首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
利用2008—2014年CFL20G风廓线雷达数据对科尔沁草原高空风场垂直特征进行研究。主要对高空三维风场季节变化的统计学特征、典型高度层上的变化规律及垂直高度上的日变化规律进行分析。分析发现:四季中高空20~40 m/s风速出现的频率最高,2900~18 000 m科尔沁草原高空以偏西风为主。垂直高度上水平风速呈一波一谷型变化,随着高度的增加,高层水平风速开始增大的时间有所推后。12 600 m及以下各层平均风速最小的季节为夏季,最大的季节为冬春两季;19 000 m平均风速最小的月份为12月,风速最大月份为8月。垂直速度在5100 m以下有明显日变化,1500 m和2900 m有较为明显的年变化,最大值出现在春夏交接的4—6月,最小值出现在12月,5100 m以上的垂直速度没有明显的年变化。  相似文献   

2.
利用2008-2014年CFL20G风廓线雷达数据对科尔沁草原高空风场垂直特征及变化进行研究。主要对高空三维风场季节变化的统计学特征、典型高度层上的变化规律及垂直高度上的日变化规律进行分析。分析发现:四季中高空20-40m/s风速出现的频率最大,3000米至18000米科尔沁草原高空以偏西风为主。垂直高度上水平风速呈一波一谷型变化,随着高度的增加,高层水平风速开始增大的时间有所推后。12600米及以下各层平均风速最小的季节为夏季,最大的季节为冬春两季;19000米平均风速最小的月份为12月份,风速最大月份为8月份。垂直速度在5500米以下有明显日变化,1500米和3000米有较为明显的年变化,最大值出现在春夏交接的4-6月份,最小值出现在12月份,5000米以上垂直速度没有明显的年变化。  相似文献   

3.
利用风廓线雷达在延吉市开展了边界层风场的探测研究,根据2012年4个月逐日的边界层风场探测资料,分析了延吉市大气边界层风场的时空分布特征,得到了逐月的高空风廓线图。结果表明:1000m以下,水平风速和垂直风速随高度均呈现出增加的趋势,地面风速最小,750-1000m高度处存在明显的风切变层;2月和7月高空水平风速随高度的增加而增加,4月和10月高空水平风速变化呈单峰型的变化趋势;2月垂直风速随高度的增加逐渐增加,7月随高度的增加逐渐减少,4月和10月随高度呈双峰型的变化趋势;各月在1000~2000m高度垂直风速较小;各月水平风除个别高度外均以西风或偏西风为主导风向,垂直方向以下沉气流为主。  相似文献   

4.
利用中国第3次青藏高原大气科学试验2014年7-8月改则探空试验期间获取的每天3次观测的探空数据,对该地区对流层大气垂直结构进行了研究。结果表明:改则地区海拔高度17-19 km存在逆温现象;第一对流层顶平均高度16082 m,第二对流层顶平均高度16466 m,前者出现概率远高于后者,两类对流层顶的高度均与其对流层顶的温度、气压成反比。08、14和20时(北京时)的最大风速分别出现在11.8、12.6和12.1 km高度,风速分别为16.2、16.3和15.9 m/s,风向随高度顺时针变化,对应为暖平流,由下层西南风转为上层的东南风,17 km以上高度稳定成东北风,下层主导风为西南风。在约8 km的高度上存在一个最大相对湿度聚集区,从地面开始相对湿度随高度升高而增大(逆湿现象),达到该聚集区后,随高度升高而减小。青藏高原西部雨季对流层顶折叠现象出现概率较低,可能与该季节高空急流或高空锋天气较少有关。  相似文献   

5.
基于宁波多普勒雷达、浙江省自动气象站、宁波凉帽山高塔梯度观测等资料,对1416号强热带风暴“凤凰”登陆浙江后的风场时空变化进行分析。结果表明:“凤凰”结构不对称,8级以上风速带主要位于风暴中心前进方向的前侧和右侧。前侧最大风速半径一直维持在60 km左右,最大风速带宽度约为50 km;其右侧最大风速半径为80~120 km,随中心北移有增大趋势,最大风速带宽度约100 km;其前侧和右侧最大风速半径在垂直方向上变化不大。“凤凰”前侧TREC(Tracking Radar Echoes by Correlation)风速在1 km高度最强,其上则随高度的增大而减小,其右侧1~3 km高度TREC风速的垂直变化明显小于前侧。宁波凉帽山高塔处TREC风和梯度观测表明:“凤凰”影响期间,高塔上空159 m和2~4 km高度出现多个风速高值中心;常通量层高度约为159 m;常通量层内风廓线遵从对数率,当高塔位于“凤凰”右前侧时塔层阵风系数随高度增大而减小,当高塔位于“凤凰”中心附近和右后侧时阵风系数明显增大,且层次差异减小;常通量层以上159~318 m的塔层风廓线不满足指数率或对数率,阵风系数上下差异不大。   相似文献   

