一步证实了该方法的有效性和普遍适用性.  相似文献   

4.
在数值模拟中,隐式有限差分具有较高的精度和稳定性.然而,传统隐式有限差分算法大多由于需要求解大型矩阵方程而存在计算效率偏低的局限性.本文针对一阶速度-应力弹性波方程,构建了一种优化隐式交错网格有限差分格式,然后将改进格式由时间-空间域转换为时间-波数域,利用二范数原理建立目标函数,再利用模拟退火法求取优化系数.通过对均匀模型以及复杂介质模型进行一阶速度-应力弹性波方程数值模拟所得单炮记录、波场快照分析表明:这种优化隐式交错网格差分算法与传统的几种显式和隐式交错网格有限差分算法相比不但降低了计算量,而且能有效的压制网格频散,使弹性波数值模拟的精度得到有效的提高.  相似文献   

5.
A new numerical method is presented for propagating elastic waves in heterogeneous earth media, based on spectral approximations of the wavefield combined with domain decomposition techniques. The flexibility of finite element techniques in dealing with irregular geologic structures is preserved, together with the high accuracy of spectral methods. High computational efficiency can be achieved especially in 3D calculations, where the commonly used finite-difference approaches are limited both in the frequency range and in handling strongly irregular geometries. The treatment of the seismic source, introduced via a moment tensor distribution, is thoroughly discussed together with the aspects associated with its numerical implementation. The numerical results of the present method are successfully compared with analytical and numerical solutions, both in 2D and 3D.  相似文献   

6.
弹性波数值模拟的非规则网格差分法   总被引:9,自引:3,他引:6       下载免费PDF全文
张剑锋 《地球物理学报》1998,41(Z1):357-366
基于应力、速度混合变量弹性波方程及任意四边形网格差分算子,给出了交错计算应力及速度的非规则网格弹性波应力一速度差分法该方法融合了有限元法能适应复杂形状边界及差分法无需计算刚度阵的特点,具有较高的计算精度,所需计算机存储空间较少,计算效率也很高.基于积分平衡方程引入了任意形状自由表面的边界条件,且通过局部滤波改善了自由表面边界条件的稳定性,使得该方法可应用于考虑地表形状影响的地震波数值模拟  相似文献   

7.
A possible problem of anisotropic medium at the internal interface for finite-difference method is investigated in this paper. Firstly, we show a finite-difference scheme for the 2-dimensional wave equations with 15 elastic parameters. Secondly, we mainly analyse the stress-continuity conditions for the finite-difference scheme at discontinuities in the 2-D transversely isotropic medium and suggest an alternate simulation technique. Finally, the seismic wavefield of theoretical model in transversely isotropic medium is simulated. The numerical computation shows that both computational results and theoretical analyse for the model are the same and that the algorithm is feasible and satisfactory. This study is supported by the National Natural Science Foundation of China.  相似文献   

8.
本文应用交错网格高阶有限差分方法模拟弹性波在三维各向同性介质中的传播。采用时间上二阶、空间上高阶近似的交错网格高阶差分公式求解三维弹性波位移-应力方程,并在计算边界处应用基于傍轴近似法得到的三维弹性波方程吸收边界条件。在此基础上进行了三维盐丘地质模型的地震波传播数值模拟试算。试算结果表明该方法模拟精度高,在很大程度上减小了数值频散,绕射波更加丰富,而且适用于介质速度具有纵向变化和横向变化的情况。  相似文献   

9.
We have studied in detail the theoretical and numerical properties of a finite-difference algorithm for image-wave time-remigration. For a number of synthetic models, numerical experiments have been performed. For these examples, we obtained perfect agreement between the theoretical predictions and numerical results. The examples also prove the computational efficiency of the algorithm. An application to ground-penetrating-radar (GPR) data demonstrates that image-wave remigration can be used to estimate models with laterally varying velocities. The quality of the latter is confirmed by a final zero-offset time migration.  相似文献   