6.
该文利用2003年3月—2011年12月三沙市高空气象探测站L波段雷达探空资料,分析了三沙低空风的变化特征。结果表明:三沙2006年3月—2011年12月高空气象探测站所测地面—1 500 m不同高度的风向变化大致相同,各层风中主要盛行NE、ENE、SSW风;静风出现最少,其次是NW、WNW、NNW风向;春季地面—1 500 m高度的风向分布为双峰形状,主要集中在NE-ENE、SSE-SSW,夏季、秋季、冬季地面—1 500 m高度的风向分布为单峰形状,夏季风向主要集中在SWSW,秋季风向主要集中在NE-E,冬季风向主要集中在NNE-ENE;地面—1 500 m的各层风中,地面平均风速最小,500 m低空平均风速最大;地面—500 m高度的风从夏季至冬季都逐渐增大,1 000~1 500 m从春季至秋季增大,冬季反而减小;地面—1 500 m平均风速11—12月份最大,3—4月份风速最小。  相似文献   

7.
为进一步加深南北气候过渡带上山地丘陵地区的风场认识,利用淮南2015年3月至2016年2月ST(Stratosphere-Troposphere)风廓线雷达的探测资料,分析了该地区20 km高度内风场的变化特征及垂直结构。结果表明:淮河流域850 hPa、700 hPa、500 hPa、100 hPa等压面高度上,风场有明显的垂直变化,风速及其波动幅度随春、夏、秋、冬先减小后增大,且随高度增加,夏季最小、冬季最大的季节规律逐渐增强;风场的垂直分布存在差异,在中低层以下,以小于10 m/s的风为主,风向转换多,中低层以上10~25 m/s的偏西风居多;年平均风场结构为低层以5 m/s北风为主,到2 km左右向西偏转,风速小于10 m/s,在5 km高度处形成15 m/s的西风,且风速持续增大,10 km左右达到25 m/s后逐渐减小,到15 km左右风向顺时针向北偏转,直到20 km附近与低空风场相近。  相似文献   

8.
利用2014年12月—2020年12月时间间隔为3.5 h的高空风实况分析火箭发射前后3.5 h内高空风差异,并利用WRF模式和火箭发射前3 h高空风建立火箭发射后0.5 h高空风预报模型,结果表明:火箭发射前后3.5 h内高空风速、风向差异特征,与高度、季节及火箭发射前3 h平均高空风速有关。高空风最大风速偏差为-24.00~26.00 m·s-1,风速偏差在10 m·s-1以内达三分之二,且主要出现在对流层中高层[6.5 km,11.5 km)高度内;最大风向绝对偏差范围为10.00°~180°,主要集中在[30°,60°)范围及对流层中低层[1.5 km,6.5 km)高度内。火箭发射前后3.5 h内高空风速平均绝对偏差随火箭发射前3 h高空风速平均值增大呈增大趋势,风速相对误差绝对值和风向绝对偏差则表现为减小趋势,说明高空风强时,风向不易发生短时变化;火箭发射前后3.5 h内高空风差异随季节变化与高空风的季节特征有关。利用火箭发射后0.5 h高空风预报模型,有助于降低火箭飞行风险。  相似文献   

9.
河北地区边界层内不同高度风速变化特征   总被引:15,自引:4,他引:11  
为了研究城市化进程对风速变化的影响,利用1971-2006年河北省境内邢台、张家口和乐亭3个探空站高空风观测资料和对应地面站风观测资料,统计分析了边界层内距地面10m、300m、600m、900m 4个高度的长期风速变化特征,比较了不同高度风速变化趋势的异同.分析结果表明:3站年和季节平均风速随着距地面高度的增加而变大,但最大的风速垂直递增率出现在从10m到300m之间;各站各高度层月平均风速具有明显的季节变化特征,春季风速最大,夏季较小;在近36年里,3站平均的地面(10m高)年和季节平均风速变化存在显著的减少趋势,300m以上各高度层平均风速一般也降低,但远没有地面明显;不同高度平均风速变化趋势的差异可能主要是由城市化以及台站附近观测环境的改变引起的,这使得地面风速明显减弱;但地面以上各层平均风速同样存在一定减弱现象,说明背景大气环流的变化也是地面风速下降的原因之一.  相似文献   