10.
A mesh grading approach based on investigated lump method has been presented for simulating wave propagation in high velocity-contrast media. Unstructured fine grids are used to discretize the low wave-velocity medium in order to ensure the accuracy of numerical computation, and unstructured coarse grids are used for the high wave-velocity medium in order to substantially reduce the computational cost. On the interface, one coarse grid can match the fine grids of arbitrary odd number. The key feature of the proposed method is the constructions of investigated lumps on the interfaces of media. The transition zone, which is commonly used in the discontinuous grid scheme based on the staggered-grid finite-difference method, will not be used any more. Moreover, the computational instability that the discontinuous grid schemes frequently encountered does not arise in the proposed method. The comparisons with the analytical solutions and the application in studying the effects of sedimentary basin demonstrated that the mesh grading approach is a valid, accurate, convenient and flexible algorithm in simulating wave propagations in high velocity-contrast media with irregular interfaces.  相似文献   

11.
12.
A predictor‐multicorrector implementation of a Time Discontinuous Galerkin method for non‐linear dynamic analysis is described. This implementation is intended to limit the high computational expense typically required by implicit Time Discontinuous Galerkin methods, without degrading their accuracy and stability properties. The algorithm is analysed with reference to conservative Duffing oscillators for which closed‐form solutions are available. Therefore, insight into the accuracy and stability properties of the predictor‐multicorrector algorithm for different approximations of non‐linear internal forces is gained, showing that the properties of the underlying scheme can be substantially retained. Finally, the results of representative numerical simulations relevant to Duffing oscillators and to a stiff spring pendulum discretized with finite elements illustrate the performance of the numerical scheme and confirm the analytical estimates. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
The numerical dispersion and computational cost are high for conventional Taylor series expansion staggered-grid finite-difference forward modeling owing to the high frequency of the wavelets and the large grid intervals. In this study, the cosine-modulated binomial window function (CMBWF)-based staggered-grid finite-difference method is proposed. Two new parameters, the modulated time and modulated range are used in the new window function and by adjusting these two parameters we obtain different characteristics of the main and side lobes of the amplitude response. Numerical dispersion analysis and elastic wavefield forward modeling suggests that the CMBWF method is more precise and less computationally costly than the conventional Taylor series expansion staggered-grid finitedifference method.  相似文献   

14.
A 2D numerical finite-difference algorithm accounting for surface topography is presented. Higher-order, dispersion-bounded, cost-optimized finite-difference operators are used in the interior of the numerical grid, while non-reflecting absorbing boundary conditions are used along the edges. Transformation from a curved to a rectangular grid achieves the modelling of the surface topography. We use free-surface boundary conditions along the surface. In order to obtain complete modelling of the effects of wave propagation, it is important to account for the surface topography, otherwise near-surface effects, such as scattering, are not modelled adequately. Even if other properties of the medium, for instance randomization, can improve numerical simulations, inclusion of the surface topography makes them more realistic.  相似文献   

15.
Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.  相似文献   

16.
Alekseev and Mikhailenko have developed a wavenumber-summation method which combines a finite integral transformation with a finite-difference calculation and involves no approximations other than numerical ones. However, numerical anisotropy causes velocity errors for shear waves which are unacceptable if Poisson's ratios are larger than 0.4 and unless the number of grid points per wavelength is chosen considerably higher than the value generally regarded as sufficient in finite-difference computations. To overcome this limitation in the applicability of the otherwise very powerful modelling scheme, the method is applied to the elastodynamic equations for the velocity vector. Thus, instead of solving a second-order hyperbolic system as in the case of the wave equation, solutions to a first-order hyperbolic system are computed. The finite-difference iteration is performed in a staggered grid. In addition to mastering the numerical difficulties in cases where the Poisson's ratio is unusually high, this approach results in a code which can be used for the modelling of liquid layers. With the new scheme, water reverberations are investigated in terms of normal modes. It is found that for realistic sea-bottom velocities the critical and supercritical cases exist only for P-waves. It means that compressional waves are trapped within the water layer but energy leaks into the substratum through converted shear waves. These leaky compressional normal modes attain properties similar to those of shear normal modes or Pseudo-Love waves. Due to their origin from conversion of dispersed multi-modal compressional waves the shear waves generated at the sea-bottom form a long complex wavetrain. They were found to mask the reflections from the target horizon in an offset-VSP field section.  相似文献   

17.
三维复杂山地条件下的各种地震波型的走时计算技术,可以直接用于复杂山地区域地震波运动学特性的分析、地震数据采集观测系统的设计以及直接基于三维复杂地表的地震数据处理技术的研发.为了在三维复杂地表条件下准确、灵活且稳定地计算各种地震波型的走时,提出一种多级次群推进迎风混合法.该算法利用不等距迎风差分法简洁稳定地处理三维复杂地表及附近的局部走时计算问题,利用计算精度不错的迎风双线性插值法处理绝大部分均匀正方体网格中的局部走时计算问题,利用群推进法模拟三维复杂地表条件下地震波前的扩展问题,利用多级次算法处理各种类型的地震波的走时计算问题.算法分析和计算实例表明:新方法具有很好的计算精度与效率,且能灵活稳定地处理三维复杂地表复杂介质条件下的多波型走时计算问题.  相似文献   

18.
— Kjartansson's constant-Q model is solved in the time-domain using a new modeling algorithm based on fractional derivatives. Instead of time derivatives of order 2, Kjartansson's model requires derivatives of order 2γ, with 0 <γ< 1/2, in the dilatation-stress formulation. The derivatives are computed with the Grünwald-Letnikov and central-difference approximations, which are finite-difference extensions of the standard finite-difference operators for derivatives of integer order. The modeling uses the Fourier method to compute the spatial derivatives, and therefore can handle complex geometries. A synthetic cross-well seismic experiment illustrates the capabilities of this novel modeling algorithm.  相似文献   

19.
A numerical method is developed for accurately approximating head and flux covariances and cross-covariances in finite two- and three-dimensional domains using the mixed finite element method. The method is useful for determining head and flux covariances for non-stationary flow fields, for example those induced by injection or extraction wells, impermeable subsurface barriers, or non-stationary hydraulic conductivity fields. Because the numerical approximations to the flux covariances are obtained directly from the solution to the coupled problem rather than having to differentiate head covariances, the approximations are in general more accurate than those obtained from conventional finite difference or finite element methods. Results for uniform flow example problems are consistent with results from previously published finite domain analyses and demonstrate that head variances and covariances are quite sensitive to boundary conditions and the size of the bounded domain. Flux variances and covariances are less sensitive to boundary conditions and domain size. Results comparing approximations from lower-order Raviart–Thomas–Nedelec and higher order Brezzi–Douglas–Marini[9] finite element spaces indicate that higher order element space improve the estimate of the flux covariances, but do not significantly affect the estimate of the head covariances.  相似文献   

20.
A probabilistic approach to structural model updating   总被引:3,自引:0,他引:3  
The problem of updating a structural model and its associated uncertainties by utilizing measured dynamic response data is addressed. A Bayesian probabilistic formulation is followed to obtain the posterior probability density function (PDF) of the uncertain model parameters for given measured data. The present paper discusses the issue of identifiability of the model parameters and reviews existing asymptotic approximations for identifiable cases. The focus of the paper is on the treatment of the general unidentifiable case where the earlier approximations are not applicable. In this case the posterior PDF of the parameters is found to be concentrated in the neighborhood of an extended and extremely complex manifold in the parameter space. The computational difficulties associated with calculating the posterior PDF in such cases are discussed and an algorithm for an efficient approximate representation of the above manifold and the posterior PDF is presented. Numerical examples involving noisy data are presented to demonstrate the concepts and the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号