10.
为进一步认识青藏高原山地低层风场特征、长期变化规律,利用2008-2012年青藏高原东南缘云南大理站边界层铁塔和风廓线雷达的长期观测资料,初步分析了该地区低层风场垂直结构及其变化特征。结果表明:(1)从地面到高空,风速、风向频率分布随高度的增加而变化,2~400m高度风速基本为2级,盛行风向为偏东风,这说明边界层铁塔和风廓线雷达的风速、风向具有连续性。(2)从垂直高度上看,风速存在明显季节变化特征,冬季风速较大,夏季风速较小;日变化结构随高度的升高表现形式明显不同,20m以下为单峰型,100~1500m为双峰型,2000m以上日变化不明显;平均风速逐月变化,20m以下为单峰型,100~1000m为双峰型,1500m以上为单峰型。(3)纬向风600m以下出现东西风交替的日变化,经向风在2~20m高度全天为南风,100m高度以上午后至日落为南风、其余时段为北风,南风由高空向低层传递。  相似文献   

11.
针对2016年湖北梅雨期3次(“6·19”、“7·5”和“7·19”)暴雨过程,首先对比了汉口站探空数据与汉口、咸宁两个风廓线雷达站水平风速、风向,发现“6·19”和“7·5”过程汉口风廓线雷达站3 km以下水平风速和探空数据较为接近,而3次过程中咸宁风廓线雷达站8 km以下水平风向、风速和汉口站探空数据基本吻合。在此基础上利用风廓线雷达资料并结合常规、加密自动气象站资料,对3次过程中水平风场、平均垂直速度及其变率、水平风速垂直切变、大气折射率结构常数(C■)等进行分析。结果表明:(1)降水开始前西南风速明显增大,中层干冷空气入侵和地面冷池形成的中尺度偏东气流是“6·19”过程50站出现大于等于17.2 m·s-1大风的主要原因,“7·5”和“7·19”过程西南急流长时间维持及1 km以下的偏东气流则是短时强降水持续时间较长的诱因;(2)梅雨期暴雨期间风廓线雷达观测的水平风速垂直切变、平均垂直速度及其变率随高度变化较小,较强上升运动区域主要集中在4 km高度以下;(3)C■显示强降水发生前大气水汽含量有一增加过程,且整层水汽含量深厚,C■大值区的消失对应降水结束。  相似文献   

12.
城市近地层风特征与污染系数分析   总被引:1,自引:0,他引:1  
使用黑龙江省风能资源专业观测网依兰测风塔2010年5月-2011年4月期间10、50、70、100m四层测风数据,对依兰风特征进行分析。结果表明:测风塔各高度风速具有一致的日变化规律,均是白天大,夜间小。随高度升高,风速变化趋势减弱,100m高度与下层显现出不同的变化特征,具有高空风速的日变化特征。垂直气流速度各时刻平均值均为正值,日变化规律与水平风速基本一致,也是白天较大,夜间较小。风廓线指数n值夜间较大,且稳定,均在0.25左右,08时后,随着温度升高,上下层空气能量交换增大,a值迅速减小,12—14时最小,仅为0.11,之后又迅速增大。各高度主导风向一致,随高度增大,主导风向频率升高。各高度污染系数最大值对应的风向一致,随高度增加,污染系数较小的风向区间增加,有利于大气污染物的扩散。因此增加排放高度,可以有效减少城市近地面的大气污染物浓度。  相似文献   

13.
To determine the performance and data accuracy of the 50 MHz Beijing Mesosphere–Stratosphere–Troposphere(MST)radar,comparisons of radar measured horizontal winds in the height range 3–25 km with radiosonde observations were made during 2012.A total of 427 profiles and 15 210 data pairs were compared.There was very good agreement between the two types of measurement.Standard deviations of difference(mean difference)for wind direction,wind speed,zonal wind and meridional wind were 24.86?(0.77?),3.37(-0.44),3.33(-0.32)and 3.58(-0.25)m s~(~(-1)),respectively.The annual standard deviations of differences for wind speed were within 2.5–3 m s~(-1)at all heights apart from 10–15 km,the area of strong winds,where the values were 3–4 m s~(-1).The relatively larger differences were mainly due to wind field variations in height regions with larger wind speeds,stronger wind shear and the quasi-zero wind layer.A lower MST radar SNR and a lower percentage of data pairs compared will also result in larger inconsistencies.Importantly,this study found that differences between the MST radar and radiosonde observations did not simply increase when balloon drift resulted in an increase in the real-time distance between the two instruments,but also depended on spatiotemporal structures and their respective positions in the contemporary synoptic systems.In this sense,the MST radar was shown to be a unique observation facility for atmospheric dynamics studies,as well as an operational meteorological observation system with a high temporal and vertical resolution.  相似文献   

14.
上海浦东国际机场低层大气垂直风场特征研究   总被引:1,自引:0,他引:1  
王海霞  张宏升  李云峰  白敬蒋  潘江勇 《气象》2013,39(11):1500-1506
风廓线雷达资料具有较高的时间和空间分辨率,但多集中于强对流性天气的预报和分析。文章主要将该资料应用于低层大气风场结构的研究和分析中。利用2009年1月至2010年6月共计18个月的上海浦东国际机场LAP 3000边界层风廓线雷达探测的水平风速风向资料,根据差值后的每小时平均的风速、风向进行统计分析(垂直分辨率50 m),发现风速极大值出现的高度具有重复性,主要出现在1000、600、500、450、550和250 m,相邻两层之间的风矢量变差的极大值主要出现在250和300 m之间。按照国际民航组织建议的的水平风的垂直切变强度标准,将各个层次之间的风矢量进行统计分类,有轻度、中度、强烈、严重四个等级的风切变,同时发现不同等级的风切变的发生具有明显的季节特征。对于浦东国际机场区域的低层垂直风场的特征及演变情况初步的分析和探讨,为今后可以更好地结合AMDAR资料、电子探空仪、微波辐射计等探测手段针对机场区域甚至是内陆部分机场关于风切变的精细化预报、预警服务的研究奠定了一定的基础。  相似文献   

15.
董保举  高月忠  张丽芬 《气象科技》2014,42(6):1077-1082
应用新型探测资料对2012年9月1日至3日在云南大理发生的暴雨天气过程进行了分析,结果表明:微波辐射计在降水时段的云底高度保持在1km以下,液态水含量越大降水强度越强,温度出现较大的波动,相对湿度高层小值区与较强降水有很好的对应关系;降水时段风廓线雷达的探测高度增高,水平风从地面到高空顺时针旋转(暖平流),垂直风速小于-4m/s,信噪比值大于40dB,信噪比强度与降水强度有正相关关系,分析结果有利于对暴雨天气展开更详尽的监测研究。  相似文献   

16.
以2019年8月在浙江舟山对1909号超强台风“利奇马”的移动观测试验为基础,利用同一地点释放的9次GPS探空气球,对比了风廓线雷达和多普勒激光测风雷达与GPS探空的吻合程度,并利用车载雨滴谱仪对风廓线雷达在不同台风降水强度下的适用性进行了研究。结果表明,在100~300 m高度范围内激光测风雷达观测风速比风廓线雷达更准确。由水平风速对比结果可知,风廓线雷达在3~4 km高度范围内偏差最小(3.59 m/s),相关性最高(0.86),而在1 km高度下偏差最大(6.39 m/s),相关性最低(0.54);在中雨及大雨条件下适用性最差,最大风速偏差约为18 m/s。由水平风向对比结果可知,风廓线雷达与GPS探空总体上吻合较好,相关系数均大于0.85,均方根偏差均小于11 °。另外,降水强度对风廓线雷达的风向观测影响较小,风向偏差随降水强度的变化总体趋于平稳,基本分布在-20 °~20 °之间。   相似文献   

17.
利用三维变分方法对2014年3月30—31日华南一次强飑线过程进行风场反演,经与风廓线雷达探测结果、双多普勒天气雷达反演结果、原始径向速度数据等对比分析,得到如下结论:三维变分方法反演的中低层水平风场与风廓线雷达探测到的结果较为一致,且能很好地表现飑线过境时的风向切变;通过与双多普勒雷达风场反演结果对比发现,两种方法得到的风场空间分布十分相似,均能很好地表现2 km高度上系统内部强带状回波前缘的辐合线以及5 km高度上较弱的辐散;三维变分方法反演的水平风场与径向速度场有较好的一致性,2 km高度强回波带前缘阵风锋处的辐合线位置以及5 km和8 km高度上辐散区的位置均与径向速度场十分吻合;三维变分方法反演的垂直速度能较好地反映该飑线过程中气流的上升和下沉运动,平行于飑线方向的气流变化较小,而系统气流变化主要沿垂直于飑线的方向。三维变分方法反演的飑线系统的三维风场结构合理,反演结果可靠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号